文档库 最新最全的文档下载
当前位置:文档库 › 什么是总结归纳法

什么是总结归纳法

什么是总结归纳法
什么是总结归纳法

什么是总结归纳法

什么是总结归纳法

归纳法。

归纳论证是一种由个别到一般的论证方法。

它通过许多个别的事例或分论点,然后归纳出它们所共有的特性,从而得出一个一般性的结论。

归纳法可以先举事例再归纳结论,也可以先提出结论再举例加以证明。

前者即我们通常所说之归纳法,后者我们称为例证法。

例证法就是一种用个别、典型的具体事例实证明论点的论证方法。

归纳法是从个别性知识,引出一般性知识的推理,是由已知真的前提,引出可能真的结论。

它把特性或关系归结到基于对特殊的代表(token)的有限观察的类型;或公式表达基于对反复再现的现象的模式(pattern)的有限观察的规律。

例如,使用归纳法在如下特殊的命题中:

冰是冷的。

在击打球杆的时候弹子球移动。

推断出普遍的命题如:

所有冰都是冷的。

或:在太阳下没有冰。

对于所有动作,都有相同和相反的重做动作。

人们在归纳时往往加入自己的想法,而这恰恰帮助了人们的记忆。

物理学研究方法之一。

通过样本信息来推断总体信息的技术。

要做出正确的归纳,就要从总体中选出的样本,这个样本必须足够大而且具有代表性。

比如在我们买葡萄的时候就用了归纳法,我们往往先尝一尝,如果都很甜,就归纳出所有的葡萄都很甜的,就放心的买上一大串。

归纳推理也可称为归纳方法.完全归纳推理,也叫完全归纳法.不完全归纳推理,也叫不完全归纳法.归纳方法,还包括提高归纳前提对结论确证度的逻辑方法,即求因果五法,求概率方法,统计方法,收集和整理经验材料的方法等.

古典归纳法

古典归纳逻辑,是由培根创立,经穆勒发展的归纳理论.它主要研究完全归纳推理,不完全归纳推理(简单枚举归纳和科学归纳),求因果五法等.

亚里士多德探讨了归纳.他在谈到简单枚举归纳推理.他举例说,内行的舵手是最有效能的.所以,凡在自己专业上内行的人都是最有效能的.

古典归纳逻辑创始人是17世纪英国弗兰西斯培根,他

在中,贬演绎,倡归纳,首次提出整理和分析感性材料的”三表法”,即具有表,缺管表和程度表,认为在此基础上,通过排除归纳法等归纳方法,可以从特殊事实”逐级”上升,最后达到”最普遍的公理”.

19世纪英国约翰穆勒(John Mill)是古典归纳逻辑的集大成者,他在中,通过总结自培根以来古典归纳逻辑的研究成果,系统论述了”求因果五法”,即求同法,求异法,求同求异并用法,共变法和剩余法,对其形式和规则做了具体规定和说明.

现代归纳法

现代归纳逻辑,也称概率逻辑.它是由梅纳德凯恩斯(Magnard Keynes)创立,由莱辛巴哈(Reichenbach),卡尔纳普(Rudolf Carnap)科恩等发展,运用概率论,形式化的公理方法等工具,探索归纳问题所取得的成果。

古典归纳逻辑曾遭到英国休谟的诘难。

他认为,归纳推理的合理性在逻辑上是得不到保证的。

归纳推理所依据的普遍因果律和自然齐一律,只是一种习惯性心理联想,不具有客观的真理性.从个别性的前提不可能得到一般性的结论.休谟的诘难,引人思考.既然从个别性的前提出发,不能必然地得到一般性的结论,那么个别性的前提是否可以对一般性的结论提供某种程度的证据支持,前提对于结论支持的概率是多少,这就是现代归纳逻辑即概

率逻辑的研究主题.

现代归纳逻辑研究肇始于19世纪中叶.德摩根,耶方斯,文恩等人都曾探索利用古典概率论来研究归纳问题.凯恩斯在1921年发表,主张概率是命题间的逻辑关系,在此基础上构建概率演算的公理系统,创立了现代归纳逻辑.莱辛巴哈在1934年发表,主张用”相对频率的极限”定义”概率”,创立频率概率论,把现代归纳逻辑的研究,推进到一个新阶段.

