文档库 最新最全的文档下载
当前位置:文档库 › 整车操纵稳定性仿真分析报告

整车操纵稳定性仿真分析报告

整车操纵稳定性仿真分析报告
整车操纵稳定性仿真分析报告

L11整车操纵稳定性仿真分析报告

(HB11A/HB12A)

编制(日期)

校对(日期)

审核(日期)

批准(日期)

简式国际汽车设计(北京)有限公司

L11整车操纵稳定性仿真分析报告(HB11A/HB12A)

1.定半径稳态圆周试验

1.1试验方法

HB11A处于满载状态,沿半径为40m的定半径圆周进行回转运动,开始以最低稳定速度进入圆周,找准方向盘的位置,使汽车可以沿圆周进行回转运动,开始记录,然后缓慢连续而均匀地加速(纵向加速度不超过0.2 m/s2),加速的同时调整方向盘转角以维持定半径圆周运动,这个过程中车辆不应超出车道0.5 m,直至不能维持稳态定半径圆周运动条件时或受发动机功率限制所能达到的最大侧向加速度为止。记录整个过程,建议使用满足试验条件的最高档位。试验按向左转和向右转两个方向进行,每次试验开始时车身应处于正中位置。

1.2数据处理

1.2.1不足转向梯度

“方向盘转角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为

0.25g时的曲线斜率。

1.2.1.1左转

图1 方向盘转角—侧向加速度(左转)

从图1 计算得到左转不足转向梯度为137o/g

1.2.1.2右转

图2 方向盘转角—侧向加速度(右转)

右转不足转向梯度为134.5o/g,则HB11A平均不足转向梯度为135.75o/g。

1.2.2不足转向梯度/转向系角传动比

HB11A的角传动比约为23.333,则不足转向梯度/转向系角传动比为5.817o/g。

1.2.3侧偏角梯度

“质心侧偏角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为

0.25g时的曲线斜率。

1.2.3.1左转

图3 质心侧偏角——侧向加速度(左转)

左转侧偏角梯度为5.987o/g。

1.2.3.2右转

图4 质心侧偏角——侧向加速度(右转)

右转侧偏角梯度为5.987o/g,则HB11A平均侧偏角梯度为5.987o/g。

1.2.4侧倾角梯度

“车身侧倾角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为0.25g 时的曲线斜率。

1.2.4.1左转

图5 车身侧倾角——侧向加速度(左转)

左转侧倾角梯度为8.995o/g。

1.2.4.2右转

图6 车身侧倾角—侧向加速度(右转)

右转侧倾角梯度为8.94o/g,则HB11A平均侧倾角梯度为8.967o/g。

2.方向盘转角阶跃输入试验

2.1试验方法

HB11A处于满载状态,以70km/h的车速稳定直线行驶,开始记录数据,以尽可能快的速度(阶跃时间为0.4s)转动方向盘,达到预定的转角,保持方向盘转角不变直至汽车恢复稳定状态,试验过程中油门踏板开度应尽可能保持不变。方向盘转角初始值是10°,每次增加5°,直到车辆达到附着极限,试验分为向左、向右两个方向进行。

2.2数据处理

2.2.1横摆角速度—方向盘转角滞后时间

横摆角速度达到50%稳态值时相对于方向盘转角达到50%阶跃值时的滞后时间。

2.2.1.1稳态侧向加速度为0.3g时

图7 0.3g时横摆角速度—方向盘转角滞后时间

左转时,横摆角速度——方向盘转角滞后时间为0.0308s

右转时,横摆角速度——方向盘转角滞后时间为0.0312s

HB11A横摆角速度——方向盘转角平均滞后时间为0.031s

2.2.1.2稳态侧向加速度为0.4g时

图8 0.4g时横摆角速度—方向盘转角滞后时间

左转时,横摆角速度——方向盘转角滞后时间为0.0326s;

右转时,横摆角速度——方向盘转角滞后时间为0.0331s;

HB11A横摆角速度——方向盘转角平均滞后时间为0.03285s。

2.2.2侧向加速度——方向盘转角滞后时间

侧向加速度达到50%稳态值时相对于方向盘转角达到50%阶跃值时的滞后时间。

2.2.2.1稳态侧向加速度为0.3g时

图9 0.3g时侧向加速度——方向盘转角滞后时间

左转时,侧向加速度——方向盘转角滞后时间为0.1127s;

右转时,侧向加速度——方向盘转角滞后时间为0.1137s;

HB11A侧向加速度——方向盘转角平均滞后时间为0.1132s。

2.2.2.2稳态侧向加速度为0.4g时

图10 0.4g时侧向加速度——方向盘转角滞后时间

左转时,侧向加速度——方向盘转角滞后时间为0.1397s;

右转时,侧向加速度——方向盘转角滞后时间为0.1408s;

HB11A侧向加速度——方向盘转角平均滞后时间为0.14025s。

2.2.3侧倾角——方向盘转角滞后时间

车身侧倾角达到50%稳态值时相对于方向盘转角达到50%阶跃值时的滞后时间。

2.2.

3.1稳态侧向加速度为0.3g时

图11 0.3g侧倾角——方向盘转角滞后时间

左转时,侧倾角——方向盘转角滞后时间为0.1733s;

右转时,侧倾角——方向盘转角滞后时间为0.1741s;

HB11A侧倾角——方向盘转角平均滞后时间为0.1737s。

2.2.

3.2稳态侧向加速度为0.4g时

图12 0.4g侧倾角——方向盘转角滞后时间

左转时,侧倾角——方向盘转角滞后时间为0.1773s;

右转时,侧倾角——方向盘转角滞后时间为0.1779s;

HB11A侧倾角——方向盘转角平均滞后时间为0.1776s。

2.2.4侧偏角——方向盘转角滞后时间

质心侧偏角达到50%稳态值时相对于方向盘转角达到50%阶跃值时的滞后时间。

2.2.4.1稳态侧向加速度为0.3g时

图13 0.3g侧偏角——方向盘转角滞后时间

左转时,侧偏角——方向盘转角滞后时间为0.1408s;

右转时,侧偏角——方向盘转角滞后时间为0.1411s;

HB11A侧偏角——方向盘转角平均滞后时间为0.14095s。

2.2.4.2稳态侧向加速度为0.4g时

图14 0.3g侧偏角——方向盘转角滞后时间

左转时,侧偏角——方向盘转角滞后时间为0.1698s;

右转时,侧偏角——方向盘转角滞后时间为0.1702s;

HB11A侧偏角——方向盘转角平均滞后时间为0.17s。

3.转向回正性能试验

3.1试验方法

HB11A处于满载状态,沿半径为20m的圆周行驶,调整车速,使侧向加速度达到4±0.2m/s2,固定转向盘转角,稳定车速并开始记录,驾驶员突然松开转向盘,至少记录松手后4s的汽车运动过程。记录时间内油门开度保持不变。试验按向左转与向右转两个方向进行,每个方向三次。

3.2数据处理

3.2.1车辆轨迹

图15 车辆轨迹

3.2.2侧向加速度时间历程

图16 侧向加速度时间历程3.3.3车速及油门开度时间历程

图17 车速及油门开度时间历程3.3.4横摆角速度评价

图18 横摆角速度变化曲线

3.3.

