文档库 最新最全的文档下载
当前位置:文档库 › 雷达信号重频分选方法分析与讨论

雷达信号重频分选方法分析与讨论

雷达信号重频分选方法分析与讨论
雷达信号重频分选方法分析与讨论

龙源期刊网 https://www.wendangku.net/doc/868257765.html,

雷达信号重频分选方法分析与讨论

作者:刘钊宏于林韬任帅

来源:《科技资讯》2014年第24期

摘要:雷达信号分选作为高科技战争中至关重要的组成部分,同时也是电子对抗环境中

不可或缺的关键技术。面对雷达体制的日益多样化,雷达信号变得更加复杂。如何实现雷达信号的正确分选已经成为国内外关注的焦点。本文分析与讨论了几种主要的雷达信号重频分选方法,并进行了matlab仿真实验。

关键词:雷达信号分选脉冲重复间隔动态扩展关联直方图 PRI变换

中图分类号:TN911 文献标识码:A 文章编号:1672-3791(2014)08(c)-0027-02

雷达信号分选是侦测系统不可或缺的技术,它能从大量脉冲信号流中分选出需要的信号,其实质是对脉冲串的去交叠、去交错过程。雷达信号分选主要利用到达时间(TOA)、到达方位角(DOA)、载频(RF)、脉宽(PW)、脉冲幅度(PA)等参数编码成的脉冲描述字(PDW)进行分选。TOA是主要的分选参数,它能提取出脉冲重复间隔(PRI),进而实现脉冲序列的去交错处理。基于PRI的重频分选算法主要有动态扩展关联法、累积差直方图法(CDIF)、序列差直方图法(SDIF)、和PRI变换法。

1 动态扩展关联法

基本思想是准PRI由两个脉冲之间的间隔确定,然后用这个准PRI在脉冲群里向前或者向后搜索下一个脉冲。步骤如下。

(1)形成准PRI。

通常选择第一个脉冲为基准脉冲,第二个脉冲为参考脉冲。当这两个脉冲的到达时间差(DTOA)介于雷达PRImin与PRImax之间时,则以此DTOA作为准PRI;当DTOA小于PRImin时,则另选参考脉冲;当DTOA大于PRImax时,则另选基准脉冲和参考脉冲。

(2)分选脉冲序列。

根据TOA测量误差等因素,确定PRI容差,以准PRI向前(或向后)进行扩展关联,如果能搜索到若干个脉冲(大于等于成功分选所需要的脉冲数),则认为分选出一个脉冲列,并继续分选出剩余脉冲。

(3)提取准雷达脉冲列。

准雷达脉冲列由成功分选出来的脉冲列构成,以备后续处理。

雷达信号matlab仿真

雷达信号matlab仿真

雷达系统分析大作 作 者: 陈雪娣 学号:0410420727 1. 最大不模糊距离: ,max 1252u r C R km f == 距离分辨率: 1502m c R m B ?= = 2. 天线有效面积: 22 0.07164e G A m λπ == 半功率波束宽度: 3 6.44o db G θπ == 3. 模糊函数的一般表示式为 () ()()2 2* 2 ;? ∞ ∞ -+= dt e t s t s f d f j d πττχ 对于线性调频信号 ()21 j t p p t s t ct e T T πμ??= ? ??? 则有: ()()2 21 ;Re Re p j t T j t d p p p t t f ct ct e e dt T T T πμπμτ χτ∞+-∞????+= ? ? ? ????? ? () ()()sin 1;11d p p d p d p p f T T f T f T T τπμττχττπμτ????+- ? ? ? ???????=- ? ?????+- ? ? ? ? 分别令0,0==d f τ可得()()2 2 0;,;0τχχd f ()() sin 0;d p d d p f T f f T πχπ=

()sin 1 ;01 1p p p p p T T T T T τπμττχττπμτ?? ??- ? ? ? ???????=- ? ?????- ? ?? ? 程序代码见附录1的T_3.m, 仿真结果如下:

4. 程序代码见附录1的T_4.m, 仿真结果如下:

雷达信号重频分选方法分析与讨论

龙源期刊网 https://www.wendangku.net/doc/868257765.html, 雷达信号重频分选方法分析与讨论 作者:刘钊宏于林韬任帅 来源:《科技资讯》2014年第24期 摘要:雷达信号分选作为高科技战争中至关重要的组成部分,同时也是电子对抗环境中 不可或缺的关键技术。面对雷达体制的日益多样化,雷达信号变得更加复杂。如何实现雷达信号的正确分选已经成为国内外关注的焦点。本文分析与讨论了几种主要的雷达信号重频分选方法,并进行了matlab仿真实验。 关键词:雷达信号分选脉冲重复间隔动态扩展关联直方图 PRI变换 中图分类号:TN911 文献标识码:A 文章编号:1672-3791(2014)08(c)-0027-02 雷达信号分选是侦测系统不可或缺的技术,它能从大量脉冲信号流中分选出需要的信号,其实质是对脉冲串的去交叠、去交错过程。雷达信号分选主要利用到达时间(TOA)、到达方位角(DOA)、载频(RF)、脉宽(PW)、脉冲幅度(PA)等参数编码成的脉冲描述字(PDW)进行分选。TOA是主要的分选参数,它能提取出脉冲重复间隔(PRI),进而实现脉冲序列的去交错处理。基于PRI的重频分选算法主要有动态扩展关联法、累积差直方图法(CDIF)、序列差直方图法(SDIF)、和PRI变换法。 1 动态扩展关联法 基本思想是准PRI由两个脉冲之间的间隔确定,然后用这个准PRI在脉冲群里向前或者向后搜索下一个脉冲。步骤如下。 (1)形成准PRI。 通常选择第一个脉冲为基准脉冲,第二个脉冲为参考脉冲。当这两个脉冲的到达时间差(DTOA)介于雷达PRImin与PRImax之间时,则以此DTOA作为准PRI;当DTOA小于PRImin时,则另选参考脉冲;当DTOA大于PRImax时,则另选基准脉冲和参考脉冲。 (2)分选脉冲序列。 根据TOA测量误差等因素,确定PRI容差,以准PRI向前(或向后)进行扩展关联,如果能搜索到若干个脉冲(大于等于成功分选所需要的脉冲数),则认为分选出一个脉冲列,并继续分选出剩余脉冲。 (3)提取准雷达脉冲列。 准雷达脉冲列由成功分选出来的脉冲列构成,以备后续处理。

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 西安电子科技大学

一、 雷达工作原理 雷达,是英文Radar 的音译,源于radio detection and ranging 的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、 线性调频(LFM )信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。 LFM 信号的数学表达式: (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: (2.2)

一种复杂电磁环境下雷达信号综合分选方法

一种复杂电磁环境下雷达信号综合分选方法 0 引言 雷达脉冲信号分选是雷达对抗侦察系统的关键技术之一,是指从随机交叠的脉冲信号流中分离出各个雷达的脉冲信号并选出有用信号的过程。当前的分选算法主要基于分析截获信号的各种常规参数,例如到达时间、到达角、载频、脉宽等。其中利用到达时间的信号分选即PRI 分选在预分析完成后进行,是最终的分选,也是必不可少的分选。本文将介绍序列差直方图分选算法和改进的PRI 变换算法分选,重点分析由SDIF 和改进的PRI 变换相结合的信号分选算法。 1雷达信号的PRI 特征及其描述 雷达信号的PRI 参数是指同一部雷达相邻脉冲之间的时间间隔序列。一部雷达可能具有几种,甚至几十种工作样式和工作参数。PRI 是其中工作样式最多、参数范围最大、变化最快的参数。即使是同一型号的雷达,由于发射机硬件电路的原因,其PRI 也存在微小的变化。下图分别示出了其中固定PRI 、参差PRI 、抖动PRI 、参差抖动PRI 到达脉冲序列的波形。 图1典型雷达信号PRI 特征 其中T 是非变的固定常数,n 为周期参差数,T 1…Tn 为n 个确定性的常数, 每经过n 个脉冲,各PRI 值循环变化一次。n δ一般为在区间[-T ,T]对称分布的随机序列。 2几种常见PRI 估计算法 目前利用脉冲到达时间(TOA)来估计脉冲重复间隔已提出了多种算法。这些算法都是以计算脉冲序列的自相关函数为基础。下面简要介绍累计差值直方图