现代归纳逻辑正处于发展时期,其理论尚待完善.”把一切归纳方法,用公理集加以系统化的归纳逻辑目前还不存在,我们现在只有归纳逻辑的片断或一些归纳逻辑的雏形.”多种类型的归纳逻辑理论,不断被引入认识论,科学方法-论,统计学,决策论,人工智能等众多领域,日益得到广泛的应用.

人教版高中数学总复习[知识点整理及重点题型梳理]推理与证明、数学归纳法

推理与证明、数学归纳法 编稿:辛文升 审稿:孙永钊 【考纲要求】 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用. 2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. 3.了解合情推理和演绎推理之间的联系和差异. 4.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点. 5.了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点. 6.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 【知识网络】 【考点梳理】 【推理与证明、数学归纳法407426 知识要点】 考点一:合情推理与演绎推理 1.推理的概念 根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论. 2.合情推理 根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理称为合情推理. 合情推理又具体分为归纳推理和类比推理两类: (1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这 推 理 与 证 明 归纳 推 理 证 明 合情推理 演绎推理 数学归纳法 综合法 分析法 直接证明 类比 间接证明 反证法

些特征的推理,或者由个别事实概括出一般结论的推理.简言之,归纳推理是由部分到整体、个别到一般的推理,归纳推理简称归纳. (2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理,类比推理简称类比. 3.演绎推理 从一般性的原理出发,推出某个特殊情况下的结论.简言之,演绎推理是由一般到特殊的推理. 三段论是演绎推理的一般模式,它包括: (1)大前提——已知的一般原理; (2)小前提——所研究的特殊情况; (3)结论——根据一般原理,对特殊情况作出的判断. 要点诠释: 合情推理与演绎推理的区别与联系 (1)从推理模式看: ①归纳推理是由特殊到一般的推理. ②类比推理是由特殊到特殊的推理. ③演绎推理是由一般到特殊的推理. (2)从推理的结论看: ①合情推理所得的结论不一定正确,有待证明。 ②演绎推理所得的结论一定正确。 (3)总体来说,从推理的形式和推理的正确性上讲,二者有差异;从二者在认识事物的过程中所发挥的作用的角度考虑,它们又是紧密联系,相辅相成的。合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的;演绎推理可以验证合情推理的正确性,合情推理可以为演绎推理提供方向和思路. 考点二:直接证明与间接证明 1.综合法 (1)定义:综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题.综合法是一种由因索果的证明方法,又叫顺推法. (2)综合法的思维框图: 用P 表示已知条件,1i Q i =(,2,3,...,n )为定义、定理、公理等,Q 表示所要证明的结论,则综合法可用框图表示为: 1P Q ?()→12Q Q ?()→23Q Q ?()→.........n Q Q ?() 2.分析法 (1) 定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判断一个明显成立的条件(已知条件,定理,定义,公理)为止.这种证明方法叫做分析法.分析法又叫逆推法或执果索因法. (2)分析法的思维框图: 1Q P ?()→12P P ?()→23P P ?() →.........得到一个明显成立的条件. 3.反证法