4.1残留横摆角速度

松开方向盘3s 时刻的横摆角速度值(包括0值)。

左转时,残留横摆角速度为0.4011o/s ;

右转时,残留横摆角速度为0.4363o/s ;

HB11A 平均残留横摆角速度为0.4187o/s 。

3.3.

4.2横摆角速度超调量

横摆角速度响应第一个峰值超过新稳态值的部分与初始值之比。

左转时,横摆角速度超调量为55.813%;

右转时,横摆角速度超调量为55.759%。

HB11A 平均横摆角速度超调量为55.786%。

3.3.

4.3横摆角速度自然频率

j

n

j j n j j t A A

f ??=∑∑==11

02 式中: 0f ——横摆角速度自然频率,Hz

j A ——横摆角速度响应时间历程曲线的峰峰值,(o)/s j t ?——横摆角速度响应时间历程曲线上两相邻波峰的时间间隔,s n ——横摆角速度响应时间历程曲线的波峰数

左转时,横摆角速度自然频率为0.7719Hz ;

右转时,横摆角速度自然频率为0.7447Hz ;

HB11A 平均横摆角速度自然频率为0.7583Hz 。

3.3.

4.4横摆角速度相对阻尼系数

衰减率∑==n j j A

A D 1

1

'

式中:1A ——横摆角速度响应历程曲线的第一个峰峰值,(o)/s 可得相对阻尼系数1

])1ln([1

2'+-=D π

ξ

左转时,横摆角速度相对阻尼系数为0.1992;

右转时,横摆角速度相对阻尼系数为0.1961;HB11A平均横摆角速度相对阻尼系数为0.1976。

3.3.

4.5横摆角速度总方差

∑=

??-

=

n

j j

r

t r

r

E

2

]5.0

)

(

[

式中:

r

E——横摆角速度总方差,s

i

r——横摆角速度响应时间历程曲线瞬时值,(o)/s

r——横摆角速度响应初始值,(o)/s

n ——采样点数

Δt——采样时间间隔,s

左转时,横摆角速度总方差为0.4722s;

右转时,横摆角速度总方差为0.473s;

HB11A平均横摆角速度总方差为0.4726s。

4.中间位置转向试验

4.1试验方法

HB11A处于满载状态,以70km/h的固定车速直线稳定行驶,以0.2Hz的频率进行连续的正弦曲线方向盘转角输入,产生的最大侧向加速度为0.25g,正弦输入以外的过程中要始终保持方向盘转角不变,试验过程中,转向角最大幅度和方向盘中心位置的角速度应尽可能稳定。此外,油门踏板位置变化应保持最小,与车速限值要求保持一致。

4.2数据处理

4.2.1侧向加速度—方向盘转角

图19 侧向加速度—方向盘转角

转向灵敏度:方向盘最大转角的±20%范围内的曲线平均斜率,为0.0036g/o最小转向灵敏度:侧向加速度在±0.1g范围内内的曲线最小瞬间斜率,为0.0036g/o。

侧向加速度为0.1g时的转向灵敏度:远离转向中心侧向加速度为0.1g时的曲线斜率,为0.0038g/o。

转向线性度:最小转向灵敏度与侧向加速度0.1g时的转向灵敏度的比值,为0.9474。

转向迟滞:在侧向加速度为±0.1g范围内的曲线区域面积,为3.166o·g 方向盘平均转角静态区:转向迟滞除以0.2g,为15.83o。

4.2.2横摆角速度——方向盘转角

图20 横摆角速度——方向盘转角

横摆角速度响应系数:方向盘最大转角的±20%范围内的曲线平均斜率,为0.1 1/s。

5.扫频试验

5.1试验方法

HB11A处于满载状态,以70km/h车速稳定直线行驶,开始记录数据,给方向盘转角正弦扫描输入,频率范围从0.2Hz到4Hz连续变化,转向幅度使侧向加速度峰值达到0.25g,试验过程中油门开度保持不变。

5.2数据处理

5.2.1侧向加速度v—方向盘转角

图21 侧向加速度v—方向盘转角

初始增益为0.0034g/o,最小增益频率为2.9053Hz。

5.2.2横摆角速度—方向盘转角

图22 横摆角速度—方向盘转角

初始增益为0.0957 1/s,最大增益频率为1.4893Hz,放大率为2.3762

5.2.3侧偏角—方向盘转角

图23 侧偏角—方向盘转角

初始增益为0.0088,最大增益频率为1.3428Hz,放大率为2.6818。

5.2.4侧倾角—侧向加速度

图24 侧倾角—侧向加速度

初始增益为8.673o/g。

6.平顺性脉冲输入试验

6.1试验方法

采用如图25所示三角形状的凸块作为脉冲输入,将凸块放置在试验道路(干燥平整长直的水泥路面或者沥青路面)中间,并按汽车轮距调整好两个凸块间的距离,为保证汽车左右车轮同时驶过凸块,应将两凸块放在与汽车行驶方向垂直的一条线上。

图25 三角形状的凸块示意图

图25中:h ——80mm;B ——按需要而定,但必须大于轮宽。

HB11A处于满载状态,分别以10、20、30、40、50、60km/h的实验车速直线匀速驶过凸块,在汽车通过凸块前50m应稳住车速和方向盘,并启用测速装置测量车速。当汽车前轮接近凸块时开始记录,待汽车驶过凸块并冲击响应消失后,停止记录。

6.2数据处理

各测点在不同车速下的最大垂直加速度的绝对值如表1所示:

表1不同车速下的最大垂直加速度

7.仿真试验结果汇总

表2仿真试验结果汇总表

平顺性脉冲输入试验结果曲线拟合

(1)驾驶员座椅处最大垂直加速度的绝对值——车速

图26 驾驶员座椅处最大垂直加速度—车速(2)驾驶员底部地板处最大垂直加速度的绝对值——车速

图27 驾驶员底部地板处最大垂直加速度—车速(3)货箱地板中心处最大垂直加速度的绝对值——车速

图28 货箱地板中心处最大垂直加速度—车速

(4)货箱地板距前边板、左边板各300mm处最大垂直加速度的绝对值——车速

图29货箱地板距前边板、左边板各300mm处最大垂直加速度—车速

(5)货箱地板距前边板、右边板各300mm处最大垂直加速度的绝对值——车速

图30 货箱地板距前边板、左边板各300mm处最大垂直加速度—车速

(6)货箱地板距后边板、左边板各300mm处最大垂直加速度的绝对值——车速

(7)货箱地板距后边板、右边板各300mm处最大垂直加速度的绝对值——车速

图32 货箱地板距后边板、右边板各300mm处最大垂直加速度—车速

8.结论

本仿真模型中,轮胎、衬套等对操纵稳定性和平顺性有重要影响的参数未能获取,只能以较接近的经验数据代替;后桥板簧仅复现了主副簧刚度,并未考虑片间摩擦;整车转动惯量无法应用SAE经验公式估算,只能人为按数量级近似。

从初步仿真结果看,HB11A稳态特性中的侧偏角梯度和侧倾角梯度较大,瞬态反应较灵敏(实车试验时驾驶员难以像仿真试验中那么快速的转动方向盘,故瞬态反应会响应延迟),中间位置转向时线性度较好、迟滞较小,转向回正性