法、序列差值直方图法、改进的PRI 变化法这三种算法,重点分析由SDIF 和改进的PRI 变换相结合的信号分选算法。 2.1累计差值直方图法 累计差值直方图法(CDIF 算法)是基于周期信号脉冲时间相关原理的得一种去交错算法。它是将TOA 差值直方图法和序列搜索法相结合起来的一种方法。首先通过累积各级差值直方图来估计原始脉冲序列中可能存在的PRI ,然后以此PIU 来进行序列搜索。包括直方图估计和序列搜索两个步骤。首先计算TOA 差值,形成第一级差值直方图,然后从最小的脉冲间隔起,将第一级差值直方图中的每个间隔直方图值以及二倍间隔直方图值与门限比较。CDIF 算法的检测门限为: max() ()i T t D x ττ= (1) 其中为PRI 的估计值,x 可根据实际情况调节,一般取x ﹤1,i t 为脉冲到达时 间。 假如两个直方图值超过门限,则以该间隔作为PRI 值进行序列搜索。如果搜索成功,将此PRI 序列从采样脉冲序列中扣除,并且对剩余序列重新开始计算新的差值直方图,重复此过程直到没有足够的脉冲形成脉冲序列;如果搜索不成功,则以本级差值直方图的下一符合条件的脉冲间隔作为PRI 进行搜索;假如本级差值直方图中没有符合条件的脉冲间隔值,则计算下一级差值直方图值。虽然CDIF 算法有较大改进,但仍有不少问题。由于发射机电路的不稳定性造成PRI 的随机抖动,可能导致CDIF 算法的严重错误。一方面可使直方图PRI 峰值减小低于门限,无法搜索序列;另一方面,即使超过门限,也需要大容差来检测序列,使得其它信号有可能被错误的分选出来。在脉冲大量丢失时,将检测PRI 的子谐波,而PRI 反而没有被检测出来,造成分离出虚假序列。另外CDIF 算法需要将直方图中每个间隔PRI 的直方图值以及二倍间隔的直方图值与门限比较,若都超过门限,才进行序列搜索。这是针对二次谐波存在的情形。即存在足够数目的相邻间隔为PRI 的三个脉冲序列,而不是只存在足够数目的间隔为PRI 的两个脉冲序列。而解决此问题可在序列搜索中用三脉冲搜索的方法解决。这样做将耗费大量时间,因此提出了序列差值直方图法(SDIF)。 2.2序列差值直方图法(SDIF) 序列差值直方图算法是源于累计差值直方图算法的,也是由PRI 的估计和序列搜索两部分组成。不同的是SDIF 算法针对CDIF 算法存在的问题作了一些改进。 l)取消两倍脉冲间隔的直方图值与门限比较,节省了约一半的时间。 2)在计算第一级SDIF 时,若只有一个值超过门限,则用该值进行序列搜索,

雷达系统中的信号处理技术

雷达系统中的信号处理技术 摘要本文介绍了雷达系统及雷达系统信号处理的主要内容,着重介绍与分析了雷达系统信号处理的正交采样、脉冲压缩、MTD和恒虚警检测几种现代雷达技术,雷达系统通过脉冲压缩解决解决雷达作用距离和距离分辨力之间的矛盾,通过MTD来探测动目标,通过恒虚警(CFAR)来实现整个系统对目标的检测。 关键词雷达系统正交采样脉冲压缩MTD 恒虚警检测 1雷达系统概述 雷达是Radar(Radio Detection And Ranging)的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。雷达的任务就是测量目标的距离、方位和仰角,还包括目标的速度,以及从目标回波中获取更多有关目标的信息。典型的雷达系统如图1,它主要由雷达发射机、天线、雷达接收机、收发转换开关、信号处理机、数据处理机、终端显示等设备组成。 图1雷达系统框图