数学归纳法.知识点梳理

课题:数学归纳法 备课教师:沈良宏参与教师:郭晓芳、龙新荣审定教师:刘德清 1、教学重点:能用数学归纳法证明一些简单的数学命题 2、教学难点:学归纳法中递推思想的理解. 3、学生必须掌握的内容: 1.数学归纳法的定义 一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤: (1)证明当n=n0时命题成立. (2)假设当n=k(k∈N+且k≥n0)时命题成立,证明当n=k+1时命题也成立. 在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立,这种证明方法称为数学归纳法. 2.数学归纳法的适用范围 适用于证明一个与无限多个正整数有关的命题. 3.数学归纳法的步骤 (1)(归纳奠基)验证当n=n0(n0为命题成立的起始自然数)时命题成立; (2)(归纳递推)假设当n=k(k∈N+,且k≥n0)时命题成立,推导n=k+1时命题也成立. (3)结论:由(1)(2)可知,命题对一切n≥n0的自然数都成立. 注意:用数学归纳法证明,关键在于两个步骤要做到“递推基础不可少,归纳假设要用到,结论写明莫忘掉”,因此必须注意以下三点: (1)验证是基础.数学归纳法的原理表明:第一个步骤是要找一个数n0,这个n0就是我们要证明的命题对象的最小自然数,这个自然数并不一定就是“1”,因此“找准起点,奠基要稳”是正确运用数学归纳法要注意的第一个问题. (2)递推是关键.数学归纳法的实质在于递推,所以从“k”到“k+1”的过程,必须把归纳假设“n=k”时命题成立作为条件来导出“n=k+1”时命题成立,在推导过程中,要把归纳假设用上一次或几次,没有用上归纳假设的证明不是数学归纳法. (3)正确寻求递推关系.数学归纳法的第二步递推是至关重要的,那么如何寻找递推关系呢?①在第一步验证时,不妨多计算几项,并正确写出来,这样对发现递推关系是有帮助的;②探求数列的通项公式时,要善于观察式子或命题的变化规律,观察n处在哪个位置;③在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚. 4、容易出现的问题: (1)混淆数学归纳法与归纳法; (2)忽视第一步的归纳基础,数学归纳法的解题步骤有两步,第一步是归纳基础,第二步是归纳假设,在证明命题成立时,归纳假设这部分是一个难点,学生往往比较重视第二步的证明,却对忽视了归纳基础。常见的错误有: ①没有写第一步,而是直接假设成立,进行第二步归纳假设的证明; ②有写第一步,但是只是形式上写一下归纳基础,并没有进行验证是否成立,容易发生第一步是不成立的情况。因为第一步往往是正确的,而且是比较显然的,所以学生容易忽视它,但是就像玩多米诺骨牌游戏一样,如果第一块骨牌没有办法倒下,那么就算后面的骨牌排得多么整齐都不会倒下. 5、解决方法: 针对数学归纳法的特殊证明思路和特点,讲解清楚数学归纳法的概念及它的特征和相关要点,并结合学生的课堂反应,课堂多注重基础,多找出有代表性的典例适时强化学生理解

数学归纳法知识总结

数学归纳法知识总结 1、运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础),第二步是归纳递推(或归纳假设),两步缺一不可二易错点 1、归纳起点易错(1)n未必是从n=1开始例用数学归纳法证明:凸n边形的对角线条数为点拔:本题的归纳起点n=3(2)n=1时的表达式例用数学归纳法证明,在验证n=1时,左边计算所得的式子是() A、1 B、 C、 D、点拨 n=1时,左边的最高次数为1,即最后一项为,左边是,故选B 2、没有运用归纳假设的证明不是数学归纳法例1 用数学归纳法证明:错证:(1)当n=1时,左=右=1,等式成立(2)假设当n=k时等式成立,则当n=k+1时,综合(1)(2),等式对所有正整数都成立点拨:错误原因在于只有数学归纳法的形式,没有数学归纳法的“实质”即在归纳递推中,没有运用归纳假设3 从 n=k到n=k+1增加项错误例1 已知n是正偶数,用数学归纳法证明时,若已假设n=k(且为偶数)时命题为真,,则还需证明()

A、n=k+1时命题成立 B、 n=k+2时命题成立 C、 n=2k+2时命题成立 D、 n=2(k+2)时命题成立点拨:因n是正偶数,故只需证等式对所有偶数都成立,因k的下一个偶数是k+2,故选例2 用数学归纳法证明不等式的过程中,由k推导到k+1时,不等式左边增加的式子是点拨:求即可当 n=k时,左边,n=k+1时,左边,故左边增加的式子是,即三 知识应用用数学归纳法可以证明许多与自然数有关的数学命题,其中包括恒等式、不等式、数列通项公式、整除性问题、几何问题等1 用数学归纳法证明等式例1 用数学归纳法证明等式:例2 用数学归纳法证明:2 用数学归纳法证明不等式例3用数学归纳法证明不等式例 4、证明不等式(n∈N)、3 用数学归纳法证明整除问题例5 求证:能被6 整除、例6 证明:能被整除4 用“归纳猜想证明”解决数列问题例7在数列中,,(1)写出;(2)求数列的通项公式例8 在数列中,,其中,求数列的通项公式5用“归纳猜想证明”解决几何问题例 9、n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?四 练习巩固