能较差,频响特性的放大率较大,货箱后部的平顺性较差。

汽车操纵稳定性

关键词:汽车操纵稳定性 1、蔡世芳(1985). "汽车操纵稳定性评价指标和参数匹配的工程分析方法." 汽车工程7(3): 21-29. 本文提出一种工程分析方法,并利用此方法研究评价指标和参数匹配规律。全文主要内容有四部份: (1)工程分析方法的数学模型; (2)评价指标的工程计算方法; (8)评价指标的相关分析和主要评价指标的推荐。(4)操纵稳定性参数匹配的基本规律。 2、岑少起, 潘筱, et al. (2006). "ADAMS 在汽车操纵稳定性仿真中的应用研究." 郑州大学学报: 工学版27(003): 55-58. 运用ADAMS软件建立了C型车多自由度整车多体动力学仿真模型,详细分析了前悬架系统、后钢板弹簧系统和轮胎模型,同时提出了一种建立钢板弹簧多体模型的新方法——中性面法,并对不同方向盘转角及改变整车质心位置下的操纵稳定性进行了动力学仿真.经过与实际车型性能比较,该模型与分析结果是准确、可靠的,可应用于汽车平顺性研究中. 3、陈克, 王工, et al. (2005). "基于ADAMS 的汽车操纵稳定性虚拟试验演示系统开发." 沈阳理工大学学报24(001): 59-61. 利用ADAMS动力学软件建立了整车多刚体系统模型.分别考虑车型、悬架、轮胎、车速等不同因素对整车操纵稳定性的影响,进行整车操纵稳定性6个性能试验的仿真分析.利用获取的动力学分析数据、仿真动画,实现汽车操纵稳定性虚拟试验演示系统. 4、陈黎卿, 王启瑞, et al. (2005). "基于ADAMS 的双横臂扭杆独立悬架操纵稳定性分析." 合肥工业大学学报: 自然科学版28(004): 341-345. 悬架的主要性能参数在悬架运动过程中的变化规律是影响悬架性能的主要因素。文章采用ADAMS软件建立了某商务车独立悬架的数学模型和仿真模型,分析了该悬架对操纵稳定性的影响,以及悬架主要性能参数的变化规律,为悬架设计奠定了基础。与传统的设计方法相比,这种方法提高了精度和效率。 5、邓亚东, 余路, et al. (2005). "ADAMS 在汽车操纵稳定性仿真分析中的运用." 武汉大学学报: 工学版38(002): 95-98. 利用ADAMS软件建立了某轿车的操纵动力学多体仿真模型,详细考虑了前后悬架系统、转向系统、轮胎以及各种连接件中的弹性衬套的影响,分析了汽车在方向盘转角阶跃输入时的转向特性.通过对不同车速、不同载荷下的仿真计算,得出汽车转向特性在这些条件下的不同表现,揭示了汽车转向特性与车速、载荷和轮胎的内在关系,为汽车操纵稳定性分析提供了参考. 6、董涵(2003). 侧风环境下高速汽车稳定性研究与分析[D], 长沙: 湖南大学. 随着汽车车速的不断提高,汽车侧风稳定性的研究日益重要。由于实车试验风险大、场地设备要求高,而使用计算机仿真则可以极大的的缩短产品开发周期。因而进行高速汽车侧风稳定性计算机仿真研究具有现实意义。在车辆动力学研究过程中,汽车数学模型的精确与否始终是一个关键问题。随着计算机技术的长足进步,以及多体系统动力学这一学科的成熟,汽车模型的自由度越来越多,仿真结果越来越精确。本文首先整理了汽车操纵稳定性的各项评价指标,根据汽车高速运动时的受力分析,使用非线性轮胎模型,建立了侧风环境下汽车运动十八自由度数学模型并进行了直线行驶运动仿真。

汽车操纵稳定性

第5章汽车的操纵稳定性 学习目标 通过本章的学习,应掌握汽车行驶的纵向和横向稳定性条件;掌握车辆坐标系的有关术语,了解影响侧偏特性的因素,掌握轮胎回正力矩与侧偏特性的关系;熟练掌握汽车的稳态转向特性及其影响因素;了解汽车转向轮的振动和操纵稳定性的道路试验内容。 汽车在其行驶过程中,会碰到各种复杂的情况,有时沿直线行驶,有时沿曲线行驶。在出现意外情况时,驾驶员还要作出紧急的转向操作,以求避免事故。此外,汽车还要经受来自地面不平、坡道、大风等各种外部因素的干扰。一辆操纵性能良好的汽车必须具备以下的能力: (1)根据道路、地形和交通情况的限制,汽车能够正确地遵循驾驶员通过操纵机构所给定的方向行驶的能力——汽车的操纵性。 (2)汽车在行驶过程中具有抵抗力图改变其行驶方向的各种干扰,并保持稳定行驶的能力——汽车的稳定性。 操纵性和稳定性有紧密的关系:操纵性差,导致汽车侧滑、倾覆,汽车的稳定性就破坏了。如稳定性差,则会失去操纵性,因此,通常将两者统称为汽车的操纵稳定性。 汽车的操纵稳定性,是汽车的主要使用性能之一,随着汽车平均速度的提高,操纵稳定性显得越来越重要。它不仅影响着汽车的行驶安全,而且与运输生产率与驾驶员的疲劳强度有关。 节汽车行驶的纵向和横向稳定性 5.1.1 汽车行驶的纵向稳定性 汽车在纵向坡道上行驶,例如等速上坡,随着道路坡度增大,前轮的地面法向反作用力不断减小。当道路坡度大到一定程度时,前轮的地面法向反作用力为零。在这样的坡度下,汽车将失去操纵性,并可能产生纵向翻倒。汽车上坡时,坡度阻力随坡度的增大而增加,在坡度大到一定程度时,为克服坡度阻力所需的驱动力超过附着力时,驱动轮将滑转。这两种情况均使汽车的行驶稳定性遭到破坏。 图汽车上坡时的受力图 图为汽车上坡时的受力图,如汽车在硬路面上以较低的速度上坡,空气阻力 w F可以忽略不计,由于剩余驱动力用于等速爬坡,即汽车的加速阻力0 = j F,加速阻力矩0 = j M,而车轮的滚动阻力矩 f M的数值相对来说比较小,可不计入。 分别对前轮着地点及后轮着地点取力矩,经整理后可得 ? ? ? ?? ? ? = + - = - - sin cos sin cos 2 1 L G h aG Z L G h bG Z g g α α α α () 当前轮的径向反作用力0 1 = Z时,即汽车上陡坡时发生绕后轴翻车的情况,由式可得

汽车碰撞模拟分析流程

ANSYS 汽车碰撞分析流程Flow Chart of Auto Impact Analysis Prepared By 史志远 Date: Nov.1, 2004

