文档库 最新最全的文档下载
当前位置:文档库 › 存储性能 - IOPS解读

存储性能 - IOPS解读

存储性能 - IOPS解读
存储性能 - IOPS解读

存储性能解密:苹果和桔子怎么比较?

有没有想过,厂商自己提供的存储产品性能指标数据没有任何意义?用户要准确地评估不同厂商的存储产品。

前言

近年来,随着存储系统由服务器的附属变成IT系统中独立的子系统、由“外设”变成信息系统基础架构的中心,用户如何规划、设计和挑选符合自己需求的存储系统已变得越来越重要。

每个购买存储系统的用户都希望买到性能高、价格低、质量好(故障率低、可靠性高)、容量大(扩充能力强)、易于管理、售后服务好的存储产品,其中大多数用户最关心的还是存储产品的前三项指标,即性能、价格和可靠性。具体如下:

·体现存储系统性能的最主要指标是IOPS(I/Os per second),即每秒输入输出次数;

·存储产品的价格需从二个方面进行评估,如果用户对存储的主要需求是存储容量,则可由每GB存储容量的价格比较各存储厂商的产品;如果用户对存储的主要需求是存储性能,则可由每IOPS的价格比较各存储厂商的产品;

·对于基于硬盘的存储系统,其可靠性MTTF(平均故障出现时间)可表示为:

MTTF array=MTTF disk/存储系统中的磁盘总数

其中:MTTF disk代表每块磁盘的平均故障出现时间,目前磁盘的MTTF disk最高可达1,400,000小时。

在存储系统的性能方面,很多存储厂商都为其产品公布了漂亮的IOPS指标数据:IOPS达十几万甚至几十万;但这些厂商大都不公布测出该IOPS指标的存储系统具体配置,因此用户也就无法对该存储产品的性价比和可靠性进行评估。很多用户在实际使用这些存储产品时却发现这些有着漂亮IOPS数值的存储产品性能很差,这是怎么回事?本文将为用户破解这个谜团!

一、此IOPS非彼IOPS

1、苹果和桔子怎么比较?没有统一的测试标准、环境和参数,IOPS就没有可比性

这是因为IOPS测试结果与很多测试参数有关,如果各个存储厂商都按自己的标准对存储系统进行测试,那么测试出的IOPS等指标就没有任何意义,原因如下:

1)随机(Random)读写的IOPS与顺序(Sequential)读写的IOPS大不一样:对于基于磁盘的存储系统,顺序读写的IOPS要远远大于随机读写的IOPS,其中100%顺序读的IOPS又大于100%顺序写的IOPS、100%随机读的IOPS又大于100%随机写的IOPS。下面的图表是某品牌磁盘阵列(配置12块Maxtor 250GB, 7,200RPM的磁盘,512MB Cache)的不同IOPS,就清楚地说明了这种情况:

2)从上面的图表可以看出:无论是顺序还是随机读写IOPS测试,传输数据块尺寸越小,IOPS值越大。

3)对于基于磁盘的存储系统,在其它测试条件一样的情况下,磁盘数量越多,IOPS值越大(几乎呈线性增长)。具体见下表:

4)在其它测试参数和条件一样的情况下,RAID-10配置的IOPS要大于RAID-5配置的IOPS。具体见下表与上表的比较:

5)在其它测试参数和条件一样的情况下,在同样的RAID级别配置下,IOPS值随磁盘中数据量的增加而下降。具体见下图:

综上所述,在同等情况下,100%顺序读、100%顺序写、100%随机读、100%随机写这四种IOPS 中,100%顺序读的IOPS最高。因此很多厂商公布的那些非常高的IOPS数据实际上是将被测存储系统配置了尽量多的小容量、高转速磁盘且每个磁盘装载数据量不多、设置为RAID-10时测出的100%顺序读(Sequential Read)IOPS的最大值。而且很多厂商在公布上述100%顺序读(Sequential Read)IOPS 时还隐去了“100%顺序读”字样,笼统地称为IOPS,还不透露被测存储系统的具体配置。

但多数用户实际使用的环境既有顺序读写、也有随机读写操作;传输数据块尺寸大小都有;为了有效利

用存储系统的存储容量,很多用户都采用RAID-5,而且尽量使用大容量磁盘来减少磁盘数量,以少占存储系统的宝贵槽位空间。因此,上述测试环境得到的100%顺序读(Sequential Read)IOPS指标完全不能代表该存储产品在用户实际应用环境下的性能。这就是厂商公布的IOPS很高,而产品在用户实际使用环境中

性能却很差的原因。

一.苹果是天然红还是上了色素:SPC-1 IOPS?可被“加工”出高数值,用户需小心、仔细研读SPC-1基

准测试报告

SPC-1基准测试虽然规定了严格的顺序和随机读写比例和数据块尺寸以及在何种磁盘负载情况下取值,但没有规定被测存储产品使用多少个磁盘,也没有规定被测存储产品设置何种RAID级别。好在存储性能

理事会(SPC)要求测试报告必须详细地列出被测存储系统的配置和价格,这使用户得以了解其中的奥妙,可以作出正确的评估和判断。

从前面我们已经了解到RAID-1的IOPS要比RAID-5的IOPS高;而且IOPS值随存储系统中磁盘数量

的增加而线性增长。因此,虽然现实环境中大多数用户都采用RAID-5,但各存储厂商在进行SPC-1基准测试时都选择了RAID-1设置;为了得到高数值的SPC-1 IOPS?,各厂商还尽量增加被测存储系统的磁盘数量,因为增加磁盘数量就等于增加IOPS;同时为防止因增加磁盘数量而过大幅度地增加被测存储系统的总价格,以至于过多拉高每SPC-1 IOPS?的价格,故各厂商都尽量使用小容量、高转速的磁盘:如36.4GB甚至18.2GB的磁盘。

从上表可以看到,前三种SPC-1 IOPS?达100K的存储产品进行SPC-1基准测试时,全部采用RAID-1设置;并使用400个以上的小容量、高转速的磁盘来实现高SPC-1 IOPS?,但它却导致该存储系统的可靠性大幅度地降低;而且对于用户来讲,如果真需要32TB的存储容量,用户会使用220块146GB的磁盘或110块293GB的磁盘来实现,而不会去用448块73GB的磁盘或960块36GB的磁盘去实现。这样一来,用户如果购买标着SPC-1 IOPS?达100K的32TB存储系统,实际SPC-1 IOPS?却只有100K的1/2到1/10;如果用户再为了提高存储容量的利用率而采用RAID-5设置,那么所购存储系统的SPC-1 IOPS?则会更低了!