数学归纳法知识点大全(综合)

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立,

②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果 )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立;

数学归纳法案例分析

数学归纳法案例分析 一、内容提要 数学归纳法是高中数学中的一个重点和难点内容,也是一种重要的数学方法,数学归纳法这一方法,贯通了高中数学的几大知识点:不等式,数列,三角函数,平面几何等。通过对它的学习,能起到以下几方面的作用:提高学生的逻辑思维、推理能力;培养学生辩证思维素质,全面提高学生数学能力;培养学生科学探索的创新精神,提高学生综合素质。 二、教学设计 根据本节课的内容和学生的实际水平,我采用的引导发现法和感性体验法进行教学。 在引出的《数学归纳法》这个课题后,我通过一个盒子中的十个乒乓球和等差数列的通项公式,导出完全归纳法和不完全归纳法这两个概念,又通过的两个例子促进学生对“ 递推关系” 的理解,明了两个概念的必要性,为数学归纳法的应用前提和场合提供形象化的参照物。 同点做准备时抓住这两个问题的类似之处,由具体到抽象,引导学生掌握本堂课的重点,为进一步突出难。 三、设计理念 1 、初步掌握归纳与推理的能力;培养大胆猜想,小心求证的辩证思维素质。 2 、掌握了自主探索问题、自主学习的方法。 3 、培养学生对于数学内在美的感悟能力。 四、教学片断 师:问题1 :这个盒子里有十个乒乓球,如何证明里面的球全为白色? 问题2 :请大家回忆,课本是如何得出等差数列的通项公式的?

教师引导学生明了以上两个问题的异同点。由此,得出归纳法的概念,同时指明了完全归纳法与不完全归纳法的区别。 师:若盒子里的乒乓球有无数个,如何证明它们全是白色球呢? 生:①证明第一次拿出的乒乓球是白色的;②构造一个命题并证明,此命题的题设是:“ 若某一次拿出的球是白色的” ,结论是:“ 下次拿出的球也是白色的” 。以上两步都被证明,则盒子中的乒乓球全是白色的。 教师引导学生讨论:以上两个步骤如果都得到证明,是否能说明全部的乒乓球都是白色的?由此,得出数学归纳法的基本概念。 师:这种思考方法能不能用来证明第二个问题呢? 生:能,学生对比上一问题与此问题类似之处,进而得出数学归纳法的证题思路和步骤。 让学生用数学归纳法证明第二人个问题( 略) 。 师再强调数学归纳法的“ 奠基步骤” 和“ 递推步骤” 这“ 两个步骤” 以及“ 一个结论” 。 师引导学生总结: ①教学归纳法是一种完全归纳的证明方法,它适用于与自然数有关的问题。 ②两个步骤、一个结论缺一不可否则结论不能成立。 ③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。 五、课后反思 ? 通过一个生活事例和一个课本公式的比较,引导学生讨论,促使学生主动思维。? 通过本节课的教学也使学生掌握递推原理,提高学生的逻辑思维和推理能力。? 本节课的结构可以,对学生的学法指导不错,让学生清楚学习数学归纳法的用途,指明的方向。 对数学归纳法的解题步骤可再介绍具体一点