随着现代电子技术的不断发展,特别是数字信号处理技术、超大规模集成数字电路技术、计算机技术和通信技术的告诉发展,现代雷达信号处理技术正在向着算法更先进、更快速、处理容量更大和算法硬件化方向飞速发展,可以对目标回波与各种干扰、噪声的混叠信号进行有效的加工处理,最大程度低剔除无用信号,而且在一定的条件下,保证以最大发现概率发现目标和提取目标的有用信息。 雷达发射机产生符合要求的雷达波形,然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由雷达接收机接收,然后对雷达回波信号依次进行信号处理、数据处理,就可以获知目标的相关信息。 雷达信号处理的流程如下: 图 2 雷达信号处理流程 2雷达信号处理的主要内容 雷达信号处理是雷达系统的主要组成部分。信号处理消除不需要的杂波,通过所需要的目标信号,并提取目标信息。内容包括雷达信号处理的几个主要部分:正交采样、脉冲压缩、MTD和恒虚警检测。 正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务。采样的速率和精度是需要考虑的首要问题,采样系统引起的失真应当被限定在后续信号处理任务所要求的误差范围内,直接中频数字正交采样是当代雷达的主要技术之一。脉冲压缩技术在现代雷达系统中得到了广泛的应用。脉冲压缩雷达既能保持窄脉冲雷达的高距离分辨力,又能获得脉冲雷达的高检测力,并且抗干扰能力强。现在,脉冲压缩雷达使用的波形正在从单一的线性调频发展到时间、频率、编码混合调制,在尽可能不增加整机复杂度的条件下实现雷达性能的提升。杂波抑制是雷达需要具备的重要功能之一。动目标指示与检测是通过回波多普勒频移的不同来区分动目标和固定目标,通过设计合理的滤波器(组),就可以把目标号和杂波分开。

雷达信号处理基本流程

基本雷达信号处理流程 一、脉冲压缩 窄带(或某些中等带宽)的匹配滤波: 相关处理,用FFT 数字化执行,即快速卷积处理,可以在基带实现(脉冲压缩) 快速卷积,频域的匹配滤波 脉宽越小,带宽越宽,距离分辨率越高 ; 脉宽越大,带宽越窄,雷达能量越小,探测距离越近; D=BT (时宽带宽积); 脉压流程: 频域:回波谱和参考函数共轭相乘 时域:相关 即输入信号的FFT 乘上参考信号FFT 的共轭再逆FFT ; Sc=ifft(fft(Sb).*conj(fft(S))); FFT 输入信号 共轭相乘逆FFT 参考信号的FFT 匹配滤波器 输出 Task1 f0=10e9;%载频tp=10e-6;%脉冲宽度B=10e6;%信号带宽fs=100e6;%采样率 R0=3000;%目标初始距离N=4096;c=3e8;tau=2*R0/c;beita=B/tp;t=(0:N-1)/fs; Sb=rectpuls(t-tp/2-tau,tp).*exp(j*pi*beita*(t-tp/2-tau).^2).*exp(-2j*pi*f0*tau);%回波信号 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910 x 10 7 20 40 60 80 100 120

S=rectpuls(t-tp/2,tp).*exp(i*pi*beita*(t-tp/2).^2);%发射信号(参考信号) 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910x 10 7 20 40 60 80 100 120 So=ifft(fft(Sb).*conj(fft(S)));%脉压 figure(7); plot(t*c/2,db(abs(So)/max(So)))%归一化dB grid on 01000200030004000500060007000 -400 -350-300-250-200-150-100-500

