文档库 最新最全的文档下载
当前位置:文档库 › rudin数学分析原理 第九章部分答案

rudin数学分析原理 第九章部分答案

rudin数学分析原理 第九章部分答案
rudin数学分析原理 第九章部分答案

第9章

5、低维情况(d:2)

存在:点积和矩阵乘积差别不大,取y为A转置

唯一:算y-z的模方

Schwarz:由于低维,等号可取

6、奇点算偏导(d:1)

另一个变量可以一开始就取奇点的值(0),减少运算

7、多元函数的李普希兹条件与连续性(d:1)

拆分,每次只变一个变量

8、多元函数极值必要条件(d:2)

构造一个单元函数,自变量沿着直线向外变

9、导数为零则为常值(d:1)

中值定理

10、偏导数为零则丧失依赖(d:1)

单变量中值定理。x1变化时连线必须都在定义域里11、梯度运算律(d:1)

计算偏导即可

12、二元三维函数实例(d:1,d:3)

值域:先固定t,为球面;再使t运动,得到球心轨迹

(a)(b):注意,梯度是对多元实值函数而言的

(c):注意,局部极值是对实值函数而言的,故可将整体值域在某个坐标轴上投影,以判断是否为极值

(d):1-1:t和λt都要满足2kΠ的关系,消去t1、t2后,可得关于有理数的矛盾

稠密:使(t)固定,不断加n而小数部分不变。再利用λn是稠密的,则λt可在(t)不变的情况下稠密

Remark:证二维的稠密性,先证第一个坐标可以稠密;再固定第一个坐标,证明此时第二个坐标可以稠密

13、球面上的垂直关系(d:2)

列出模长式后,两边对t求导

14、(c)可微与导函数连续(d:3)

一维的可微性就是可导性

在奇点处集体除上一个无穷小量(能算值的都是齐次的)

数学分析教学现状调查与分析

作为学院院级精品课程,我们以素质教育观为指导思想,对数学分析教学现状进行了调查与研究.调查地目标是教学内容、教学方法和手段.调查地方式有:.在全省范围内向师范院校毕业地中学数学分析教师发出问卷(以下简称卷Ⅰ),(回收份);.向学院在职与退休地数学分析教师发出问卷(以下简称卷Ⅱ),(回收份);.对在职和退休地数学分析教师是行访谈;.召开在校学生座谈会;.查阅部分学校地数学分析教学档案.现梳理出调查结果并作出分析.数学分析在数学教育专业中所处地地位 教学管理机构,院、系对数学分析课地重视程度. 数学分析地形成发展有着悠久地历史,它地内容丰富、诚厚,很多数学分支是由它派生地.也有很多数学分支要以它为思想、知识、方法地基础,同时它还直接或间接地应用于自然、人文、社会科学地诸多方面.无论是哪方面地现代人才,都必须掌握足够地数学分析知识.对此,我省有关教学管理机构,各学院地院、系两级认识深刻、清楚,在学院数学教育专业地课程体系中始终把数学分析课放在“基础、主干”地地位.个人收集整理勿做商业用途 第一,保证了课时.各校给数学分析地排课都是三,四学期课时以上.年全省各校为拓宽专业口径,压缩了专业课,甚至提出淡化专业课地口号,但各校均未减少数学分析地课时.个人收集整理勿做商业用途 第二,在恢复高考招生制度后,全省高师系统首次组织地统考,就是对数学分析地统考.年省教委又组织了部分院校为数学分析摸底考试而命题.个人收集整理勿做商业用途 第三,各校都重视数学分析课地课程建设.象咸阳师院、渭南师院、安康学院都把数学分析定为校级重点建设课程.个人收集整理勿做商业用途 学生心目中地数学分析 卷Ⅰ题地统计结果是:有地人在校学习期间对数学分析课最感兴趣;地人对数学分析学习投入地精力最大;地人认为毕业后仍留下深刻影响地课是数学分析课.但只有地人将该课列为对中学数学教学作用最大地课.个人收集整理勿做商业用途 教学内容现状及分析 教学文件 2.1.1教学大纲 年原教育部委托部分院校编过一部数学分析教学大纲,其内容扎实、结构严谨.它是此后近二十年各师专数学教育专业选择教材、编写讲义、命题考试地主要依据,其作用不可低估.但用现在地眼光看,不对其“革新”就不能适应发展地教育形势,在幅员辽阅地国土上,各地经济、文化发展不平衡,生源素质不一,办学特色不同,用一个大纲覆盖万平方米是不现实地.再之,年地大纲没用具体地教学要求.仅列教学目录,不便操作.这部大纲看不出师范特点,也没能考虑专科生地接受能力,盲目向本科看齐,这个大纲是不能进入世纪地.此后,原国家教委及现教育部都从未颁过统一地数学分析教学大纲,师专数学分析教学内容地遴选无“法”学可依由来已久.年调整教学计划后,各校都自行编写了数学分析教学大纲,以教学内容地遴选、组织起到了一定地规范作用.个人收集整理勿做商业用途 2.1.2原国家教委年地“教学方案” 年原国家教委颁发了《高等师范专科研教育二、三年制教学方案》.随后陕西省教委通知各师专自级执行这一方案.这是一次力度较大地改革.其中学科必修课改革力度最大,表现在课程门类地精减和课时地压缩上,这个方案没有配置相应地大纲,只有一个学科必修课地“课程设置说明”,各科地说明都很原则.对数学分析地“说明”列举有内容要点及课程设置目地.它指出:“设置课程地目地是使学生系统地掌握数学分析地基本理论、基础知识、能熟练地进行基本运算,具有较强地分析论证能力,能深入分析和处理中学数学教材,具备一定地解决实际问题地能力,办学习后继课程打下基础”.这是适应时代要求地.“方案”不配大纲,我们要作积极地理解,这本身就是改革,是在统一目地、统一要求地前提下,充分发挥各院校在