第四种SPC-1 IOPS?达100K的存储产品是个例外,因为它是采用SDRAM作为存储介质的固态存储产品(Solid State Disk),其高性能、高IOPS?是与身俱来的,其SPC-1 LRT?(平均响应时间)也是SPC网站公布的所有存储产品中最低的。但令人惊奇的是固态存储产品(Solid State Disk)的SPC-1

Price-Performance(每SPC-1 IOPS?的价格)居然是SPC网站公布的所有存储产品中最低的,达

US$1.50/SPC-1 IOPS?。

二、如何快速利用SPC-1基准测试报告评估自己的存储系统

* SPC-1 IOPS?推算根据:

· A00034号SPC-1基准测试报告:Sun StorEdge? 6920 (8 tray:112个36.4GB 15krpm磁盘) SPC-1 IOPS?=19,496;

· A00033号SPC-1基准测试报告:Sun StorEdge? 6920 (20 tray:280个36.4GB 15krpm磁盘) SPC-1 IOPS?=48,646.62;

通过上表的比较,可以看出过去我们认为固态存储产品(Solid State Disk)极其昂贵、只能少量使用的传统观念是不正确的,事实证明固态存储产品(Solid State Disk)在要求高IOPS的场合是最便宜的存储产品。

什么情况下需要40,000 SPC-1 IOPS?的存储产品呢?

当服务器通过SPECsfs97基准测试达到每秒执行10,000次操作时,就等同于对服务器后端的存储系统执行每秒4,000次的磁盘操作。这就是说SPECsfs97达100,000的服务器,需要匹配40,000 SPC-1 IOPS?的存储产品,才不会使服务器的处理能力浪费。下面是一些SPECsfs97达100,000的服务器:

· IBM eServer pSeries 690 Turbo(16 X 1.3GHz POWER4,128GB内存),SPECsfs97=111,687 Ops/Sec;

· IBM eServer pSeries 690(16 X 1.7GHz POWER4+,128GB内存),SPECsfs97=167,007 Ops/Sec;

· HP AlphaServer GS1280 Model 8(8 X 1.15 GHz EV7,64GB内存),SPECsfs97=107,149 Ops/Sec;

· HP AlphaServer GS1280 Model 8(16 X 1.15 GHz EV7,96GB内存),SPECsfs97=154,654 Ops/Sec

这说明主流服务器厂商的高端UNIX服务器需要匹配SPC-1 IOPS?达40,000 以上的存储产品,如果该用户的在线业务数据量又小于200GB,那么满足要求的最便宜、可靠性最高的存储产品是固态存储产品(Solid State Disk)!

性能测试结果分析

性能测试结果分析 分析原则: 具体问题具体分析(这是由于不同的应用系统,不同的测试目的,不同的性能关注点) 查找瓶颈时按以下顺序,由易到难。 服务器硬件瓶颈-〉网络瓶颈(对局域网,可以不考虑)-〉服务器操作系统瓶颈(参数配置)-〉中间件瓶颈(参数配置,数据库,web服务器等)-〉应用瓶颈(SQL语句、数据库设计、业务逻辑、算法等) 注:以上过程并不是每个分析中都需要的,要根据测试目的和要求来确定分析的深度。对一些要求低的,我们分析到应用系统在将来大的负载压力(并发用户数、数据量)下,系统的硬件瓶颈在哪儿就够了。 分段排除法很有效 分析的信息来源: 1)根据场景运行过程中的错误提示信息 2)根据测试结果收集到的监控指标数据 一.错误提示分析 分析实例: 1)Error:Failed to connect to server “https://www.wendangku.net/doc/858995535.html,″: [10060] Connection Error:timed out Error: Server “https://www.wendangku.net/doc/858995535.html,″ has shut down the connection prematurely 分析: A、应用服务死掉。 (小用户时:程序上的问题。程序上处理数据库的问题) B、应用服务没有死 (应用服务参数设置问题)

例:在许多客户端连接Weblogic应用服务器被拒绝,而在服务器端没有错误显示,则有可能是Weblogic中的server元素的 AcceptBacklog属性值设得过低。如果连接时收到connection refused消息,说明应提高该值,每次增加25% C、数据库的连接 (1、在应用服务的性能参数可能太小了;2、数据库启动的最大连接数(跟硬件的内存有关)) 2)Error: Page download timeout (120 seconds) has expired 分析:可能是以下原因造成 A、应用服务参数设置太大导致服务器的瓶颈 B、页面中图片太多 C、在程序处理表的时候检查字段太大多 二.监控指标数据分析 1.最大并发用户数: 应用系统在当前环境(硬件环境、网络环境、软件环境(参数配置))下能承受的最大并发用户数。 在方案运行中,如果出现了大于3个用户的业务操作失败,或出现了服务器shutdown的情况,则说明在当前环境下,系统承受不了当前并发用户的负载压力,那么最大并发用户数就是前一个没有出现这种现象的并发用户数。 如果测得的最大并发用户数到达了性能要求,且各服务器资源情况良好,业务操作响应时间也达到了用户要求,那么OK。否则,再根据各服务器的资源情况和业务操作响应时间进一步分析原因所在。 2.业务操作响应时间: 分析方案运行情况应从平均事务响应时间图和事务性能摘要图开始。使用“事务性能摘要”图,可以确定在方案执行期间响应时间过长的事务。 细分事务并分析每个页面组件的性能。查看过长的事务响应时间是由哪些页面组件引起的?问题是否与网络或服务器有关? 如果服务器耗时过长,请使用相应的服务器图确定有问题的服务器度量并查明服务器性能下降的原因。如果网络耗时过长,请使用“网络监视器”图确定导致性能瓶颈的网络问题