汽车碰撞模拟分析流程 一、碰撞安全性试验介绍: 在汽车模拟分析的过程中,提高汽车碰撞安全性的目的是在汽车发生碰撞时确保乘员生存空间、缓和冲击、防止发生火灾等等。但是从碰撞事故分析中可知,汽车碰撞事故的形态也千差万别,所以对汽车碰撞安全性能的评价也必须针对不同的碰撞形态来进行。按事故统计结果,汽车碰撞事故主要可分为正面碰撞、侧面碰撞、追尾碰撞和翻车等几种类型。但随着公路条件的改善,正面碰撞和侧面碰撞形态成了交通事故中最常见的碰撞形式。 按照碰撞试验的目的区分,现在碰撞试验大体可以分为三类: 1)由政府法规要求的强制性试验:例如FMVSS208、ECE R94法规规定的正面碰撞 试验,FMVSS214、ECE R95法规规定的侧面碰撞试验等等; 2)由汽车制造厂自己制定的碰撞试验方法:例如用于提出改善汽车碰撞安全性的新 措施等等; 3)为消费者提供信息的试验:例如美国、欧洲等国家实施的新车评价程序(NCAP), 汽车安全法规中规定了达到政府规定的最低安全性能要求,NCAP以更高的车速 进行正面碰撞试验,以展示汽车产品的碰撞安全性能。 由于法规试验是政府强制实施的,所以,汽车碰撞试验法规是人们关注的热点。下表列出了一些美国FMVSS, 欧洲ECE的汽车被动安全性法规的试验项目。

二、人体伤害评价指标: 在碰撞试验或碰撞模拟分析的过程中,都使用了标准的碰撞试验假人,通过测量假人的响应计算出伤害的指标,用于定量的评价整车及安全部件的保护效能。 1) Hybrid III假人家族的伤害评价基准值: 下表列出了正面碰撞试验用的Hybrid III假人家族的伤害评价基准值。Hybrid III第50百分位男性假人是目前生物保真性最好的正面碰撞试验假人,另外,为了评价汽车对不同身材乘员的安全保护性能,按比例方法开发了第95百分位男性的大身材假人和第5百分位女性的小身材假人。 2)侧面碰撞假人的伤害评价基准值: 下表所示为目前使用的用于侧面碰撞用的假人SID, EuroSID-1的伤害评价基准值:

汽车理论课后习题答案 第五章 汽车的操纵稳定性

第 五 章 5.1一轿车(每个)前轮胎的侧偏刚度为-50176N /rad 、外倾刚度为-7665N /rad 。若轿车向左转弯,将使两前轮均产生正的外倾角,其大小为40。设侧偏刚度与外倾刚度均不受左、右轮载荷转移的影响.试求由外倾角引起的前轮侧偏角。 答: 由题意:F Y =k α+k γγ=0 故由外倾角引起的前轮侧偏角: α=- k γγ/k=-7665?4/-50176=0.6110 5.2 6450轻型客车在试验中发现过多转向和中性转向现象,工程师们在前悬架上加装前横向稳定杆以提高前悬架的侧倾角刚度,结果汽车的转向特性变为不足转向。试分析其理论根据(要求有必要的公式和曲线)。 答: 稳定性系数:??? ? ??-=122k b k a L m K 1k 、2k 变化, 原来K ≤0,现在K>0,即变为不足转向。 5.3汽车的稳态响应有哪几种类型?表征稳态响应的具体参数有哪些?它们彼此之间的关系如何(要求有必要的公式和曲线)? 答: 汽车稳态响应有三种类型 :中性转向、不足转向、过多转向。 几个表征稳态转向的参数: 1.前后轮侧偏角绝对值之差(α1-α2); 2. 转向半径的比R/R 0;

3.静态储备系数S.M. 彼此之间的关系见参考书公式(5-13)(5-16)(5-17)。 5.4举出三种表示汽车稳态转向特性的方法,并说明汽车重心前后位置和内、外轮负荷转移如何影响稳态转向特性? 答:方法: 1.α1-α2 >0时为不足转向,α1-α2 =0时 为中性转向,α1-α2 <0时为过多转向; 2. R/R0>1时为不足转向,R/R0=1时为中性转向, R/R0<1时为过多转向; 3 .S.M.>0时为不足转向,S.M.=0时为中性转向, S.M.<0时为过多转向。 汽车重心前后位置和内、外轮负荷转移使得汽车质心至前后轴距离a、b发生变化,K也发生变化。 5.5汽车转弯时车轮行驶阻力是否与直线行驶时一样? 答:否,因转弯时车轮受到的侧偏力,轮胎产生侧偏现象,行驶阻力不一样。 5.6主销内倾角和后倾角的功能有何不同? 答:主销外倾角可以产生回正力矩,保证汽车直线行驶;主销内倾角除产生回正力矩外,还有使得转向轻便的功能。 5.7横向稳定杆起什么作用?为什么有的车装在前恳架,有的装在后悬架,有的前后都装? 答:横向稳定杆用以提高悬架的侧倾角刚度。

IXFN70N60Q2热仿真分析报告

https://www.wendangku.net/doc/86539247.html, IXFN70N60Q2热仿真分析报告 编写人:杨志平 Email:phoenixyang2000@https://www.wendangku.net/doc/86539247.html, 版本:1.0 时间:2007-12-14 一、热分析原因 功率器件受到的热应力可来自器件内部,也可来自器件外部。若器件的散热能力有限,则功率的耗散就会造成器件内部芯片有源区温度上升及结温升高,使得器件可靠性降低,无法安全工作。当前,电子设备的主要失效形式就是热失效。据统计,电子设备的失效有55%是温度超过规定值引起的,随着温度的增加,电子设备的失效率呈指数增长。所以,功率器件热设计是电子设备结构设计中不可忽略的一个环节,直接决定了产品的成功与否,良好的热设计是保证设备运行稳定可靠的基础。 二、仿真目的 IXFN 70N60Q2 管子用在产品模块输出中,以往分析计算对MOS管发热情况只是在静态工作点上,实际我们的产品工作在一种动态的过程中(例如变化的PWM),在动态的过程中无法对器件发热进行一个有效计算,本文在cadence软件中pspice软件下对该情况进行一种尝试。 三、仿真模型建立 1. 热容概念的引入 对给定的电路结构来说,有现成的功率估算技术来确定半导体器件的功耗。最常用的功率估算方程是: P = I × V × D 其中,I是导通周期的平均电流、V是在导通周期通过器件的等效电压、D是占空比。这个公式对静态工作的MOS管计算可以,为确定半导体的结温升,只需将功率简单乘以热阻抗。这种分析的弊端是它过分简化了功率计算且没将瞬态条件(诸如开关动作或动态电路操作)计算在内。 如果MOS管呈现出纯热阻,那么根据R=△T/P,那么△T会随着功率P呈现线性增长。但是实际上增长是非线性的,有输入功率时热量有一个滞后,热量有一个累计的过程,在功率为低时,热量又有一个释放的过程。为了形象的表述这种现象,引入热容的概念,热容总是对功率有一个响应过程。参考IR公司资料, 热容公式计算如下:

汽车操纵稳定性实验指导书

汽车操纵稳定性实验指导书 课程编号: 课程名称: 实验一汽车转向轻便性实验 实验目的 汽车的转向轻便性和操纵稳定性是现代汽车重要的使用性能,通过对实验了解和掌握测试系统的安装调试、基本实验方法并学会数据处理和运用理论知识对汽车操纵稳定性研究、评价。以培养学生解决实际工程问题的能力。 二、实验的主要内容 了解测试系统的组成和测试原理,汽车转向轻便性实验的数据的实时采集和处理。测定汽车在低速大转角时的转向轻便性,与操纵稳定性其他试验项目一起,共同评价汽车的操纵稳定性。 采集测量变量及参数 方向盘转角; 方向盘力矩; 方向盘直径。 三、实验设备和工具 1.测量仪器 汽车方向盘转角——力矩传感器 汽车操纵稳定性数据采集和分析仪 2.实验车辆 小型客车一辆 3.标明试验路径的标桩16个。 四、实验原理 测定汽车在道路上进行转向行驶时,驾驶员作用在方向盘上的力矩和方向盘转角的变化关系评价汽车的转向操纵性能 验方法和步骤 1.实验准备 试验场地应为干燥、平坦而清洁的水泥或柏油路面。任意方向上的坡度不大于2%。在试验场地上,用明显颜色画出双纽线路径(图1),双纽线轨迹的极坐标方程为: 为:轨迹上任意点的曲率半径R

°时,双纽线顶点的曲率半径为最小值,即=0Ψ 当. 双纫线的最小曲率半径(m)应按试验汽车的最小转弯半径(m)乘以倍,并圆整到比此乘积大的一个整数来确定。并据此画出双纽线,在双纽线最宽处、顶点和中点(即结点)的路径两侧共放置16个标桩(图1)。标桩与试验路径中心线的距离,按汽车的轴距确:定,当试验汽车轴距大于时,为车宽一半加50cm,当试验汽车轴距小于或等于2m时,为车宽一半加30cm。 图1 双纽线路径示意图 2.试验方法 2.1接通仪器电源,使之预热到正常工作温度。 2.2汽车以低速直线滑行,驾驶员松开方向盘,停车后,记录方向盘中间位置及方向盘力矩零线。 2.3驾驶员操纵方向盘使汽车沿双纽线路径行驶。车速为10土1km/h。待车速稳定后,开始记录方向盘转角及力矩,并记录(或显示)车速作为监督参数,直到汽车绕双纽线行驶满三周。 3.数据处理 3.1根据记录的方向盘转角及方向盘力矩,按双纽线路径每一周整理成图2所示的M—θ曲线,并计算以下参数: 3.1.1方向盘最大力矩,用下式计算: 式中:Mmax——方向盘最大力矩,N·m; 3.1.2方向盘最大作用力,用下式计算:

汽车正面碰撞仿真建模与分析作业指导书

1 主题内容和适用范围 1.1本标准规定了零部件几何模型处理的基本方法; 1.2本标准规定了零部件有限元模型的命名方法; 1.3本标准规定了白车身与底盘有限元模型的网格划分与检测的基本方法; 1.4本标准规定了白车身与底盘有限元模型的焊点、螺栓、铆钉连接的基本方法; 1.5本标准规定了汽车正面碰撞仿真分析的基本参数设置、操作流程、评价方法。 1.6本标准适用于M1类车辆正面碰撞仿真分析。 2 引用标准 2.1 CMVDR 294 —关于正面碰撞乘员保护的设计准则 2.2 GB 11557-1998—防止汽车转向机构对驾驶员伤害的规定 3 术语 3.1整车质量—整车整备质量+两位法定假人质量 3.2 HIC—头部性能指标 3.3 ThPC—胸部性能指标 3.4 FPC—大腿性能指标 3.5保护系统—用来约束和保护乘员内部安装件及装置 4 零部件几何模型的处理 在UG中处理白车身数模,需检查各总成内部零件的干涉和各总成之间的干涉,同时对一些缺失的面和有质量问题的面进行修补。对

于对称件,可先去掉一半。具体操作可参照样车的实际结构进行必要的几何处理(见附录-1) 5 零部件有限元模型的命名方法 模型处理好后,将各零件以iges格式分别输出,并以三维数模对应的零件号命名。 6 有限元网格划分标准 6.1 整车网格尺寸规定 6.1.1 对于B柱之前的零件,单元尺寸初步定在8-12mm,可根据零件的复杂程度适当的减小尺寸,但是决不能小于5mm,其间需考虑单元的过渡(如顶盖,地板等结构),以确保网格连续、平滑、均匀、美观;对于B柱之后的零件,可适当增大网格尺寸,初步定在20-30mm; 6.1.2 对于倒角,半径小于5mm时可删去,半径在5-10mm之间时划分一个单元,半径大于10mm时划分两个单元; 6.1.3 对于孔,半径小于5mm时可删去,半径大于5mm时应保证孔边沿上至少有4个节点; 6.1.4 对于对称件,网格划分完后镜像生成完整的网格模型。 6.2 网格检查标准

整车操纵稳定性仿真分析报告分析解析

L11整车操纵稳定性仿真分析报告 (HB11A/HB12A 编制(日期)____________________________ 校对(日期)____________________________ 审核(日期)____________________________ 批准(日期)____________________________ 简式国际汽车设计(北京)有限公司 L11整车操纵稳定性仿真分析报告(HB11A/HB12A 1.定半径稳态圆周试验 1.1试验方法 HB11A处于满载状态,沿半径为 40m的定半径圆周进行回转运动,开始以最低稳定速度进入圆周,找准方向盘的位置,使汽车可以沿圆周进行回转运动,开始记录,然后缓慢连续而均匀地加速(纵向加速度不超过0.2 m/s2),加速的同时调整方向盘转角以维持定半径圆周运动,这个过程中车辆不应超岀车道0.5 m,直至不 能维持稳态定半径圆周运动条件时或受发动机功率限制所能达到的最大侧向加速度为止。记录整个过程,建议使用满足试验条件的最高档位。试验按向左转和向右转两个方向进行,每次试验开始时车身应处于正中位置。 1.2数据处理 “方向盘转角一一侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为0.25g时的曲线斜率。 图1方向盘转角一侧向加速度(左转) 从图1计算得到左转不足转向梯度为137o/g 图2方向盘转角一侧向加速度(右转) 右转不足转向梯度为 134.5o/g,则HB11A平均不足转向梯度为 135.75o/g。 HB11A的角传动比约为 23.333,则不足转向梯度/转向系角传动比为 5.817o/g。 “质心侧偏角一一侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为0.25g时的曲线斜率。 图3质心侧偏角——侧向加速度(左转)左转侧偏角梯度为 5.987 o/g。 图4 质心侧偏角一一侧向加速度(右转) 右转侧偏角梯度为 5.987o/g,则HB11A平均侧偏角梯度为 5.987o/g。 “车身侧倾角一一侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为0.25g时的曲线斜率。

同济汽车操纵稳定性实验报告新终审稿)

同济汽车操纵稳定性实 验报告新 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

《汽车平顺性和操作稳定性》实验报告 学院(系)汽车学院 专业车辆工程(汽车) 学生姓名同小车学号 000001 同济大学汽车学院实验室 2014年11月 1.转向轻便性实验 实验目的 驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。 实验仪器设备 实验条件 试验车:依维柯 实验场地与环境 于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。双扭线的极坐标方程见下,形状如下图 实验当天天气晴好,无风,气温20度