Rudin数学分析原理第一章答案

The Real and Complex Number Systems Written by Men-Gen Tsai email:b89902089@https://www.wendangku.net/doc/85283970.html,.tw 1. 2. 3. 4. 5. 6.Fix b>1. (a)If m,n,p,q are integers,n>0,q>0,and r=m/n=p/q,prove that (b m)1/n=(b p)1/q. Hence it makes sense to de?ne b r=(b m)1/n. (b)Prove that b r+s=b r b s if r and s are rational. (c)If x is real,de?ne B(x)to be the set of all numbers b t,where t is rational and t≤x.Prove that b r=sup B(r) where r is rational.Hence it makes sense to de?ne b x=sup B(x) for every real x. (d)Prove that b x+y=b x b y for all real x and y. 1

Proof:For(a):mq=np since m/n=p/q.Thus b mq=b np. By Theorem1.21we know that(b mq)1/(mn)=(b np)1/(mn),that is, (b m)1/n=(b p)1/q,that is,b r is well-de?ned. For(b):Let r=m/n and s=p/q where m,n,p,q are integers,and n>0,q>0.Hence(b r+s)nq=(b m/n+p/q)nq=(b(mq+np)/(nq))nq= b mq+np=b mq b np=(b m/n)nq(b p/q)nq=(b m/n b p/q)nq.By Theorem1.21 we know that((b r+s)nq)1/(nq)=((b m/n b p/q)nq)1/(nq),that is b r+s= b m/n b p/q=b r b s. For(c):Note that b r∈B(r).For all b t∈B(r)where t is rational and t≤r.Hence,b r=b t b r?t≥b t1r?t since b>1and r?t≥0.Hence b r is an upper bound of B(r).Hence b r=sup B(r). For(d):b x b y=sup B(x)sup B(y)≥b t x b t y=b t x+t y for all rational t x≤x and t y≤y.Note that t x+t y≤x+y and t x+t y is rational. Therefore,sup B(x)sup B(y)is a upper bound of B(x+y),that is, b x b y≥sup B(x+y)=b(x+y). Conversely,we claim that b x b r=b x+r if x∈R1and r∈Q.The following is my proof. b x+r=sup B(x+r)=sup{b s:s≤x+r,s∈Q} =sup{b s?r b r:s?r≤x,s?r∈Q} =b r sup{b s?r:s?r≤x,s?r∈Q} =b r sup B(x) =b r b x. And we also claim that b x+y≥b x if y≥0.The following is my proof: 2