web项目测试实战性能测试结果分析样章报告

5.4.2测试结果分析 LoadRunner性能测试结果分析是个复杂的过程,通常可以从结果摘要、并发数、平均事务响应时间、每秒点击数、业务成功率、系统资源、网页细分图、Web服务器资源、数据库服务器资源等几个方面分析,如图5- 1所示。性能测试结果分析的一个重要的原则是以性能测试的需求指标为导向。我们回顾一下本次性能测试的目的,正如错误!未找到引用源。所列的指标,本次测试的要求是验证在30分钟内完成2000次用户登录系统,然后进行考勤业务,最后退出,在业务操作过程中页面的响应时间不超过3秒,并且服务器的CPU 使用率、内存使用率分别不超过75%、70%,那么按照所示的流程,我们开始分析,看看本次测试是否达到了预期的性能指标,其中又有哪些性能隐患,该如何解决。 图5- 1性能测试结果分析流程图 结果摘要 LoadRunner进行场景测试结果收集后,首先显示的该结果的一个摘要信息,如图5- 2所示。概要中列出了场景执行情况、“Statistics Summary(统计信息摘要)”、“Transaction Summary(事务摘要)”以及“HTTP Responses Summary(HTTP响应摘要)”等。以简要的信息列出本次测试结果。 图5- 2性能测试结果摘要图

场景执行情况 该部分给出了本次测试场景的名称、结果存放路径及场景的持续时间,如图5- 3所示。从该图我们知道,本次测试从15:58:40开始,到16:29:42结束,共历时31分2秒。与我们场景执行计划中设计的时间基本吻合。 图5- 3场景执行情况描述图 Statistics Summary(统计信息摘要) 该部分给出了场景执行结束后并发数、总吞吐量、平均每秒吞吐量、总请求数、平均每秒请求数的统计值,如图5- 4所示。从该图我们得知,本次测试运行的最大并发数为7,总吞吐量为842,037,409字节,平均每秒的吞吐量为451,979字节,总的请求数为211,974,平均每秒的请求为113.781,对于吞吐量,单位时间内吞吐量越大,说明服务器的处理能越好,而请求数仅表示客户端向服务器发出的请求数,与吞吐量一般是成正比关系。 图5- 4统计信息摘要图 Transaction Summary(事务摘要) 该部分给出了场景执行结束后相关Action的平均响应时间、通过率等情况,如图5- 5所示。从该图我们得到每个Action的平均响应时间与业务成功率。

NetApp存储测试报告-SAN

NetApp存储测试报告 1目的 本次测试测试针对NetApp存储的特点、性能等方面进行相关的验证及测试,为今后的存储设备选型提供一定的技术依据。 备注:在测试项目中的输出结果,仅仅作为参考结果,实际结果与信息时间为实际测试结果为准。 2术语

3测试内容 ●存储系统的可管理性测试 ●存储系统的可靠性和可用性 ●存储系统的扩展性、兼容性 ●存储性能测试 4测试准备 4.1 测试拓扑结构 4.2 测试设备配置 4.2.1 服务器配置 相关的应用软件如下表所示: 4.2.2 网络配置 FAS3050直接用一条LC光纤线与SUN服务器V890连接。 4.2.3 存储配置 存储服务器: NetApp FAS3050 具体配置: 磁盘容量:2T裸容量的磁盘。磁盘转速10000RPM,单个磁盘的裸容量为144G, 总共为14个。

4.3 测试工具 对于存储的功能测试,测试厂商需根据测试环境、案例要求准备测试工具,提供相关的监控软件对测试过程进行监控,对监控指标进行记录。 4.4 存储的可管理性 测试是否具有强大的管理功能,主要包括以下一些方面。具体可结合NetApp公司提供的测试方案进行具体测试。

4.5 存储可靠性、可用性测试 测试项目目的步骤预期结果 1.检测电源冗余系统是否可在单电 源情况下正常工作 (证明电源无单点 故障)并且电源可 在线更换 存储设备具有完善 的电源、风扇冗余 功能;电源风扇模 块可热插拔; 1.确认应用均正常运行。 2.在应用不间断的情况下, 随机选择拔下一个电源风 扇模块(模拟电源故障情 况),并通过管理软件检 测整个过程中系统是否发 生中断 应用无中断 3.拔出机头1个电源风扇模 块; 应用无中断 4.拔出第1个磁盘柜的1个 电源风扇模块; 应用无中断 5.恢复磁盘柜1的失效电 源; 应用无中断 6.恢复磁盘柜2的失效电 源; 应用无中断 7.恢复机头的失效电源;应用无中断 附:存储控制台输出 HN> Wed Sep 20 11:43:22 CST [ses.status.psWarning:warning]: DS14-Mk2-FC she lf 1 on channel 0c power warning for Power supply 1: non-critical status; DC und ervoltage fault. This module is on the rear side of the shelf, at the left. Wed Sep 20 11:43:34 CST [ses.status.psError:CRITICAL]: DS14-Mk2-FC shelf 1 on ch annel 0c power error for Power supply 1: critical status; power supply failed. T his module is on the rear side of the shelf, at the left. Wed Sep 20 11:43:42 CST [monitor.chassisPowerSupply.degraded:notice]: Chassis po wer supply 2 is degraded: PSU 2 AC Failed Wed Sep 20 11:43:43 CST [monitor.chassisPowerSupply.degraded:notice]: Chassis po wer supply 2 is degraded: PSU 2 12V Failed Wed Sep 20 11:43:43 CST [monitor.chassisPowerSupply.degraded:notice]: Chassis po wer supply 2 is degraded: PSU 2 5V Failed Wed Sep 20 11:43:50 CST [monitor.chassisPowerSupply.ok:info]: Chassis power supp ly 2 is OK Wed Sep 20 11:43:50 CST last message repeated 2 times Wed Sep 20 11:44:00 CST [monitor.globalStatus.critical:CRITICAL]: Disk shelf fau lt. Wed Sep 20 11:44:27 CST [ses.status.psInfo:info]: DS14-Mk2-FC shelf 1 on channel 0c power supply information for Power supply 1: normal status Wed Sep 20 11:45:00 CST [monitor.globalStatus.ok:info]: The system's global stat us is normal. 2.检验系统全局热备份盘功能测试磁盘阵列是否 能够通过动态备盘 自动接管模拟的故 热备份盘为全局热 备份,可自动接管 失效磁盘。系统中