强大导数知识点各种题型归纳方法总结

导数的定义: 1.(1).函数y = f (x)在x =x °处的导数:f '(X 。)=y'|xm=怛口x ° %x) - f ( x °) 函数八f(x)的导数:f '(x) = y' = 1巩f (x 冈- f (x) 2?利用定义求导数的步骤 ①求函数的增量:.沖二f (X 。? Ax) - f(x 。):②求平均变化率:竺二f(x 。 :x )- f (X 0) L X L X ③取极限得导数:f '(x 。)二lim y 3 A x (下面内容必记) 导数的运算: (1) 基本初等函数的导数公式及常用导数运算公式 : m m i ① C ,O(C 为常数):②(x n )'= nx n ,;(丄)、(x 』)’一 nx 』」;(n x m )' =(x\' = m x_ x n ③(sinx)'=cosx ;④(cosx)' - -sin x ⑤(e x )'=e x ⑥(a x )'=a x |na(a 0,且a = 1); 1 1 ⑦(ln x)' ; ⑧(log a x)' (a 0,且 a =1) x xln a 法则1: [f(x) _g(x)]' = f '(x) _g'(x) ; (口诀:和与差的导数等于导数的和与差 ). 法则2: [f(x) g(x)]^ f '(x) g(x) f (x) g'(x)(口诀:前导后不导相乘,后导前不导相乘,中间是正号) 法则3: [f 阳」(X)嵌)二 2(X ) g '(X )(g(x)=0) g(x) [g(x)] (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号) (2)复合函数y 二f (g(x))的导数求法: ①换元,令u =g(x),则y = f(u)②分别求导再相乘y'=〔g(x) 】'」f (u)】'③回代u =g(x) 题型一、导数定义的理解 题型二:导数运算 1、已知 f x = x 2 ? 2x - sin 二,贝U f 0 二 __________ 1. 求瞬时速度:物体在时刻t 0时的瞬时速度 V 就是物体运动规律 即有 V ° 。 2. V = s /(t)表示即时速度。a=v /(t)表示加速度。 四. 导数的几何意义: 函数f x 在X 0处导数的几何意义,曲线y = f x 在点P x 0, f x °处切线的斜率是k =「x 0 。于是相应的切 线方程是:y - y ° = f X 0 x -x ° 。 题型三.用导数求曲线的切线 注意两种情况: (1 )曲线y 二f x 在点PX o ,fX o 处切线:性质:k 切线=f X o 。相应的切线方程是: y -y 。二 f X 。x -x 。 (2)曲线y = f x 过点P X o ,y 。处切线:先设切点,切点为Q(a,b),则斜率k= f'(a),切点Q(a,b)在曲线 y =f x 上,切点Q(a,b)在切线y-y o =「a x-x 。上,切点Q(a,b)坐标代入方程得关于 a,b 的方程组,解方 程组来确定切点,最后求斜率k= f'(a),确定切线方 程。 例题在曲线y=x 3+3x 2+6x-10的切线中,求斜率最小的切线方程; 解析:(1)k =y'|x 2。=3x 02 ? 6x 0 ?6=3(x 0 1)2 3 当 x o =-1 时,k 有最小值 3, 导数的基础知识 ⑵. A 10 B 13 三?导数的物理意义 C - 1 6 D.19 S 二f t 在t “0时的导数「t ° ,

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

最新高三数学知识点总结

最新高三数学知识点总结 精品学习高中频道为各位同学整理了高三数学知识点总结,供大家参考学习。更多各科知识点请关注新查字典数学网高中频道。 1. 对于集合,一定要抓住集合的代表元素,及元素的确定性、互异性、无序性。 中元素各表示什么? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 3. 注意下列性质: (3)德摩根定律: 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f:AB,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)

9. 求函数的定义域有哪些常见类型? 10. 如何求复合函数的定义域? 义域是_____________。 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (①反解x;②互换x、y;③注明定义域) 13. 反函数的性质有哪些? ①互为反函数的图象关于直线y=x对称; ②保存了原来函数的单调性、奇函数性; 14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性? 15. 如何利用导数判断函数的单调性? 值是( ) A. 0B. 1C. 2D. 3 a的最大值为3) 16. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 注意如下结论:

数学归纳法经典练习及解答过程

数学归纳法经典练习及 解答过程 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第七节数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. [自测练习] 1.已知f(n)=1 n + 1 n+1 + 1 n+2 +…+ 1 n2 ,则( ) A.f(n)中共有n项,当n=2时,f(2)=1 2 + 1 3 B.f(n)中共有n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 C.f(n)中共有n2-n项,当n=2时,f(2)=1 2 + 1 3 D.f(n)中共有n2-n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 解析:从n到n2共有n2-n+1个数,所以f(n)中共有n2-n+1项,且f(2)=1 2 + 1 3 + 1 4 ,故选D. 答案:D