大学数学分析答案

《数学分析》练习题1 一、单项选择题(本大题共4小题,每小题5分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、广义积分dx x ? -2 2 211的奇点的是 【 】 A .0 B .2 C .2 D .2± 2、下列关于定积分的说法正确的是 【 】 A .函数)(x f 在[]b a ,有界,则)(x f 在[]b a ,一定可积; B .函数)(x f 在[]b a ,可积,则)(x f 在[]b a ,一定有界; C .函数)(x f 在[]b a ,不可积,则)(x f 在[]b a ,一定无界; D .函数)(x f 在[]b a ,无界,则)(x f 在[]b a ,可能可积。 3、函数()x f 在闭区间[]b a ,可积是函数()x f 在闭区间[]b a ,连续的__ __条件。 【 】 A .充分非必要 B .必要非充分 C .充分必要 D .即不充分,又非必要 4、若级数∑∞ =1 n n u 收敛,则下列级数中,为收敛级数的是 【 】 A .()∑∞=-1 1n n n u B .()∑∞=-1 1n n n u C .∑∞=+1 1n n n u u D .∑ ∞ =++1 1 2 n n n u u 二、填空题(本大题共4小题,每小题5分,共20分)请在每小题的横线上给出正确的答案. 1、(){}x f n 在X 一致收敛的定义是: . 2、函数2 x e -在0=x 处的幂级数展开式为, . 3、积分()1012 <x 的收敛性。 解: 5、求级数∑ ∞ =1 3n n n n x 的收敛半径与收敛域。 解: 6、求dx e x ?+∞ 1。 解: 四、综合题(本大题共3小题,每小题8分,共24分)请在每小题后的空白处写出必要的 证明过程。 1、证明:积分?+∞ 02cos dx x 收敛。 证: 2、设()x f 在R 上连续,()()()dt t x t f x F x 20 -= ?。 证明:(1)若()x f 为偶函数,则()x F 也是偶函数;(2)若()x f 为单调函数,则()x F 也是单调函数。 证: 3、若{}n na 收敛, ()∑∞ =--1 1n n n a a n 收敛,证明级数∑∞ =1 n n a 收敛。 证:

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

实变函数积分理论部分复习试题[附的答案解析版]

2011级实变函数积分理论复习题 一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例) 1、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可积函数。(×) 2、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可测函数。(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,则 [0,1][0,1] lim ()d lim ()d n n n n f x x f x x →∞ →∞ =? ? 。 (×) 4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{} ()k n f x ,使得, [0,1][0,1] lim ()d lim ()d k k n n k k f x x f x x →∞ →∞ ,()f x 在[0,]n 上 黎曼可积,从而()f x 是[0,]n 上的可测函数,进而()f x 是1 [0,)[0,]n n ∞ =+∞= 上的可测函数) 10、设{}()n f x 是[0,1]上的一列单调递增非负可测函数,()[0,1],n G f 表示()n f x 在

工科数学分析基础试题

2010工科数学分析基础(微积分)试题 一、填空题 (每题6分,共30分) 1.函数?? ? ?? ??? ??-≥+=01 0)(2 x x e x bx a x f bx ,=- →)(lim 0x f x ,若函数)(x f 在0=x 点连续,则b a ,满足 。 2.=?? ? ??+∞→x x x x 1lim , =??? ??+++???++++++∞→n n n n n n n n n 2222211lim 。 3.曲线? ??==t e y t e x t t cos 2sin 在()1,0处的切线斜率为 ,切线方程为 。 4.1=-+xy e y x ,=dy ,='')0(y 。 5.若22 lim 2 21=-+++→x x b ax x x ,则=a ,=b 。 二、单项选择题 (每题4分,共20分) 1.当0→x 时,1132-+ax 与x cos 1-是等价无穷小,则( ) (A )32= a , (B )3=a , (C). 2 3 =a , (D )2=a 2.下列结论中不正确的是( ) (A )可导奇函数的导数一定是偶函数; (B )可导偶函数的导数一定是奇函数; (C). 可导周期函数的导数一定是周期函数; (D )可导单调增加函数的导数一定是单调增加函数; 3.设x x x x f πsin )(3-=,则其( ) (A )有无穷多个第一类间断点; (B )只有一个跳跃间断点; (C). 只有两个可去间断点; (D )有三个可去间断点; 4.设x x x x f 3 )(+=,则使)0() (n f 存在的最高阶数n 为( ) 。 (A )1 (B )2 (C) 3 (D )4 5.若0)(sin lim 30=+→x x xf x x , 则2 0) (1lim x x f x +→为( )。 (A )。 0 (B )6 1 , (C) 1 (D )∞