六性分析报告 ()

编号: XXXX式开关 可靠性、维修性、保障性、测试性、安全性、环境适应性分析报告 拟制: 审核: 批准: XXXXXXXX有限公司 二零一一年三月

1 概述 为确保产品质量符合要求,达到顾客满意,根据《XXXX式开关产品质量保证大纲》的规定,对该产品的可靠性、维修性、保障性、测试性、安全性、环境适应性进行分析。 2 可靠性分析 2.1 元器件清单 本器件选用元器件如下:

2.2 可靠性预计 本器件所采用的元器件有7类13种共57个。其中任一元器件失效,都将造成整个器件失效,即器件正常工作的条件是各元器件都能正常工作。因此,本器件的可靠性模型是一个串联模型。 该器件是可修复产品,寿命服从指数分布,根据可靠性理论,其平均故障间隔时间与失效率成反比,即: MTBF= 1/∑pi λ (1) 所用元器件均是通用或固化产品,其质量水平、工作应力及环境条件都相对固定,其失效率因子等有关可靠性参数可参考《GJB/Z299C-2006电子设备可靠性预计手册》,从而采用应力分析法来预计本器件的可靠性指标。 本器件一般内置于系统机箱内,使用大环境是舰船甲板或舰船舱内,其环境代号Ns2,工作温度-40℃~+70℃,现计算其可靠性指标。 2.2.1 PIN 二极管的工作失效率1p λ 本器件使用PIN 二极管,其工作失效率模型为 K Q E b p πππλλ=1 (2) 式中: b λ —— 基本失效率,10-6/h ; E π —— 环境系数; Q π —— 质量系数; K π —— 种类系数。 由表5.3.11-1查得基本失效率b λ =0.212×10-6/h ; 由表5.3.11-2查得环境系数E π=14;

存储性能黑幕

存储性能黑幕:苹果和桔子怎么比较? 有没有想过,厂商自己提供的存储产品性能指标数据没有任何意义?用户要准确地评估不同厂商的存储产品,还需仔细阅读文中提到的SPC-1基准测试报告…… 前言 近年来,随着存储系统由服务器的附属变成IT系统中独立的子系统、由“外设”变成信息系统基础架构的中心,用户如何规划、设计和挑选符合自己需求的存储系统已变得越来越重要。 每个购买存储系统的用户都希望买到性能高、价格低、质量好(故障率低、可靠性高)、容量大(扩充能力强)、易于管理、售后服务好的存储产品,其中大多数用户最关心的还是存储产品的前三项指标,即性能、价格和可靠性。具体如下: ·体现存储系统性能的最主要指标是IOPS(I/Os per second),即每秒输入输出次数; ·存储产品的价格需从二个方面进行评估,如果用户对存储的主要需求是存储容量,则可由每GB存储容量的价格比较各存储厂商的产品;如果用户对存储的主要需求是存储性能,则可由每IOPS的价格比较各存储厂商的产品; ·对于基于硬盘的存储系统,其可靠性MTTF(平均故障出现时间)可表示为: MTTF array=MTTF disk/存储系统中的磁盘总数 其中:MTTF disk代表每块磁盘的平均故障出现时间,目前磁盘的MTTF disk最高可达1,400,000小时。 在存储系统的性能方面,很多存储厂商都为其产品公布了漂亮的IOPS指标数据:IOPS 达十几万甚至几十万;但这些厂商大都不公布测出该IOPS指标的存储系统具体配置,因此用户也就无法对该存储产品的性价比和可靠性进行评估。很多用户在实际使用这些存储产品时却发现这些有着漂亮IOPS数值的存储产品性能很差,这是怎么回事?本文将为用户破解这个谜团! 一、此IOPS非彼IOPS,要真正了解存储系统的性能还需看其SPC-1 IOPS? 1、苹果和桔子怎么比较?没有统一的测试标准、环境和参数,IOPS就没有可比性 这是因为IOPS测试结果与很多测试参数有关,如果各个存储厂商都按自己的标准对存储系统进行测试,那么测试出的IOPS等指标就没有任何意义,原因如下: 1)随机(Random)读写的IOPS与顺序(Sequential)读写的IOPS大不一样:对于基于磁盘的存储系统,顺序读写的IOPS要远远大于随机读写的IOPS,其中100%顺序读的IOPS 又大于100%顺序写的IOPS、100%随机读的IOPS又大于100%随机写的IOPS。下面的图表是某品牌磁盘阵列(配置12块Maxtor 250GB, 7,200RPM的磁盘,512MB Cache)的不同IOPS,就清楚地说明了这种情况:

存储测试方案

网络存储测试方案 一.目前主流网络存储设备厂商及其主要产品的特点及主要性能指标主流厂商: EMC,IBM,HDS,Netapp等。 EMC 目前EMC产品存储方面主要涵盖:NAS、SAN、云计算等方面。主要产品有: EMC Atmos 集全球规模的存储能力与云体系结构的优势于一身,提供能够满足企业和服务提供商需求的解决方案。 EMC isilon 针对大数据的强大横向扩展NAS 解决方案,不管规模如何,其安装、管理和扩展都很简单。 EMC Symmetrix 10K/20K/40K 这系列三个产品从经济性到高性能均覆盖到,其中 10K:最经济划算的多控制器阵列,专门针对高性能和高效率而设计,适合在虚拟环境中整合应用程序。 20K:专门针对高要求虚拟数据中心环境的性能、整合和自动化需求而打造。 40K:专为混合云环境打造,提供了业界最高级别的整合、性能和可扩展性。 EMC VNX 高性能统一存储,具有无与伦比的简洁性和高效性,针对虚拟应用程序而优化。 IBM IBM TotalStorage DS8870 提供高达 3 倍的性能提升,以实现更快的事务处理速度和实时分析 凭借与IBM 企业级服务器集成的完全硬件冗余的先进业务持续性解决方案,提供卓越的系统可用性 凭借 5 代IBM? System Storage? Easy Tier? 功能和其他先进的自我调整功能,优化性能和成本目标 扩展至高达 1 TB 的系统缓存和高达 2 PB 的容量 通过出色的可扩展性、自我优化、驱动器分层和对广泛工作负载的支持实现整合 IBM XIV 存储系统 针对极致的易用性和运营敏捷性设计的久经考验的创新性高端磁盘存储系统热点、始终如一的高性能,以及通过网格架构实现的大规模并行处理 适用于优化的云与虚拟环境的虚拟化存储资源 通过完全冗余、自我修复和无与伦比的重建速度实现的极高可靠性与可用性

软件性能测试结果分析总结

软件性能测试结果分析总结 平均响应时间:在互联网上对于用户响应时间,有一个普遍的标准。2/5/10秒原则。 也就是说,在2秒之内给客户响应被用户认为是“非常有吸引力”的用户体验。在5秒之内响应客户被认为“比较不错”的用户体验,在10秒内给用户响应被认为“糟糕”的用户体验。如果超过10秒还没有得到响应,那么大多用户会认为这次请求是失败的。 定义:指的是客户发出请求到得到响应的整个过程的时间。在某些工具中,请求响应时间通常会被称为“TTLB”(Time to laster byte) ,意思是从发起一个请求开始,到客户端收到最后一个字节的响应所耗费的时间。 错误状态情况分析:常用的HTTP状态代码如下: 400 无法解析此请求。 401.1 未经授权:访问由于凭据无效被拒绝。 401.2 未经授权: 访问由于服务器配置倾向使用替代身份验证方法而被拒绝。 401.3 未经授权:访问由于ACL 对所请求资源的设置被拒绝。 401.4 未经授权:Web 服务器上安装的筛选器授权失败。 401.5 未经授权:ISAPI/CGI 应用程序授权失败。 401.7 未经授权:由于Web 服务器上的URL 授权策略而拒绝访问。 403 禁止访问:访问被拒绝。 403.1 禁止访问:执行访问被拒绝。 403.2 禁止访问:读取访问被拒绝。 403.3 禁止访问:写入访问被拒绝。 403.4 禁止访问:需要使用SSL 查看该资源。 403.5 禁止访问:需要使用SSL 128 查看该资源。 403.6 禁止访问:客户端的IP 地址被拒绝。

403.7 禁止访问:需要SSL 客户端证书。 403.8 禁止访问:客户端的DNS 名称被拒绝。 403.9 禁止访问:太多客户端试图连接到Web 服务器。 403.10 禁止访问:Web 服务器配置为拒绝执行访问。 403.11 禁止访问:密码已更改。 403.12 禁止访问:服务器证书映射器拒绝了客户端证书访问。 403.13 禁止访问:客户端证书已在Web 服务器上吊销。 403.14 禁止访问:在Web 服务器上已拒绝目录列表。 403.15 禁止访问:Web 服务器已超过客户端访问许可证限制。 403.16 禁止访问:客户端证书格式错误或未被Web 服务器信任。 403.17 禁止访问:客户端证书已经到期或者尚未生效。 403.18 禁止访问:无法在当前应用程序池中执行请求的URL。 403.19 禁止访问:无法在该应用程序池中为客户端执行CGI。 403.20 禁止访问:Passport 登录失败。 404 找不到文件或目录。 404.1 文件或目录未找到:网站无法在所请求的端口访问。 需要注意的是404.1错误只会出现在具有多个IP地址的计算机上。如果在特定IP地址/端口组合上收到客户端请求,而且没有将IP地址配置为在该特定的端口上侦听,则IIS返回404.1 HTTP错误。例如,如果一台计算机有两个IP地址,而只将其中一个IP地址配置为在端口80上侦听,则另一个IP地址从端口80收到的任何请求都将导致IIS返回404.1错误。只应在此服务级别设置该错误,因为只有当服务器上使用多个IP地址时才会将它返回给客户端。404.2 文件或目录无法找到:锁定策略禁止该请求。 404.3 文件或目录无法找到:MIME 映射策略禁止该请求。

个人云存储用户体验质量(QoE)评价研究

个人云存储用户体验质量(QoE)评价研究云存储是一个向用户提供数据存储和管理服务的云计算系统,属于云计算中StaaS(StorageasaService,存储服务)服务类型,个人云存储在互联网、移动用户中很快的流行起来,受到了社会用户和广大学者的关注。但是经过2016年网盘关停或转型的风波后,个人云存储的不稳定性造成了用户的粘性下滑,所以如何提高个人云存储的用户体验质量成为目前关注的主要问题;另一方面,目前国内外学者在QoE(Quality of Experience,体验质量)理论和应用上进行了充足的研究,但是在个人云存储QoE评价方面目前的研究还不是很充足,目前的研究缺乏对个人云存储深入的理解和不再适用巨变后的国内云存储市场。因此本文的研究对于完善QoE评价方法以及利用QoE对个人云存储建立用户体验评价指标体系具有相当大的科学意义和应用价值。基于以上背景,本文对个人云储存用户QoE评价进行研究,根据评价方面的前人研究成果,从评价对象、评价模型、评价指标、评价方法等几个方面着手。本文首先对前人关于个人云存储和QoE评价方面的研究成果进行梳理,对个人云存储的基本概念、功能及体系结构进行界定和说明,综合QoE的影响因素,从云技术和云服务两个方面构建个人云存储用户QoE评价指标体系,然后分别从云技术和云服务阐述了对这两个方面采取的评价方法。云技术方面,运用网络流量被动测量技术和网络访问系统Winpcap提供的编程接口,对个人云存储QoE性能测量工具进行设计与开发实现,然后将开发的测量工具安装到用户终端,从用户的角度监测待测服务并对性能方面的指标进行测