2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1 n +1 = 2? ???? 1n +2+1n +4 +…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2) 解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B. 答案:B 考点一 用数学归纳法证明等式| 求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). [证明] (1)当n =1时,等式左边=2,右边=21·1=2,∴等式成立. (2)假设当n =k (k ∈N *)时,等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1). 当n =k +1时,左边=(k +2)(k +3)·…·2k ·(2k +1)(2k +2) =2·(k +1)(k +2)(k +3)·…·(k +k )·(2k +1) =2·2k ·1·3·5·…·(2k -1)·(2k +1) =2k +1·1·3·5·…·(2k -1)(2k +1). 这就是说当n =k +1时,等式成立. 根据(1),(2)知,对n ∈N *,原等式成立. 1.用数学归纳法证明下面的等式: 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n ?n +1? 2 . 证明:(1)当n =1时,左边=12=1, 右边=(-1)0 ·1×?1+1? 2 =1, ∴原等式成立. (2)假设n =k (k ∈N *,k ≥1)时,等式成立,

(完整版)高中数学不等式知识点总结

选修4--5知识点 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b +≥()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”. ③(三个正数的算术—几何平均不等式) 3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).

④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

归纳段落大意之绝招

如何归纳段落大意 一. 摘句归纳法。 1.在文章中,有一些句子高度概括了全段的主要容,比如首句、尾句或中心句等,我们可以直接将其摘出,作为段意。 如《威尼斯的小艇》的第二段有总起句“船夫的驾驶技术特别好。”可以作这段的段意。2. 摘过渡句过渡句有承接上文、引起下文的作用。承上句是上段的段意,启下句为下一段的段意。 如《伟大的友谊》中,“在生活上恩格斯热忱地帮助马克思;更重要的是在共产主义事业上,他们互相关怀,互相帮助,亲密合作。”这一过渡句,第一分句是上段段意,第二分句可做下段段意。 二. 缩句归纳法。 有些段落句子不多但很长,通过修改,增删一些文字,就会成为该段的段意,此法称之为加减法。 三. 合并归纳法。 有些自然段可划分为几层意思,而且层与层之间是并列关系,我们在概括段意时,就可以先概括每层的意思,然后把层意进行合并归纳整理,作为一整段的意思。 如《太阳》(说明文)第一段中三节分别写了太阳远、大、热三个特点,所以段意可串连为:太阳离我们很远,它很大、很热。 四. 取舍归纳法。 有些段落层次意义较多时,可以先理清层次,然后采用取果舍因或取主舍次的方法来概括段意。归纳段意,一定要抓住每段的主要意思,选准角度,语言要明确、完整、简洁。为了做到这点,可指导学生用“去旁枝,抓主干”的方法进行归纳。 五. 概括归纳法 有些文章容结构比较复杂,不适宜运用以上方法,这就必须认真地把文章读透,然后看这一段写了几个意思,然后整理、精简为一个完整的句子,作为段意。即文中没有明显句子可以用来概括段意时,可以这样来整理:“谁?干什么?”或“谁?怎么样?” 如《给颜黎明的信》第一段分三层来写:(1)不要只看一个人的信;(2)不要只看文学书;(3)可以看世界旅行记和有益的电影。这三层都是围绕怎样读书写的,所以段意可归纳为:鲁迅谈怎样读书。 概括段意时,一定要在把握全段或全文中心的基础上进行,做到围绕中心,注意连贯。概括段意后,同学们应回过头来看看:几段的段意是否与全篇相称,概括的角度选得是否一致,概括的重点是否恰当。