在ψ=0时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d,双扭线的最小曲率半径应按照实验汽车的最小转弯半径乘以1,1倍,并圆整到比此乘积大的一个整数来确定。试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。 转向轻便型实验数据记录 方向盘转角-转矩曲线 2. 蛇形试验 实验目的 本项试验是包括车辆-驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。也可以用来考核汽车在接近侧滑或侧翻工况下的操纵性能,在若干汽车操纵稳定性对比试验时,作为主观评价的一种感性试验。 实验原理 将试验车辆以不同车速行驶于规定的蛇形试验中,通过实验仪器可以得到行驶时的车速,方向盘转角,横摆角速度,车身侧倾角。 试验方法遵照GB/T 6323.1-94汽车操纵稳定性试验方法蛇形试验

100%正面碰撞分析报告

编号: - CSFX-002 100%正面碰撞分析报告 项目名称:A级三厢轿车设计开发 项目代号: CP08 编制:日期: 校对:日期: 审核:日期: 批准:日期: 2011年03月

目录 1 分析目的和意义 (1) 2 使用软件说明 (1) 3 整车参数 (1) 3.1整车参数 (1) 3.2有限元模型坐标与实车坐标对比 (2) 3.3整车及各总成有限元模型 (2) 3.4边界条件定义 (5) 4 碰撞模拟结果分析 (5) 4.1碰撞模拟总体变形结果 (5) 4.2整车速度变化 (8) 4.3碰撞模拟能量变化情况 (9) 4.4刚性墙的接触力 (10) 4.5主要吸能部件变形及吸能情况分析 (11) 4.6主要吸能部件变形图 (11) 4.7B柱下端减加速度 (14) 4.8门框变形量 (15) 4.9前围板侵入量 (17) 4.10A柱侵入量 (19) 4.11方向盘侵入量 (20) 5 总结 (20)

1 分析目的和意义 为了在汽车的设计阶段使被设计车辆更好的满足耐撞性的要求,采用动态大变形非线形有限元模拟技术,进行了CP08车型正面撞击刚性墙的仿真分析,主要是根据《乘用车正面碰撞的乘员保护》(GB11551-2003)进行的仿真模拟。GB11551的全部技术内容为强制性要求,适用于M1类车辆(M1类车辆为包括驾驶员座位在内,座位数不超过9座的载客车辆)。汽车车体结构变形特性是影响汽车安全性能的关键因素,本文通过对CP08车型模拟结果进行分析,为整车的耐碰撞性提供参考。 2 使用软件说明 在本次模拟中,主要使用了Hypermesh前处理软件和Ls-Dyna 求解器,Hypermesh是世界领先的、功能强大的CAE应用软件包,由美国Altair公司开发,目前在世界上的应用非常广泛。LS-DYNA 是一个以显式为主,隐式为辅的通用非线性动力分析有限元程序,可以求解各种二维、三维非线性结构的高速碰撞、爆炸和金属成型等非线性问题。 3 整车参数 3.1 整车参数 整车碰撞仿真模拟,必须真实的模拟实车碰撞时的状态,要模拟实车各总成之间的连接,按照其实际材料特性,密度、质量等参数进行设置。 根据项目组提供的整车零部件明细表及质量、材料特性,材料主

热流体仿真训练报告要求

实训报告 实训内容:热流体仿真训练 学生姓名: 学号: 专业班级: 指导教师: 时间: 2018.9.3-2018.9.7 2018年 9月 8日

STAR-CCM+简介 STAR-CCM+(Computational Continuum Mechanics)是CD-adapco 集团推出的新一代CFD软件。采用最先进的连续介质力学数值技术(computational continuum mechanics algorithms),并和卓越的现代软件工程技术结合在一起,拥有出色的性能和高可靠性,是热流体分析工程师强有力的工具。 STAR-CCM+界面非常友好,对表面准备,如包面(surface wrapper)、表面重构(surface re-mesh)及体网格生成(多面体-polyhedral、四面体-tetrahedral、六面体核心网格-trim)等功能进行了拓展;且在并行计算(HPC)上取得巨大改进,不仅求解器可以并行计算,对前后处理也能通过并行来实现,大大提供了分析效率。在计算过程中可以实时监控分析结果(如矢量、标量和结果统计图表等),同时实现了工程问题后处理数据方面的高度实用性、流体分析的高性能化、分析对象的复杂化、用户水平范围的扩大化。由于采用了连续介质力学数值技术,STAR-CCM+不仅可进行流体分析,还可进行结构等其它物理场的分析。目前STAR-CCM+正在应用于多达2亿网格的超大型计算问题上,如方程式赛车外流场空气动力分析等项目。 STAR-CCM+着眼于未来20年内工程领域的挑战。 STAR-CCM+的显著特点: 一.友好的用户界面 1. 面向对象的图形用户界面; 2.数据管理系统,数据的保存、恢复;快速的、按需进行的数据读取;二进制,操作平台的无依

整车操纵稳定性仿真分析报告分析解析

L11整车操纵稳定性仿真分析报 (HB11A/HB12A 编制(日期)校对(日期)审核(日期)批准(日期) 简式国际汽车设计(北京)有限公司 L11整车操纵稳定性仿真分析报告(HB11A/HB12A 1.定半径稳态圆周试验 1.1试验方法 HB11A处于满载状态,沿半径为40m的定半径圆周进行回转运动,开始以最低稳定速度进入圆周,找准方向盘的位置,使汽车可以沿圆周进行回转运动,开始记录,然后缓慢连续而均匀地加速(纵向加速度不超 过2),加速的同时调整方向盘转角以维持定半径圆周运动,这个过程中车辆不应超出车道0.2 m/s0.5 m,直至不能维持稳态定半径圆周运动条件时或受发动机功率限制所能达到的最大侧向加速度为止。记录整个过程,建议使用满足试验条件的最高档位。试验按向左转和向右转两个方向进行,每次试验开始时车身应处于正中位置。 1.2数据处理 “方向盘转角一一侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为 0.25g时的曲线斜率。 图1方向盘转角一侧向加速度(左转)从图1计算得到左转不足转向梯度为 137o/g 图2方向盘转角一侧向加速度(右转)右转不足转向梯度为 134.5o/g,贝U HB11A平均不足转向梯度为 135.75o/g。 HB11A的角传动比约为23.333,则不足转向梯度/转向系角传动比为5.817o/g。 “质心侧偏角一一侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为0.25g时的曲线斜率。