信号分析与处理

信号分析与处理 第一章绪论:测试信号分析与处理的主要内容、应用;信号的分类,信号分析与信号处理、测试信号的描述,信号与系统。 测试技术的目的是信息获取、处理和利用。 测试过程是针对被测对象的特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定的目的对信号进行分析和处理,从而探明被测对象内在规律的过程。 信号分析与处理是测试技术的重要研究内容。 信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术。 一切物体运动和状态的变化,都是一种信号,传递不同的信息。 信号常常表示为时间的函数,函数表示和图形表示信号。 信号是信息的载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息。 信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号; 周期信号无穷的含义,连续信号、模拟信号、量化信号,抽样信号、数字信号 在频域里进行信号的频谱分析是信号分析中一种最基本的方法:将频率作为信号的自变量,在频域里进行信号的频谱分析; 信号分析是研究信号本身的特征,信号处理是对信号进行某种运算。 信号处理包括时域处理和频域处理。时域处理中最典型的是波形分析,滤波是信号分析中的重要研究内容; 测试信号是指被测对象的运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述。 常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)离散序列用图形、数列表示,常见序列单位抽样序列、单位阶跃序列、斜变序列、正弦序列、复指数序列。 系统是指由一些相互联系、相互制约的事物组成的具有某种功能的整体。被测系统和测试系统统称为系统。输入信号和输出信号统称为测试信号。系统分为连续时间系统和离散时间系统。

雷达信号分析(第1章)

雷达信号分析Radar Signal Analysis 张劲东 南京航空航天大学电子信息工程学院 信息与通信工程系雷达探测与信号处理实验室Email: zhangjd@https://www.wendangku.net/doc/868257765.html,

第1章引言 ?什么是雷达信号,雷达信号的特点,与通信信号的区别 ?雷达信号理论的地位和作用 ?课程的目标和内容 ?课程的要求 ?进一步学习的途径

9雷达信号: 雷达发射机所发出的信号,它不包含任何信息。当雷达发射的信号碰到目标后,目标就对这个信号进行调制,并反射(这个反射信号通常称为回波),此时目标的全部信息就蕴藏在这个回波中,对它进行处理就可以提取目标的信息。可提取的信息和信息的质量除与处理系统有关外就与雷达发射信号的形式有直接关系。因此,研究和分析雷达信号是很重要的。

9雷达信号的特点: ?电磁频段:L、S、C、X和Ku ?功能:目的、天线、提取目标信息、二次散射信号、检测前信噪比 ?功率:辐射功率变化范围大 ?信号波形:脉冲、连续波、准连续波?信号带宽:范围很大

9通信信号的特点 ?电磁频段:HF、VHF和UHF ?功能:目的、全向天线、不失真传输、一次散射信号、所携带信息 ?功率:功率较小 ?信号波形:连续波、间断连续波 ?信号带宽:较窄

Information from Radar Signal: ?分辨力(Resolution) ?精度(Accuracy/error@ SNR/SIR/SCR)?抗杂波/干扰能力(Anti-clutter/jamming)?信号(信息)处理方法(SP Method) 雷达性能的理论分析(Performance Analysis)

信号分析方法总结

信号分析方法总结 随机信号:不能用明确的数学表达式来表示,它反映的通常是一个随机过程,只能用概率和统计的方法来描述。 随机现象的单个时间历程称为样本函数。随机现象可能产生的全部样本函数的集合,称为随机过程 振动信号的时域分析方法 时间历程 描述信号随着时间的变化情况。 平均值 ∑=- = N i i x N x 1 1 均方值用来描述信号的平均能量或平均功率 ∑=-= N i i x N x 1 22 1 均方根值(RMS )为均方值的正平方根。是信号幅度最恰当的量度 方差表示信号偏离其均值的程度,是描述数据的动态分量∑=---=N i i x x x N 1 22 )(11σ 斜度α反映随机信号的幅值概率密度函数对于纵坐标的不对称性∑== N i i N x 1 3 1 α 峭度β对大幅值非常敏感。当其概率增加时,β值将迅速增大,有利于探测奇异振动信号 ∑== N i i N x 1 14β 信号的预处理: 1 预滤波 2 零均值化:消除数据中的直流分量 )()()(^n x n x n x - -=。 3 错点剔除:以标准差为基础的野点剔除法 4 消除趋势项