归纳法和演绎法的优势和劣势

Advantages and disadvantages of the deductive and inductive grammar teaching methods The deductive approach of teaching: The deductive approach of teaching English grammar refers to the style of teaching students by introducing the grammatical rules first. and then applying them by the students . This means that a teacher works from the more general to the more specific in a deductive approach called informally a " top down”approach. The deductive methods seem to work best if you want students to be able to quickly and accurately solve problems like those worked out in class or in the work.The deductive approach is more predictable because the teacher selects the information and the sequence of presentation.The deductive approach clarifying that the problem many students have applying these various rules indicates that they may not fully understand the concepts involved and that the deductive approach tends to emphasize grammar at the expense of meaning and to promote passive rather than active participation of the students . The inductive approach of teaching: The approach refers to the style of introducing language context containing the target rules where students can induce such rules through the context and practical examples.in other words . the sequence in this approach goes from creating a situation and giving examples to the generalization where students should discover such generalization by themselves or with the teacher ' s help. Teachers show their students a series of examples and non - examples , and then guide them toward noticing a pattern and coming up with the generalization or concept rule.The inductive approach was difficult for weaker or slower students , and that only brighter students were capable of discovering the underlying patterns of a structure. Comparison : the deductive and inductive approaches Teacher ' approaches of teaching English grammar play an important role in classrooms where students should understand what they are taught and how to use it correctly here , we are interested in the deductive and inductive approaches . this interest leads us to review some previous studies which compared between the two of them , or focused on their advantages and disadvantages.

高中数学专题复习数学归纳法的解题应用知识点例题精讲

数学归纳法的解题运用 【高考能力要求】 数学归纳法是证明与自然数有关的问题,在近年的高考题中,一般不作单独的考题,而是以应用为主,且常与数列、函数、不等式、导数等结合起来进行考查,主要考查归纳、猜想、证明的数学思想方法,若出现在押轴题中则往往难度较大,分值为7分左右。涉及的主要解题方法是先求出它的前几项,找出其规律、归纳出其共有形式(如问题的一般规律、结构特征等),才能作出正确的猜想,然后用数学归纳法加以证明.其解题模式是:归纳?猜想?证明。在用数学归纳法证明时,要注意正确掌握数学归纳法原理和证明步骤,特别在证明不等式时要注意结合不等式证明的放缩法、分析法等方法。 【例题精讲】 【例1】已知函数)(x f 满足1)1(),0,,()()(=≠∈+=f b R b a b x af x xf ,且使 x x f =)(成立的实数x 是唯一的。 (1) 求函数)(x f 的解析式、定义域、值域; (2) 如果数列{}n a 的前n 项和为n S ,且12) (++= n a f n S n n ,试求此数列的通项公式。 分析:(1)由1)1(=f 及x x f =)(有唯一解建立关于b a ,的方程组,解出b a ,即可;(2)利用n n n S S a -=++11将已知条件转化为1+n a 与n a 的递推关系式,从而猜想出 n a 的表达式并用数学归纳法加以证明。 解:(1)a x b x f -= )(,∵ b a f =-?=11)1( ① 由x x f =)(得 02=--b ax x 有唯一解,∴ 042=+=?b b ② 由①②得 1,2-==b a ,∴x x f -= 21 )(,其定义域为{}2|≠x x ,值域为{}0|≠y y

数学归纳法的应用

数学归纳法的应用 姓名 甘国优 指导教师 赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛.本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力. 关键词:数学归纳法;步骤;证明方法. Abstract: Mathematical induction is a common evidence method in mathematics, it is have very broad application. In this paper, author research into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz the method of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application . Key words :Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法.我们在学习运用数学归纳法应具备两个条件:①当1n =时,这个命题为正确的(奠基),②当n k =时,这个命题也为正确的.推出当+1n k =时,这个命题也为正确的(递推).通过“递推”链接,实现从特殊到一般的转化,抽象的进行数学归纳.首先

年终工作总结归纳方法

年终工作总结归纳方法 1.基本情况 这是对本身情况和工作情况的简单介绍。本身情况包括单位名称、工作性质、基本建制、人员数量、主要工作任务等;工作情况包括国一年中的主要工作,完成了哪些项目方案,办理了哪些事物等。 2.成绩和做法 工作获得了哪些主要成绩,采取了哪些方法、措施,收到了什么效果等,这些是工作的主要内容,需要较多事实和数据。 3.经验和教训 通过对实践过程进行认真的分析,找出经验教训,发现规律性的东西,使感性认识上升到理性认识。 4.今后打算 下一步将怎样发扬成绩、纠正错误,准备获得什么样的新成就,没必要像计划那样详细,但一般不能少了这些内容。 这些基本内容需要整理出来,然后把他们归纳,这样我们就有足够东西来写,不会不知道写什么了。 准备好了内容,我们就成功了一半了,下面的工作就是把它完整而且漂亮的写出来。 一、题目 题目并没有太多新意,一般都是:“某人**年工作总结归纳”或“某部门某人**年工作总结归纳”。虽没有发挥的余地,但一定要写