图 3 质心侧偏角——侧向加速度(左转) 左转侧偏角梯度为 5.987o/g 。 图 4 质心侧偏角——侧向加速度(右转) 右转侧偏角梯度为5.987o/g ,则HB11A 平均侧偏角梯度为5.987o/g 。 时的曲线斜率。0.25g “车身侧倾角一一侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为 图 5 车身侧倾角——侧向加速度(左转) 左转侧倾角梯度为 8.995o/g 。 图 6 车身侧倾角—侧向加速度(右转) 右转侧倾角梯度为8.94o/g ,则HB11A 平均侧倾角梯度为 8.967o/g 。 2. 方向盘转角阶跃输入试验 2.1 试验方法 HB11A 处于满载状态,以70 km / h 的车速稳定直线行驶,开始记录数据,以尽可能快的速度 (阶跃时间为 0.4s )转动方向盘,达到预定的转角,保持方向盘转角不变直至汽车恢复稳定状态,试验过程中油门踏板开 度应尽可能保持不变。 方向盘转角初始值是 10°,每次增加 5°,直到车辆达到附着极限, 试验分为向左、 向右两个方向进行。 2.2 数据处理 —方向盘转角滞后时间 横摆角速度达到 50%稳态值时相对于方向盘转角达到 图 7 0.3g 时横摆角速度—方向盘转角滞后时间 左转时,横摆角速度——方向盘转角滞后时间为 右转时,横摆角速度——方向盘转角滞后时间为 HB11A 横摆角速度——方向盘转角平均滞后时间为 图 8 0.4g 时横摆角速度—方向盘转角滞后时间 左转时,横摆角速度——方向盘转角滞后时间为 右转时,横摆角速度——方向盘转角滞后时间为 HB11A 横摆角速度——方向盘转角平均滞后时间为 ——方向盘转角滞后时间 侧向加速度达到 50%稳态值时相对于方向盘转角达到 50%阶跃值时的滞后时间。 图 9 0.3g 时侧向加速度——方向盘转角滞后时间 左转时,侧向加速度——方向盘转角滞后时间为 右转时,侧向加速度——方向盘转角滞后时间为 50%阶跃值时的滞后时间。 0.0308s 0.0312s 0.031s 0.0326s ; 0.0331s ; 0.03285s 。 0.1127s ; 0.1137s ; HB11A 侧向加速度——方向盘转角平均滞后时间为 图 10 0.4g 时侧向加速度——方向盘转角滞后时间 左转时,侧向加速度——方向盘转角滞后时间为 右转时, 侧向加速度——方向盘转角滞后时间为 HB11A 侧向加速度——方向盘转角平均滞后时间为 ——方向盘转角滞后时间 0.1132s 。 0.1397s ; 0.1408s ; 0.14025s 。 车身侧倾角达到 50%稳态值时相对于方向盘转角达到 50%阶跃值时的滞后时间。 图 11 0.3g 侧倾角——方向盘转角滞后时间 左转时,侧倾角——方向盘转角滞后时间为0.1733s ; ; 0.1741s 右转时,侧倾角——方向盘转角滞后时间为 HB11A 侧倾角——方向盘转角平均滞后时间为 图 12 0.4g 侧倾角——方向盘转角滞后时间 左转时,侧倾角——方向盘转角滞后时间为 0.1773s ; 0.1737s 。

汽车操纵稳定性仿真

实验4 汽车操纵稳定性仿真 一.实验目的 1.了解和掌握汽车操作稳定性实验条件、试验规程、数据实验方法以及实验仪器设备。 2.熟悉掌握Adams/Car软件的应用并能实际操作完成汽车操控性仿真的全过程。 二.实验器材 Adams软件、计算机一台 三.实验结果与分析 1.定转弯半径仿真 汽车在行驶过程中,由于路面的侧向倾斜,侧向风或者曲线行驶时的离心力等的作用,车轮中心沿车轴方向产生一个侧向力F。因为车轮是有弹性的,所以,在侧向力F 未达到车轮与地面间的最大摩擦力时,侧向力 F 使轮胎产生变形,使车轮倾斜,导致车轮行驶方向偏离预定的行驶路线。这种现象,就称为汽车轮胎的侧偏现象。汽车轮胎的中心线,在侧向力F 的作用下,与车轮平面错开了一定距离,而且有一个倾斜角,这个倾斜角,就叫做汽车轮胎的侧偏角。 侧偏最常见于汽车转弯。汽车转弯时,前后轮都会产生侧偏角。如果前后轮侧偏角相等,则汽车实际转弯半径等于方向盘转角对应的转弯半径,称为“中性转向”;如果前轮侧偏比后轮大,汽车实际转弯半径大于方向盘转角对应的转弯半径,称为“不足转向”;如果后轮侧偏比前轮大,汽车实际转弯半径小于方向盘转角对应的转弯半径,称为“过度转向”。 在设置转弯半径28m,车辆以10km/h的初速度加速到120km/h时,汽车行驶到最后阶段失去控制,脱离预先设计好的圆形轨道。其行驶轨迹如下图所示;

图1 从图中我们可以看出,汽车在行驶大概一圈的时候冲出轨道,且距离圆心随着时间增长越来越远。这是由于随着速度的不断增加,汽车所受到的侧向力不断变大,当地面的摩擦力不足以平衡侧向力时,汽车便会失去控制。从图中可以看出,在汽车达到120km/h时候汽车已经偏原来的轨道很大一段距离。 在这实验的基础上,改了一下数据,设置转弯半径20m,出事加速度0.1m/s^2最终加速度为4m/s^2,得到了以下曲线: 图2 图3 从图中,我们可以得到,汽车在设定好的轨道中良好运行,没有冲出跑道。再上一个控制速度的实验中,所得到的最终加速度的大小大概为 5.5g,而控制加速度的实验中,所得到的最终加速度大小为0.4g,明显小于前者,因此猜想,当汽车的加速度比较大时,汽车比较容易冲出跑道 为了证实以上猜想,设定转弯半径20m,初始加速度0.01g,最终加速度5g,得到以下实验曲线:

汽车碰撞仿真技术

汽车碰撞安全技术 学号:2009********** 班级:2009级****** 姓名:******* 球撞板建模仿真分析实验 (一)试验目的 巩固汽车仿真分析基础知识,使对仿真分析有更深的认识,学习Hyperworks、LS-DYNA 软件基础,学习仿真分析的基本思想和基本方法步骤。 (二)试验设备 计算机、Hyperworks软件和LS-DYNA软件。 (三)试验原理 仿真分析主要分为数据前处理、后处理和分析计算等几个阶段,本实验主要通过建立球和板的几何模型、画分网格、给球和板富裕材料和截面属性、加载边界条件、建立在和条件、接触处理、定义控制卡片。删除临时阶段、节点重新排号、将文件导出成KEY文件、运营LS0DYNA进行分析仿真等步骤,模拟球撞板的过程,得出响应的仿真动画和仿真计算结果。(四)仿真步骤 1)建模过程 首先建立临时节点,并以此建立球模型和板模型。球为以临时节点为球心,5mm为半径;板距离球心的距离为5.5mm,即板和球的最小距离为0.5mm。 2)画网格 利用hypermesh画出球和板的二位网格。 3)定义模型特性 给ball和plane定义材料为20号刚体材料,其杨氏模量分别为200000和100000,泊松比均为0.3。 4)定义边界条件 将plane板上最外面的四行节点分别建成4个set。 5)建立载荷条件 定义球的位移,即给定球向板方向的距离,由此模拟球撞击板的过程。 6)定义接触 先做出两个用于接触的sagment,在这两个sagment上建立接触关系。 7)定义控制卡片 即建立Analysis-control cards (1)选择Control_Enegy,将hgen设置为2,return; (2)按next找到Control_Termination,将ENDTIM设为0.0001s,return; (3) 按next找到Control_Time_step,将DTINIT设为1*10-6s,将TSSFAC设置为0.6,点击return; (4) 按next找到DATABASE_BINARY_D3PLOT,将DT设置为5*10-6,return; (5) 按next找到DATABASE_OPTION,将MATSUM设置为1*10-6,将RCFORC设置为1*10-6,return. 8)删除临时节点 进入Geom中的temp nodes面板,删除临时节点。 9)节点重新排号 在tool-renumber面板中重新排序