数学分析中的英文单词和短语

数学分析中的英文单词和短语 第一章实数集与函数

第二章 数列极限 Chapter 2 Limits of Sequences 第三章 函数极限 Chapter 3 Limits of Functions 第四章 函数的连续性 Chapter 4 Continuity of Functions

第六章 微分中值定理 及其应用 Chapter 6 Mean Value Theorems of Differentials and their Applications

第七章 实数的完备性 Chapter 7 Completeness of Real Numbers 第八章 不定积分 Chapter 8 Indefinite Integrals 第九章 定积分 Chapter 9 Definite Integrals

第十章定积分的应用Chapter 10 Applications of Definite Integrals 第十一章反常积分Chapter 11 Improper Integrals 第十二章数项级数Chapter 12 Series of Number Terms 第十三章函数列与函数项级数 Chapter 13 Sequences of Functions and

Series of Functions 第十四章 幂级数 Chapter 14 Power Series 第十五章 傅里叶级数 Chapter 15 Fourier Series 第十六章 多元函数的极限与连续 Chapter 16 Limits and Continuity of Functions of Several Variavles

最新2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a , a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以 ,0,02>?>?δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连 续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取 },m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所 以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <,

第一章复习题解答(数学分析)

第一章复习题 一.填空 1、数集,...}2,1:)1({=-n n n 的上确界为 1 ,下确界为 -1 。 2、 =∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 3、)(lim 2 n n n n -+∞ → = _______ 1 2 ________。 4、设数列}{n a 递增且 a a n n =∞ →lim (有限). 则有a = {}sup n a . 5. 设,2 12,21221 2n n n n n n x x +=-=- 则 =∞→n n x lim 1 二. 选择题 1、设)(x f 为实数集R 上单调增函数,)(x g 为R 上单调减函数,则函数 ))((x g f 在R 上( B )。 A、是单调递增函数; B、是单调递减函数; C、既非单调增函数,也非单调减函数 ; D、其单调性无法确定. 2、在数列极限的“δε-”极限定义中,ε与δ的关系是( B ) A 、 先给定ε后唯一确定δ; B 、 先给定ε后确定δ,但δ的值不唯一; C 、 先给定δ后确定ε; D 、 δ与ε无关. 3、设数列{}(0,1,2,...)n n a a n ≠=收敛,则下列数列收敛的是( D ) A 、}1 { 2n a ; B 、}1{a n ; C 、 }1{a n ; D 、}{n a . 4. 若数列}{n x 有极限a ,则在a 的ε邻域之外,数列中的点( B ) (A) 必不存在; (B) 至多只有有限多个; (C) 必定有无穷多个; (D) 可能有有限多个,也可能有无穷多个. 5.设a x n n =∞ →||lim ,则 ( D ) (A) 数列}{n x 收敛; (B) a x n n =∞ →lim ; (C) a x n n -=∞ →lim ; (D) 数列}{n x 可能收敛,也可能发散。 6. 设}{n x 是无界数列,则 ( D ) (A) ∞=∞ →n n x lim ; (B) +∞=∞ →n n x lim ;

数值积分_数值积分原理__matlab实现

课程设计报告课程设计题目:求解 的近似值 课程名称:数值分析课程设计 指导教师: X X X 小组成员: X X X X X X X X X 2013年12月31日

目录 目录 (1) 题目 (2) 一、摘要 (2) 二、设计目的 (2) 三、理论基础 (3) 1、复合矩形法求定积分的原理 (3) 2、复合梯形法求定积分的原理 (3) 3、复合辛普森法求定积分的原理 (4) 4、龙贝格求积公式原理 (5) 四、程序代码及运算结果 (5) 1、复合矩形法求定积分:用sum函数 (5) 2、复合梯形法求定积分 (6) 方法一 (6) 方法二:用trapz函数 (7) 3、复合辛普森法求定积分 (7) 方法一 (7) 方法二:用quad函数 (7) 4、龙贝格求定积分 (8) 5、Lobatto数值积分法 (9) 6、波尔文(Borwein)高阶公式 (9) 五、结果分析 (10) 六、设计心得 (10) 七、参考文献 (11)