相关分析 1 自相关分析a=xcorr(x) 自相关函数描述一个时刻的信号与另一时刻信号之间的相互关系 工程上利用自相关函数检查混杂在随机噪声中有无周期性信号 2 互相关函数a=xcorr(x,y) 利用互相关函数所提供的延迟信号,可以研究信号传递通道和振源情况,也可以检测隐藏在外界噪声中的信号 振动信号的频域分析方法 1 自功率谱密度函数(自谱) 自功率谱描述了信号的频率结构,反映了振动能量在各个频率上的分布情况,因此在工程上应用十分广泛 2 互功率谱密度函数(互谱) 互谱不像自谱那样具有比较明显的物理意义,但它在频率域描述两个随机过程的相关性是有意义的。 3 频响函数 它是被测系统的动力特性在频域内的表现形式 4 相干函数 表示整个频段内响应和激励之间的相关性)(2 f yx γ=0表示不相干,)(2 f yx γ=1完全相干,即响应完全由激励引起,干扰为零。相干函数可以用来检验频响函数和互谱的测量精度和置信水平,也可以用来识别噪声的声源和非线性程度。一般认为相干值大于0.8时,频响函数的估计结果比较准确可靠。

雷达信号处理及目标识别分析系统方案

雷达信号处理及目标识别分系统方案 西安电子科技大学 雷达信号处理国家重点实验室 二○一○年八月

一 信号处理及目标识别分系统任务和组成 根据雷达系统总体要求,信号处理系统由测高通道目标识别通道组成。它应该在雷达操控台遥控指令和定时信号的操控下完成对接收机送来的中频信号的信号采集,目标检测和识别功能,并输出按距离门重排后的信号检测及识别结果到雷达数据处理系统,系统组成见图1-1。 220v 定时信号 目标指示数据 目标检测结果输出目标识别结果输出 图1-1 信号处理组成框图 二 测高通道信号处理 测高信号处理功能框图见图2-1。 s 图2-1 测高通道信号处理功能框图

接收机通道送来中频回波信号先经A/D 变换器转换成数字信号,再通过正交变换电路使其成为I 和Q 双通道信号,此信号经过脉冲压缩处理,根据不同的工作模式及杂波区所在的距离单元位置进行杂波抑制和反盲速处理,最后经过MTD 和CFAR 处理输出检测结果。 三 识别通道信号处理 识别通道信号处理首先根据雷达目标的运动特征进行初分类,然后再根据目标的回波特性做进一步识别处理。目标识别通道处理功能框图见图3-1所示。 图3-1 识别通道处理功能框图 四 数字正交变换 数字正交变换将模拟中频信号转换为互为正交的I 和Q 两路基带信号,A/D 变换器直接对中频模拟信号采样,通过数字的方法进行移频、滤波和抽取处理获得基带复信号,和模拟的正交变换方法相比,消除了两路A/D 不一致和移频、滤波等模拟电路引起的幅度相对误差和相位正交误差,减少了由于模拟滤波器精度低,稳定性差,两路难以完全一致所引起的镜频分量。 目标识别结果输出