显卡散热器热仿真报告

本文的所有内容,包括文字、图片,均为原创。对未经许可擅自使用者,本公司保留追究其法律责任的权利。艾新科有限公司。 All content in this paper, including text, images, are all original. For the user without Asink ’s permission,the company reserves the right to pursue its legal GTX770显卡散热器热仿真报告 分析说明: 1、本仿真模型采用简化结构建模,主要针对主IC (GPU )进行散热分析,其他热源只做辅助作用,故其他部分的温度及温度场不具有参考价值; 2、仿真时,各热源由客户提供估算的热功耗值,本模型中功耗设置情况如下表: 热源器件 单个器件TDP (W ) 数量 GPU 230 1 PCB1(GPU 平台) 10 1 总功耗(W ) 240W 3、仿真边界条件在无特殊说明时为25℃环温和标准大气压,重力设置为设备实际正常 使用时的重力方向。 模型结构: 上图为产品结构模型示意图,散热器轮廓尺寸262x105x39.9mm ,散热片主尺寸 236.5x84x37.5mm ,风扇理论噪音<45dBA ,散热器有效散热表面积约0.3m 2,热管数量1,热管参数60W/0.08℃/W 。 F o r a s i n k i n t e r n a l u s e o n l y .

本文的所有内容,包括文字、图片,均为原创。对未经许可擅自使用者,本公司保留追究其法律责任的权利。艾新科有限公司。 All content in this paper, including text, images, are all original. For the user without Asink ’s permission,the company reserves the right to pursue its legal 仿真结果: 1、散热器俯视温度云图及及局部散热结构件的温度 图1、散热器温度云图及散热器局部表面温度 F o r a s i n k i n t e r n a l u s e o n l y .

基于Simulink的车辆两自由度操纵稳定性模型

基于Simulink的车辆两自由度操纵稳定性模型汽车操纵稳定性是汽车高速安全行驶的生命线,是汽车主动安全性的重要因素之一;汽车操纵稳定性一直汽车整车性能研究领域的重要课题。本文采用MATLAB仿真建立了汽车二自由度动力学模型,通过仿真分析了不同车速、不同质量和不同侧偏刚度对汽车操纵稳定性的影响。研究表明,降低汽车行驶速度,增加前后轮侧偏刚度和减小汽车质量可以减小质心侧偏角,使固有圆频率增加降低行驶车速还可以使阻尼比增加,超调量及稳定时间减少。 车辆操纵稳定性评价主要有客观评价和主观评价俩种方法。客观评价是通过标准实验得到汽车状态量,再计算汽车操纵稳定性的评价指标,这可通过实车实验和模拟仿真完成,在车辆开发初期可通过车辆动力仿真进行车辆操纵稳定性研究。 1.二自由度汽车模型 为了便于掌握操纵稳定性的基本特性,对汽车简化为线性二自 由度的汽车模型,忽略转向系统的 影响,直接一前轮转角作为输入; 忽略悬架的作用,认为汽车车厢只 作用于地面的平面运动。

2.运动学分析 分析时,令车辆坐标系原点与汽车质心重合。首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。 确定汽车质心的(绝对)加速度在车辆坐标系的分量 和 。Ox 与Oy 为车辆坐标系的纵轴与横轴。质心速度 1与t 时刻在Ox 轴上的分量为u ,在Oy 轴上的分量为v 。 2.1 沿Ox 轴速度分量的变化为: 由于汽车转向行驶时伴有平移和转动,在t+△t 时刻,车辆坐标系中质心速度的大小与方向均发生变化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿x 轴速度分量变化为: ()cos ()sin cos cos sin sin u u u v v u u u v v θθ θθθθ +??--+??=?+??---??

整车操纵稳定性仿真分析报告分析解析

整车操纵稳定性仿真 分析报告分析解析Revised on November 25, 2020

L11整车操纵稳定性仿真分析报告 (HB11A/HB12A) 编制(日期) 校对(日期) 审核(日期) 批准(日期) 简式国际汽车设计(北京)有限公司 L11整车操纵稳定性仿真分析报告(HB11A/HB12A) 1.定半径稳态圆周试验 试验方法 HB11A处于满载状态,沿半径为40m的定半径圆周进行回转运动,开始以最低稳定速度进入圆周,找准方向盘的位置,使汽车可以沿圆周进行回转运动,开始记录,然后缓慢连续而均匀地加速(纵向加速度不超过 m/s2),加速的同时调整方向盘转角以维持定半径圆周运动,这个过程中车辆不应超出车道m,直至不能维持稳态定半径圆周运动条件时或受发动机功率限制所能达到的最大侧向加速度为止。记录整个过程,建议使用满足试验条件的最高档位。试验按向左转和向右转两个方向进行,每次试验开始时车身应处于正中位置。

数据处理 “方向盘转角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为时的曲线斜率。 图1 方向盘转角—侧向加速度(左转) 从图1 计算得到左转不足转向梯度为137o/g 图2 方向盘转角—侧向加速度(右转) 右转不足转向梯度为g,则HB11A平均不足转向梯度为g。 HB11A的角传动比约为,则不足转向梯度/转向系角传动比为g。 “质心侧偏角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为时的曲线斜率。 图3 质心侧偏角——侧向加速度(左转) 左转侧偏角梯度为g。 图4 质心侧偏角——侧向加速度(右转) 右转侧偏角梯度为g,则HB11A平均侧偏角梯度为g。 “车身侧倾角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为时的曲线斜率。 图5 车身侧倾角——侧向加速度(左转) 左转侧倾角梯度为g。 图6 车身侧倾角—侧向加速度(右转) 右转侧倾角梯度为g,则HB11A平均侧倾角梯度为g。 2.方向盘转角阶跃输入试验 试验方法 HB11A处于满载状态,以70km/h的车速稳定直线行驶,开始记录数据,以尽可能快的速度(阶跃时间为转动方向盘,达到预定的转角,保持方向盘

同济汽车操纵稳定性实验报告新

《汽车平顺性和操作稳定性》实验报告 学院(系)汽车学院 专业车辆工程(汽车) 学生姓名同小车学号000001 同济大学汽车学院实验室 2014年11月

1.转向轻便性实验 实验目的 驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。 实验仪器设备 参量方向盘转矩方向盘转角车速 仪器测力方向盘测力方向盘GPS测速仪实验条件 试验车:依维柯 实验场地与环境 于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。双扭线的极坐标方程见下,形状如下图 实验当天天气晴好,无风,气温20度 在ψ=0时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d,双扭线的最

小曲率半径应按照实验汽车的最小转弯半径乘以1,1倍,并圆整到比此乘积大的一个整数来确定。 试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。 转向轻便型实验数据记录 方向盘转角-转矩曲线

2. 蛇形试验 实验目的 本项试验是包括车辆-驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。也可以用来考核汽车在接近侧滑或侧翻工况下的操纵性能,在若干汽车操纵稳定性对比试验时,作为主观评价的一种感性试验。 实验原理 将试验车辆以不同车速行驶于规定的蛇形试验中,通过实验仪器可以得到行驶时的车速,方向盘转角,横摆角速度,车身侧倾角。 试验方法遵照GB/T 6323.1-94汽车操纵稳定性试验方法蛇形试验 实验仪器 记录下列测量变量所使用的仪器 方向盘转角:测力方向盘

相关文档
相关文档 最新文档