算。云服务方面,基于文本挖掘技术,针对用户大量的评论文本对个人云存储QoE云服务方面指标进行评价与分析,基于 LDA(LatentDirichletAllocation,概率主题模型)算法构建用户体验 情感主题挖掘模型,以此来获取用户对服务使用的主观感受以及计算 用户QoE的情感得分。最后结合本文研究成果和个人云存储市场的实际情况,本文选择目前流行的三个人云存储平台:百度网盘、腾讯微盘、天翼云盘进行QoE实例评价研究,将上述所建立的个人云存储QoE评 价模型、性能测评工具、文本主题挖掘技术在实际个人云存储平台上应用,分析模型和方法是可行的、正确的和有效的,并为优化个人云存储用户体验提出建议,评价发现云存储服务商应以用户为导向,在技 术优化的前提下强化存储之外的功能服务,从而提高用户使用体验质 量和满意度。

性能测试分析报告案例

***系统性能测试报告 V1.0 撰稿人:******* 时间:2011-01-06

目录 1.测试系统名称及测试目标参考 (3) 2.测试环境 (3) 3.场景设计 (3) 3.1测试场景 (3) 3.1测试工具 (4) 4.测试结果 (4) 4.1登录 (4) 4.2发送公文 (6) 4.3收文登记 (8)

1.测试系统名称及测试目标参考 被测系统名称:*******系统 系统响应时间判断原则(2-5-10原则)如下: 1)系统业务响应时间小于2秒,用户对系统感觉很好; 2)系统业务响应时间在2-5秒之间,用户对系统感觉一般; 3)系统业务响应时间在5-10秒之间,用户对系统勉强接受; 4)系统业务响应时间超过10秒,用户无法接受系统的响应速度。 2.测试环境 网络环境:公司内部局域网,与服务器的连接速率为100M,与客户端的连接速率为10/100M 硬件配置: 3.场景设计 3.1测试场景 间

间 间 3.1测试工具 ●测试工具:HP LoadRunner9.0 ●网络协议:HTTP/HTTPS协议 4.测试结果 4.1登录 ●运行1小时后实际登录系统用户数,用户登录后不退出,一直属于在线状态,最 终登录的用户达到9984个;

●响应时间 ●系统资源

服务器的系统资源表现良好(CPU使用率为14%,有15%的物理内存值)。磁盘等其他指标都表现正常,在现有服务器的基础上可以满足9984个在线用户。 4.2发送公文 运行时间为50分钟,100秒后300个用户全部加载成功,300个用户开始同时进行发文,50分钟后,成功发文数量如下图所示,成功发文17792个,发文失败37 个;

性能测试报告范例

测试目的: 考虑到各地区的用户数量和单据量的增加会给服务器造成的压力不可估计,为确保TMS系统顺利在各地区推广上线,决定对TMS系统进行性能测试,重点为监控服务器在并发操作是的资源使用情况和请求响应时间。 测试内容 测试工具 主要测试工具为:LoadRunner11 辅助软件:截图工具、Word

测试结果及分析 5个用户同时生成派车单的测试结果如下: Transaction Summary(事务摘要) 从上面的结果我们可以看到该脚本运行47秒,当5个用户同时点击生成派车单时,系统的响应时间为41.45秒,因为没有设置持续运行时间,所以这里我们取的响应时间为90percent –time,且运行的事物已经全部通过

事务概论图,该图表示本次场景共5个事务(每个用户点击一次生成派车单为1个事务),且5个事务均已pass,绿色表色pass,如出现红色则表示产生error

从上图可以看到服务器的CPU平均值为14.419% ,离最大参考值90%相差甚远;且趋势基本成一直线状,表示服务器响应较为稳定,5个用户操作5个900托运单的单据对服务器并没有产生过大的压力。

“Hits per Second(每秒点击数)”反映了客户端每秒钟向服务器端提交的请求数量,这里服务器每秒响应9,771次请求;如果客户端发出的请求数量越多,与之相对的“Average Throughput (吞吐量)”也应该越大。图中可以看出,两种图形的曲线都正常并且几乎重合,说明服务器能及时的接受客户端的请求,并能够返回结果。 按照上述策略,我们得出的最终测试结果为: 生成派车单: 1个用户,300个托运单点击生成派车单,响应时间7.34秒 5个用户,900个托运单点击生成派车单,响应时间41.45秒 单据匹配: 单用户1000箱,20000个商品,上传匹配时间8秒 五个用户2500箱,40000个商品,同时上传匹配耗时2分25秒 自由派车: 单条线路917个托运单下载,响应时间1分40秒 上述结果是在公司内网,测试环境上进行的测试,可能与实际会有偏差

分布式存储性能测试理解文档

FastDFS理解文档 目录 简介 ............................................................................................................................................. - 1 - 结构 ............................................................................................................................................. - 2 - 2.1跟踪器与存储结点........................................................................................................ - 2 - 2.1.1 FastDFS上传文件........................................................................................... - 3 - 2.1.2 FastDFS下载文件........................................................................................... - 3 - 2.2 服务器端目录结构..................................................................................................... - 4 - 2.2.2 storage server 结构 ............................................................................................ - 5 - 2.3 服务器项配置说明.................................................................................................. - 6 - 2.3.1 Tracker服务器配置说明............................................................................. - 6 - 2.3.2 Storage服务器配置说明............................................................................. - 7 - 2.4 如何安装:................................................................................................................. - 7 - 2.5 如何配置:................................................................................................................. - 8 - 2.6 如何调用:............................................................................................................... - 12 - 2.7 如何服务器图片下载: ........................................................................................... - 12 - 2.8 如何清除:............................................................................................................... - 12 - 简介 FastDFS是一个开源的轻量级分布式文件系统,她对文件进行管理,功能包括:文件存储、文件同步、文件访问(文件上传、文件下载)等,解决了大容量存储和负载均衡的问题。特别适合以文件为载体的在线服务,如相册网站、视频网站等等。 主页地址:https://www.wendangku.net/doc/858995535.html,/p/fastdfs/ 被测试版本: 测试环境: 客户端:

云存储技术的发展现状总结

云存储 发展现状总结

云存储技术的发展现状总结 起初,云存储作为在存储领域兴起的一种新技术,将复杂的存储架构和组织管理封装在系统内部,而对上层系统提供统一、灵活、安全的“云存储服务”,由此将存储建设从系统建设上升到服务建设,对于存储的关注也达到空前的高度。然而随着需求的不断加深,以及对“服务”定义的多元化,云存储技术也如落入平静湖面的石子,激荡出一层又一层的波澜。 一、云存储的现状与创新 在安防行业中,存储的存在形式较为多样,传统如DVR/NVR、SAN、NAS等。各种存储方案的存在均满足于安防行业特定场景变化的需要和受力于市场作用的结果。云存储技术作为存储技术中的一项重大革新,在安防行业中的多项场景应用中填补了空白,同时随着技术创新的不断深化,在传统建设领域上的应用上也出现的云存储的身影。 在满足小型视频监控的需求时,用户通常会倾向于DVR或者NVR,当规模再大一些时会使用SAN或者NAS存储方案。而随着规模的不断加大,庞大存储系统的整合、资源利用率的提升、存储服务获取和管理的便利性等方面传统存储方式的弊端也非常明显,而云存储的产品化应用无疑是行业中的亮点。 随着云存储技术的发展创新,以及对多种用户场景的兼顾和调整。云存储的创新方向有以下3个方面: 1、云存储安防化发展与创新; 2、云存储小型化发展与创新; 3、云存储安防民用化的发展与创新。 不同发展方向指向不同用户场景需要,云存储技术无论如何演进,以用户为中心的理念从未改变。 二、云存储安防化发展与创新 虽然明确运用云存储技术作为主流存储技术应用于安防行业的共识并未改变,然而通用云存储在具体业务使用时却忽视了与安防行业的整合。因此迫切需要通过云存储技术与安防具体业务进行整合、优化、创新可提升整体业务的耦合度,优化存储流程,降低环节消耗。具体云存储安防化的思路下可以从以下几个方案进行优化。

cache性能分析报告

《计算机系统结构课内实验》 实验报告

一、实验目的及要求 1.加深对Cache的基本概念、基本组织结构以及基本工作原理的理 解; 2.了解Cache的容量、相联度、块大小对Cache性能的影响; 3.掌握降低Cache失效率的各种方法,以及这些方法对Cache性能 提高的好处; 4.理解Cache失效的产生原因以及Cache的三种失效; 5.理解LRU与随机法的基本思想,及它们对Cache性能的影响; 二、实验环境 Vmware 虚拟机,redhat 9.0 linux 操作系统,SimpleScalar模拟器 三、实验内容 1.运行SimpleScalar模拟器; 2.在基本配置情况下运行程序(请指明所选的测试程序),统计 Cache总失效次数、三种不同种类的失效次数; 3.改变Cache容量(*2,*4,*8,*64),运行程序(指明所选的 测试程序),统计各种失效的次数,并分析Cache容量对Cach e性能的影响; 4.改变Cache的相联度(1路,2路,4路,8路,64路),运行 程序(指明所选的测试程序),统计各种失效的次数,并分析相联度对Cache性能的影响; 5.改变Cache块大小(*2,*4,*8,*64),运行程序(指明所选 的测试程序),统计各种失效的次数,并分析Cache块大小对Cache性能的影响;

6.分别采用LRU与随机法,在不同的Cache容量、不同的相联度 下,运行程序(指明所选的测试程序)统计Cache总失效次数,计算失效率。分析不同的替换算法对Cache性能的影响。 四、实验步骤 1、关于simplescalar的简要说明 SimpleScalar包括多个仿真器:sim-fast ,sim-safe,sim-cache,sim-cheetah,sim-pro和sim-outorder。 本次实验使用的是sim-cache,下面说明一下sim-cache。sim-cache:在这个仿真中加入了cache,用户可以对cache及TLB 进行设置,支持两级的cache和一级的TLB,第一级cache和TLB 均分为数据和指令两部分。(摘自百度百科) 下面简要说明一下有关cache的信息: 一般来说,Cache的结构参数主要包括以下几个方面:容量、块大小、相联度、替换算法等。在SimpleScalar模拟器中,采用了两级Cache结构,同时数据和指令Cache分开。SimpleScalar的Cache参数配置命令为::::: :Cache的名称,其中: dl1:一级数据Cache; dl2:二级数据Cache; il1:一级指令Cache; il2:二级指令Cache;

有效提升存储性能的十大方法

目前存储行业中很多公司都在开发与存储优化相关的产品和技术,既有优化主机端访问的方案,也有提升SAN存储性能的技术,这是一个很有潜力的领域。在这里,本文将要介绍一些能够有效提升存储性能的方法,而以往我们却经常忽视它 们。 首先,排除故障 网络存储的应用环境是相当复杂的,各种不 同的硬件和软件要能够顺利的实现互操作。 所以,导致存储系统性能不佳的最常见的原 因可能是配置错误,也可能是一个或多个组 件发生故障。因此,优化存储性能的第一步 就是要看看现有的存储I/O堆栈是不是有问 题。 检查服务器和存储阵列的日志,看看是否有物理设备故障告警、I/O重传、路径切换以及超时等明确的提示。再试着去逐个分析故障组件,从与线缆相关的连接组件开始。收发端口以及线缆的问题不容易发现,但通常会严重的影响性能。在遭受物理冲击的时候,这些东西经常会损坏,因此,在数据中心里安装、迁移或搬走设备时要特别的小心。 1. 更新固件和驱动程序 厂商会不断的通过软件升级来修复产品中的bug并增加新功能。聪明的做法是把存储网络中所有组件的驱动程序和固件都升级到最新版本,定期做,提前测试、调试和升级。我们看到Microsoft和VMware都在积极地为其产品—Windows 和vSphere的存储部分增加新的性能增强特性,但通常我们看不到太多的宣传。比如Microsoft推出的SMB 2.0和2.1,可以明显的提升Windows文件共享的性能,尤其是在低带宽的网络环境中。还有新版的VMFS和 NTFS文件系统在性能和可扩展性方面也有改善。所以,平时要多浏览存储方面的博客和媒体,以便了解最新的相关动态。 要注意的是,并不是所有的版本升级都值得我们花费时间和精力,而且有时候升级的风险还很高。所以,首先要确保所有相关的厂商能够支持你现有的设备及配置,并且有充分的测试,绝对不能在生产系统中使用测试版代码。作为一个系统管理员,我倾向于保守一些,我会等到有其他人出了相关验证报告之后,自己才会尝试升级,以免冒险。 2.降低负载 大多数调优的方法都着眼于定位和消除存储的性能瓶颈,但是换一个角度,也许我们还应该考虑如何减少I/O负载的产生。比如,同数据库管理员一起对查询的效率和性能进行调优,就可以节省大量的查询等待时间。 所以,减少I/O负载对每个人和每个应用来说都是有好处的。