全面。 二、开头 俗话说“好的开始是成功的一半”,写好一篇总结归纳的开头是必须的。开头一般简明扼要地概述基本情况,交代背景,点明主旨或说明成绩,为主体内容的展开做须要的铺垫。 三、正文 这是你要写的这篇年终工作总结归纳的核心部分,其内容可以包括工作内容和领会,成绩和问习题,经验和教训等。全面的去总结归纳过去一年工作中的成绩和问习题,或者经验和教训。总之,内容要饱满,思路要清晰,工作要罗列,成绩要凸显。把你之前准备的内容全都写进去吧! 四、结尾 结尾的方式可以是在总结归纳经验教训的基础上,提出今后努力方向,或认识自己的不足,提出改良意见,也可以表明决心、展望前景等等。 这样一篇年终工作总结归纳就轻松完成了,很简单吧。不过还有几点在写年终工作总结归纳时候的注意事项介绍给大家: ⑴总结归纳工作要真实,这一年做了什么工作就写什么,干的好,上级会知道,但是假如虚报,下级或者同级会知道,群众的眼睛是雪亮的。所以切记误报工作。 ⑵不要避重就轻。中国人都好面子,喜欢好大喜功,对成绩大肆宣传,对过错就闭口不提。

归纳法与演绎法的区别与联系

浅谈归纳法与演绎法的区别与联系 一、归纳法与演绎法的基本概念及应用实例 归纳法或归纳推理,有时叫做归纳逻辑,是根据对某类事务中具有代表性的部分对象及其属性之间必然联系的认识,得出一般性结论的方法。归纳法论证的前提支持结论但不确保结论必然正确,它把特性或关系归结到基于对特殊的代表的有限观察的类型;或公式表达基于对反复再现的现象的模式的有限观察的规律。 应用实例:明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字.这则笑话中财主的儿子得出"四就是四横、五就是五横……"的结论,用的就是"归纳法",不过,这个归纳推出的结论显然是错误的。下面还有一个例子“公鸡归纳法”——某主妇养小鸡十只,公母各半。她预备将母鸡养大留着生蛋,公鸡则养到一百天就陆续杀以佐餐。天天早晨她拿米喂鸡。到第一百天的早晨,其中的一只公鸡正在想:“第一天早晨有米吃,第二天早晨有米吃,……第九十九天早晨有米吃,所以今天,第一百天的早晨,一定有米吃。”这时,该主妇来了,正好把这只公鸡抓去杀了。这只公鸡在第一百天的早晨不但没有吃着米,反而被杀了,虽然它已有九十九天吃米的经验,但不能证明第一百天一定有米吃。 演绎是从一般性知识引出个别性知识,即从一般性前提得出特殊性结论的过程。演绎推理的前提与结论之间存在着必然联系,只要推理的前提正确,推理的形式合乎逻辑,则推出的结论也必然正确。所以运用演绎推理,作者所根据的一般原理即大前提必须正确,而且要和结论有必然的联系,不能有丝毫的牵强或脱节,否则会使人对结论的正确性产生怀疑。 应用实例:毛泽东在《为人民服务》一文中有一段著名的论述:“人总是要死的,但死的意义有不同。中国古时候有个文学家叫做司马迁的说过:‘人固有一死,或重于泰山,或轻于鸿毛。’为人民利益而死,就比泰山还重;替法西斯卖力,替剥削人民和压迫人民的人去死,就比鸿毛还轻。张思德同志是为人民利益而死的,他的死是泰山还要重的。”这段话中就包含着一个完整的演绎论证。“为人民利益而死,就比泰山还重”,是普遍性原理,是论据,是“大前提”;“张思德同志是为人民利益而死的”,是已知的判断,是“小前提”;而“他的死是比泰山还重的”则是结论,也是论点。 二、归纳法与演绎法的区别

相关文档