题 目: (1)已知:411 02π=+? x dx ,所以 ?+=10214 dx x π 。于是,我们可以通过计算上述定积分的近似值来得到π的近似值。 (2)波尔文(Borwein )高阶公式 在π值的高阶算法研究中,最好的结果来自两个都叫波尔文的数学家。他们在1984年发表了一个2阶收敛公式: 20=a ,00=b ,220+=p , ??? ?? ? ???++=++=+=++++++1 111 11 1)1()1(2) 1(k k k k k k k k k k k k k b a b p p b a b a b a a a 式中π→k p 。试运用上述迭代算法,计算圆周率的近似值,并和前面传统方法进行比较。 一、摘要 借助matlab 环境下的计算机编程语言,先用基本的积分函数对给出的题目进行求积分,然后基于给出的波尔文高阶收敛公式,在进行了连续迭代后,对运行结果做出分析,同时与之前的传统做法进行比较。 二、设计目的 用熟悉的计算机语言编程,上机完成用复合矩形法、复合梯形法、复合辛普森法、龙贝格法以及Lobatto 数值积分方法,掌握各种方法的理论依据及求解思路,了解数值积分各种方法的异同与优缺点。

华中科技大学考研数学分析真题答案

2008年华中科技大学招收硕士研究生. 入学考试自命题试题数学分析 一、 求极限1 111lim(1...)23n n I n →∞=++++ 解: 一方面显然1I ≥ 另一方面111 1...23n n ++++≤,且1lim 1n n n →∞= 由迫敛性可知1I =。 注:1 lim 1n n n →∞ =可用如下两种方式证明 1) 1n h =+,则22 (1)2(1)1(2)2n n n n n n n h h h n n -=+≥+ ?≤≥ 即lim 0n n h →∞ =,从而1lim 1n n n →∞ = 2) =有lim 11n n n n →∞==-。 二、证明2232(38)(812)y x y xy dx x x y ye dy ++++为某个函数的全微分,并求它的原函数。 证明:记22(,)38P x y x y xy =+,32(,)812y Q x y x x y ye =++,则 2316P x xy y ?=+?,2316Q x xy x ?=+?? P Q y x ??=?? Pdx Qdy ∴+是某个函数的全微分 设原函数为(,)x y Φ,则x y d dx dy Pdx Qdy Φ=Φ+Φ=+ 2232238(,)4()x x y xy x y x y x y y ?∴Φ=+?Φ=++ 32328()812y y x x y y x x y ye ?'?Φ=++=++ ()12()12(1)y y y ye y y e C ??'?=?=-+ 322(,)412(1)y x y x y x y y e C C ∴Φ=++-+所求原函数为(为常数) 三、设Ω是空间区域且不包含原点,其边界∑为封闭光滑曲面:用n 表示∑的单位外法向量,(,,)r x y z =和2r r x y ==+,证明:

工科数学分析试卷+答案

工科数学分析试题卷及答案 考试形式(闭卷):闭 答题时间:150 (分钟) 本卷面成绩占课程成绩 80 % 一、填空题(每题2分,共20分) 1.---→x x x x sin 1 1lim 30 3- 2.若?? ???=≠-+=0,0,13sin )(2x a x x e x x f ax 在0=x 处连续,则 a 3- 3.设01lim 23=??? ? ??--++∞→b ax x x x ,则 =a 1 , =b 0 4.用《δε-》语言叙述函数极限R U ?∈=→)(,)(lim 0 x x A x f x x 的定义: ε δδε)()()(:00 0A x f x x ∈ →∈?>?>?U 5.若当)1(,02 3 +++-→cx bx ax e x x 是3 x 的高阶无穷小,则=a 6 1 =b 2 1 =c 1 6.设N ∈=--→n x x x f x f n x x ,1) () ()(lim 2000 ,则在0x x =处函数)(x f 取得何种极值? 答: 极小值 姓名: 班级: 学号: 遵 守 考 试 纪 律 注 意 行 为 规 范

7.设x x y +=,则dy dx x )211(+ ? 8.设x x y sin =,则=dy dx x x x x x x )sin ln (cos sin + 9. ?=+dx x x 2 1arctan C x +2 arctan 2 1 10.?=+dx e e x x 12 C e e x x ++-)1l n ( 二、选择题:(每题2分,共20分) 1.设0,2) 1()1l n (2 s i n 2t a n l i m 222 2 ≠+=-+-+-→c a e d x c x b x a x x ,则必有( D ) (A )d b 4=;(B )c a 4-=;(C )d b 4-=;(D )c a 2-= 2.设9 3 20:0< <>k x ,则方程112=+x kx 的根的个数为( B ) (A )1 ;(B ) 2 ; (C ) 3 ; (D )0 3.设)(x f 连续,且0)0(>'f ,则存在0>δ使得( A ) (A ))(x f 在),0(δ内单增; (B )对),0(δ∈?x 有)0()(f x f >; (C )对)0,(δ-∈?有)0()(f x f >; (D ))(x f 在)0,(δ-内单减。 4.)(x f 二阶可导,1) (lim ,0)0(3 -=''='→x x f f x ,则( A ) (A )())0(,0f 是曲线)(x f y =的拐点; (B ))0(f 是)(x f 的极大值; (C ))0(f 是)(x f 的极小值; (D ) (A ),(B ),(C )都不成 遵 守 考 试 纪 律 注 意 行 为 规 范

浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε 2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?== 1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ??--+--= 1 111)(2)(2])1[(])1[(! !21)()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2) (2 ])1[(])1[(] )1[(])1[(=

数学分析课本-习题及答案01

第一章 实数集与函数 习题 §1实数 1、 设a 为有理数,x 为无理数。证明: (1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。 2、 试在数轴上表示出下列不等式的解: (1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。 3、 设a 、b ∈R 。证明:若对任何正数ε有|a-b|<ε,则a = b 。 4、 设x ≠0,证明|x+x 1|≥2,并说明其中等号何时成立。 5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。 6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。证明 |22b a +-22c a +|≤|b-c|。 你能说明此不等式的几何意义吗 7、 设x>0,b>0,a ≠b 。证明x b x a ++介于1与b a 之间。 8、 设p 为正整数。证明:若p 不是完全平方数,则p 是无理数。 9、 设a 、b 为给定实数。试用不等式符号(不用绝对值符号)表示下列不等式的解: (1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|0(a ,b ,c 为常数,且a

工科数学分析下考试题带答案

工科数学分析(下)期末考试模拟试题 姓名:___________ 得分: _________ 一、填空题(每小题3分,满分18分) 1、设()xz y x z y x f ++=2 ,,,则()z y x f ,,在()1,0,1沿方向→ →→→+-=k j i l 22的方向导数为 _________. 2.,,,-__________. 22 2L L xdy ydx L x y =?+设为一条不过原点的光滑闭曲线且原点位于内部其走向为逆时针方向则曲线积分 1,()c c x y x y ds +=+=?3.设曲线为则曲线积分 ___________ 4、微分方程2 (3xy y)dx 0x dy +-=的通解为___________ 5、2 sin(xy) (y)______________.y y F dx x = ? 的导数为 6、 { ,01,0x (x),2x e x f x ππ ππ--≤<≤≤= =则其以为周期的傅里叶级数在点处收敛于 _____________. 二、计算下列各题(每小题6分,满分18分) 1. (1) 求极限lim 0→→y x ()xy y x y x sin 1 12 3 2+- (2) 2 20 ) (lim 22 y x x y x y +→→

2.设f ,g 为连续可微函数,()xy x f u ,=,()xy x g v +=,求x v x u ?????(中间为乘号). 3..222232V z x y x y z V =--+=设是由与所围成的立体,求的体积. 三、判断积数收敛性(每小题4分,共8分) 1. ∑∞ =1!.2n n n n n 2.∑∞ =-1 !2)1(2 n n n n

华东师大数学分析习题解答1

《数学分析选论》习题解答 第 一 章 实 数 理 论 1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ?=ξinf ,试证: (1) 存在数列ξ=?∞ →n n n a S a lim ,}{使; (2) 存在严格递减数列ξ=?∞ →n n n a S a lim ,}{使. 证明如下: (1) 据假设,ξ>∈?a S a 有,;且ε+ξ<'<ξ∈'?>ε?a S a 使得,,0.现依 次取,,2,1,1 Λ== εn n n 相应地S a n ∈?,使得 Λ,2,1,=ε+ξ<<ξn a n n . 因)(0∞→→εn n ,由迫敛性易知ξ=∞ →n n a lim . (2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取 Λ,3,2,,1min 1=? ?? ???+ξ=ε-n a n n n , 就能保证 Λ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □ 2.证明§1.3例6的(ⅱ). 证 设B A ,为非空有界数集,B A S ?=,试证: {}B A S inf ,inf m in inf =. 现证明如下. 由假设,B A S ?=显然也是非空有界数集,因而它的下确界存在.故对任何 B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有 {}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥?≥. 另一方面,对任何,A x ∈ 有S x ∈,于是有