一种密集信号环境下雷达脉冲分选方法

第34卷 第3期 电 子 科 技 大 学 学 报 V ol.34 No.3 2005年6月 Journal of UEST of China Jun. 2005 一种密集信号环境下雷达脉冲分选方法 魏 娟1 ,杨万麟1,植 强2,王松煜2 (1. 电子科技大学电子工程学院 成都 610054; 2. 中国电子科技集团第二十九研究所 成都 610036) 【摘要】针对电子战所面临的高密度,占空比大,脉冲重叠丢失率高的信号环境,构建了一个实时的脉冲信号预分选系统,改进了基于概率统计的分选算法,并提出一个剔除TOA 倍数及加和关系的算法,通过试验证明了该系统和算法的可行性。通过硬件电路进行了具体实现,该系统能实时的对雷达脉冲序列进行分选,并在密集的信号环境下具有良好的分选正确率。 关 键 词 信号分选; 到达时间; 关联比较器; 去交错 中图分类号 TB114.3 文献标识码 A A Signal Sorting Algorithm for Radar Pulses in High Pulse-Density Environment WEI Juan 1,YANG Wan-lin 1,ZHI Qiang 2,WANG Song-yu 2 (1. School of Electronic Engineering, UEST of China Chengdu 610054; 2. China Electronics Technology Group Corporation No.29 Research Institute Chengdu 610036) Abstract A real-time signal sorting system and an improved sorting algorithm based on the probability statistics is introduced. It is for the special radar signal environment of high pulse-density and high pulse-losing probability in electronic warfsre. The feasibility of this sorting system and algorithm is verified through lots of experiments. By designing the hardware circuits, the signal sorting system is realized. It performs well for duplex requirement of high-accuracy and real-time processing in high pulse-density environment. Key words signal sorting; toa; associative comparator; deinterleaving 信号分选的任务是完成雷达脉冲的去交错和提取辐射源的详细特征参数,可用来识别不同雷达的脉冲,也可用于稀释信号密度,减轻后续处理环节的速度压力。寻求处理速度快,正确率高的分选方法是信号分选的宗旨。目前国内外提出的主要方法有:基于脉冲到达时间(TOA)差值直方图和序列搜索相结合的方法;基于神经网络模型的人工智能系统];基于平面变换技术的信号分选等]1[2[[3]。这些方法各有优缺点:直方图方法直观,计算速度快,但在信号密集,丢失概率较高的情况下虚警率较高;神经网络识别性能较好,但事先需要经过大量样本进行迭代训练,在未知辐射源的情况下很难做到实时处理;平面变换技术需要接受同一信号的脉冲数很多,才能在平面显示中利用信号累计显示出特征曲线,但搜索雷达信号分析时,大量脉冲数的条件往往并不满足,所以其在实际中的应用受到限制。因此,基于准确性和实时性的双重要求,本文将构建一个实时分选系统,并针对所面临的信号环境,对基于概率统计的预分选算法进行改进。 收稿日期:2004 ? 8 ? 26 作者简介:魏 娟(1980 ? ),女,硕士生,主要从事数字信号处理方面的研究.

信号分析方法

3.3齿轮及齿轮箱振动信号的分析方法 齿轮及齿轮箱中轴、齿轮和滚动轴承正常运行时,一般其振动信号是平稳信号,信号频率成分有各轴的转动频率和齿轮的啮合频率等,当发生故障,其振动信号频率成分或幅值发生变化,一般有以下三种特征: (1)信号是稳态的,但对应特征频率的幅值发生明显变化,振动能量有较大的变化。这类故障是以齿轮均匀磨损为代表的。 (2)信号是周期平稳信号,出现了有规律的冲击或调制现象。这类故障一般是齿轮或滚动轴承已经发生轻度或较严重的故障。 (3)信号中出现无规律的冲击或调制现象,这类故障一般是齿轮或滚动轴承已经发生严重的故障。 但是并不是说出现调制现象就一定有故障,所以就需要利用振动信号在频域和时域内进行诊断,来达到诊断故障的目的。而振动信号是齿轮故障特征信息的主要载体,目前能够通过各种振动信号传感器、放大器及其它测量仪器很方便地测量出齿轮箱的振动信号,通过各种分析和处理方法提取其故障特征信息。特征分析的结果是否正确、可靠,特征量的选择是否合理,在很大程度上决定了故障诊断的正确性。下面就介绍一些常用的齿轮振动信号常规的分析方法。 3.3.1时域统计特征 时域统计指标根据量纲和无量纲分为两个部分,一部分是常用的有量纲特征值,包括最大值、最小值、峰值、均值、均方值和方差;另一部分称为无量纲的特征分析值,包括方根幅值、平均幅值、均方幅值、峭度、波形指标、峰值指标、脉冲指标和裕度指标。在齿轮箱的状态检测和故障诊断中,要特别注意这两部分指标的综合运用,有量纲特征值一般随着齿轮箱的不同而改变,不同种类和大小的齿轮箱测量得到的有量纲特征值是没有对比性的,有时甚至同种类和大小的齿轮箱在不同工况下测量得到的有量纲特征值也不能直接进行对比。而不同种类和大小的齿轮箱测量得到的无量纲的特征分析值在一定的情况下是可以进行对比的。对于有限长度的离散时间序列1210,,,,-n x x x x ,其有量纲的统计特征值为: 最大值 }max{max i x x = 最小值 }min{min i x x = 峰峰值 min max x x x p p -=- 均值 ∑-==10 1 n i i x N x