云存储及其安全性研究

云存储及其安全性研究 云存储作为一种依托服务的系统,其主要目的是把计算机技术应用在数据存储系统中。利用云存储技术实现了对分布式文件系统、网络通信技术以及计算机集群技术的统一管理,借助集群管理平台实现了对大量数据存储设备的集中管理,保证了各个设备之间的协调合作,实现了对数据的存储。但是随着云存储技术的进一步发展与应用,其自身安全方面出现了问题,影响着云存储技术的进一步推广与应用。因此,对云存储技术安全问题的探索和研究成为当务之急。 一、云存储 (一)云存储的概念 云存储是在云计算定义上衍生出的一个新名词,作为一种新兴网络存储技术,通常指的是借助集群应用、网络途径和分布式文件系统等特征,依托应用平台对网络中各个类型存储设备进行集中管理,通过该系统实现了对外提供数据存储和业务访问功能的统一处理。 在云计算系统中核算和处理的重点为大量数据的存储和管理的情况下,云计算系统关于其存储设备需要进行相关数目设置,如此一来云计算系统就转化成云存储系统,所以云存储是一个依托数据存储和管理为前提的云计算系统。简单来讲,云存储是将存储资源统一归置到云中实现客户存取

的一种新兴手段。用户可以随时随地实现其功能操作,也就是只要有联网装置用户就可以实现对数据的处理。 (二)结构模型 1.折叠存储层 存储层是云存储的基本构成内容,其中存储设备通常为FC光纤通道存储设备,NAS、iSCSI等OP存储设备,或者为SCSI、SAS等DAS存储设备。云存储中的存储设备一般情况下其规模较大并且分布较为分散。相互之间借助广域网、互联网等实现有效对接。 存储设备管理系统处于存储设备上层,通过该设备实现逻辑虚拟化管理、多链路冗余管理等操作,同时也可以对硬件设备的状态进行实时监控以及后期维护、升级等操作。 2.折叠基础管理层 基础管理层是云存储最重要组成内容,并且也是云存储中最难处理的内容。基础管理层依托集群、分布式文件系统和网格计算等途径,实现对云存储中多个存储设备的协调处理,使得多个存储设备可以对外提供相同服务,并且还进一步确保了数据访问的稳定性以及合理性。 CDN包括系统、数据加密技术,以此确保云存储中的数据不会被没有授权的用户所访问,并且依托其他数据备份和容灭技术等提高云存储数据的安全性。 3.折?B应用接口层

XXX门户网站性能测试报告

XXX门户网站性能测试报告

XXX门户网站性能测试报告

目录 第一章概述6 第二章测试活动6 2.1测试用具 (6) 2.2测试范围 (7) 2.3测试目标 (8) 2.4测试方法 (8) 2.4.1基准测试 (9) 2.4.2并发测试 (10) 2.4.3稳定性测试 (10) 2.5性能指标 (10) 2.6性能测试流程 (10) 第三章性能测试环境 13 3.1服务器环境 (13) 3.2客户端环境 (13) 3.3网络结构 (14) 第四章测试方案 14

4.1基准测试 (15) 4.2并发测试 (18) 4.3稳定性测试 (20) 第五章测试结果描述错误!未定义书签。 5.1性能测试观察指标错误!未定义书签。 5.2性能测试通过指标错误!未定义书签。用户体验性能.......... 错误!未定义书签。 5.3测试结果 ...... 错误!未定义书签。第六章测试报告系统测试公范围:基准测试阶段,并发测试阶段,稳定性测试,浪涌式测试。 22 6.1基准测试性能分析 (22) 6.2并发测试性能分析 (28) 6.3稳定性性能测试分析 (34)

摘要 本文档主要描述XXXX门户网站检索和页面浏览性能测试中的测试内容、测试方法、测试策略等。 修改历史 日期版本作者修改内容评审号更改请求号2016-01-14 1.0 测试组新建。性能测试 2016-01-14 1.0 测试组修改性能测试回 归 2016-01-14 1.0 测试组更新 注释:评审号为评审记录表的编号。更改请求号为文档更改控制工具自动生成的编号。

第一章概述 由于当前对系统要接受业务量的冲击,面临的系统稳定、成熟性方面的压力。系统的性能问题必将成为焦点问题,海量数据量的“冲击”,系统能稳定在什么样的性能水平,面临业务增加时,系统抗压如何等这些问题需要通过一个较为真实的性能模拟测试来给出答案,通过测试和分析为系统性能的提升提供一些重要参考数据,以供后期系统在软硬件方面的改善和完善。 本《性能测试报告》即是基于上述考虑,参考当前的一些性能测试方法而编写的,用以指导即将进行的该系统性能测试。 第二章测试活动 2.1测试用具 本次性能测试主要采用HP公司的Loadrunner11作为性能测试工具。Load runner 主要提供了3个性能测试组件:Virtual User Generator, Controller,Analysis。

相关文档