S A S x inf inf inf ≥?≥; 同理又有S B inf inf ≥.由此推得 {}B A S inf ,inf m in inf ≤. 综上,证得结论 {}B A S inf ,inf m in inf =成立. □ 3.设B A ,为有界数集,且?≠?B A .证明: (1){}B A B A sup ,sup m in )sup(≤?; (2){}B A B A inf ,inf m ax )(inf ≥?. 并举出等号不成立的例子. 证 这里只证(2),类似地可证(1). 设B A inf ,inf =β=α.则应满足: β≥α≥∈∈?y x B y A x ,,,有. 于是,B A z ?∈?,必有 {}βα≥?? ?? β≥α≥,max z z z , 这说明{}βα,max 是B A ?的一个下界.由于B A ?亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥?成立. 上式中等号不成立的例子确实是存在的.例如:设 )4,3(,)5,3()1,0(,)4,2(=??==B A B A 则, 这时3)(inf ,0inf ,2inf =?==B A B A 而,故得 {}{}B A B A inf ,inf m ax inf >?. □ 4.设B A ,为非空有界数集.定义数集 {}B b A a b a c B A ∈∈+==+,, 证明: (1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.

工科数学分析教程上册最新版习题解答9.3

9.3典型计算题3 试解下列微分方程. 1.222'xy xy y =+ 解:令1-=y z ,两端同乘2)1(--y 得,x xy dx dy y 2)1(2)1()1(12 -=-+--- 即 x xz dx dz 22-=-, )())2((22222c e e c dx e x e z x x xdx xdx +=+?-?=--? 即 211x ce y +=- 2.2322'3x y y xy =- 解:23132'-=-xy y x y , 令 3y z =, 两端同乘 23y 得,x z x dx dz =-2 )(ln )(222 c x x c dx xe e z dx x dx x +=+??=?-, 即 )(ln 23c x x y += 3.222'x e y xy y =+ 解:令z y z -=1, 11-=-n , 2)1(2)1('x e xz z -=-+ )())1((2222x c e c dx e e e z x xdx x xdx -=+?-?=-?, 即)(21x c e y x -=- 4.x x e y ye y 22'=- 解:设y z =,211=-n ,)2)2 11(()2(211(221?+?-?=---c dx e e e z dx e x dx e x x 1-=x e ce 即 x e ce y =+1 5.x y x y x y cos ln '21-=+ 解:1ln 2cos ln 21'-=+y x x y x x y , 令21,2=-=n y z )ln cos (ln 1ln 1c dx e x x e z x x x x +??=?---)(sin ln 1c x x +=,即)(sin ln 12c x x y += 6.x y x y x y 23sin cos sin '2=+ 解:3sin 2 1sin 2cos 'y x y x x y ?=+, 令231--==y y z ))sin ((cot cot c dx e x e z xdx xdx +?-? =?-)(sin x c x -=, 即 )(sin 2x c x y -=-

武汉大学2005数学分析试题解答.doc

2005 年攻读硕士学位研究生入学考试试题解答(武 汉 大 学) 一、设{}n x 满足: 11||||||n n n n n x x q x x +--=-,||1n q r ≤< ,证明{}n x 收敛。 证明:(分析:压缩映像原理) 1111 11 11 11 2121211,|12 ||||||||, ||||(1...)|| ||1||111ln || l n n n n n n n n n p p n p n i i n n i n n p n r m q m x x q x x m x x Cauchy x x x x m m x x m x x m m x x m m m x x N εε+--+--+-+=+--+= <<-=-<-?-≤ -<+++---=-<----=∑令:则显然|(此即压缩映像原理证明)以下证明压缩映像原理利用收敛准则,对取n ||n p n n N m x x ε+>-≤+1,对任意的。从而知命题收敛 二、对任意δ > 0。证明级数01 n n x +∞ =∑ 在(1,1+δ)上不一致收敛。 证明:(利用反证法,Cauchy 收敛准则和定义证明。) 10,(1,1),,,1 1()11111(1,{1(1,1),M N M n n n n N x N n M N x x x x x x min εδεδδ-+=?>?∈+?>->=>-∈+?+∑如果级数收敛, 那么对于当时 只需令代入上式,矛盾 从而知非一致收敛 三、设1 ()||sin ,"()f x x y f x =-?求 解,(本题利用莱布尼兹求导法则:)

相关文档
相关文档 最新文档