南京理工大学电子信息工程课程设计之雷达信号分析处理

附录一——MATLAB信号处理程序 %% 1、准备工作 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% 开始 clc; clear; close all; clear vars; %% 雷达波形参数定义及说明 f1=1e3; % 最低频率 f2=11e3; % 最高频率 B=f2-f1; % 信号带宽 T=1e-2; % 信号扫频时宽(10ms) c=3e8; % 电磁波空间传播速度 f0=(f1+f2)/2; % 雷达工作频率(中心频率)(3kHz) fs=1e5; % 采样率(100kHz) N_signal_T=round(fs*T); % 单周期信号的数据点数 number_of_signal_period=400; % 脉冲信号的周期个数 duty_ratio=0.5; % 信号占空比 T_signal=T/duty_ratio; % 脉冲信号周期 %% 导入AD数据时频分析 [FileName,PathName] = uigetfile('C:\Users\XYB\Desktop\课程设计之雷达信号分析处理\AD数据\USB (3).dat','Select the USB.dat file'); f = fullfile(PathName,filesep,FileName); fid = fopen(f,'r'); data = fscanf(fid,'%x'); fclose(fid); data = data(1:2:end)*256 + data(2:2:end); %将16进制转换为10进制 datsgn = data./1000; %单位换算(mV->V) %转化为有符号数(去直流) datsgn=datsgn-mean(datsgn); %时域波形 figure; plot([0:1/fs:(length(datsgn)-1)/fs],datsgn); xlabel('时间/s') ylabel('振幅/V') title('LFMCW时域波形') %频谱图 N=1024; datfft = (2/N)*fftshift(fft(datsgn(1:N))); nordat = abs(datfft)/max(abs(datfft)); %对信号做FFT并归一化 figure; plot([-length(datfft)/2:(length(datfft)/2- 1)].*(fs/N),20*log10(abs(nordat)));

信号分析方法概述

信号分析方法概述 通信的基础理论就是信号分析的两种方法:1 就是将信号描述成时间的函数,2就是将信号描述成频率的函数。 也有用时域与频率联合起来表示信号的方法。时域、频域两种分析方法提供了不同的角度,它们提供的信息都就是一样,只就是在不同的时候分析起来哪个方便就用哪个。 思考: 原则上时域中只有一个信号波(时域的频率实际上就是开关器件转动速度或时钟循环次数,时域中只有周期的概念),而对应频域(纯数学概念)则有多个频率分量。 人们很容易认识到自己生活在时域与空间域之中(加起来构成了三维空间),所以比较好理解时域的波形(其参数有:符号周期、时钟频率、幅值、相位)、空间域的多径信号也比较好理解。 但数学告诉我们,自己生活在N维空间之中,频域就就是其中一维。时域的信号在频域中会被对应到多个频率中,频域的每个信号有自己的频率、幅值、相位、周期(它们取值不同,可以表示不同的符号,所以频域中每个信号的频率范围就构成了一个传输信道。 时域中波形变换速度越快(上升时间越短),对应频域的频率点越丰富。 所以:OFDM中,IFFT把频域转时域的原因就是:IFFT的输入就是多个频率抽样点(即各子信道的符号),而IFFT之后只有一个波形,其中即OFDM符号,只有一个周期。 时域 时域就是真实世界,就是惟一实际存在的域。因为我们的经历都就是在时域中发展与验证的,已经习惯于事件按时间的先后顺序地发生。而评估数字产品的性能时,通常在时域中进行分析,因为产品的性能最终就就是在时域中测量的。 时钟波形的两个重要参数就是时钟周期与上升时间。 时钟周期就就是时钟循环重复一次的时间间隔,通产用ns度量。时钟频率Fclock,即1秒钟内时钟循环的次数,就是时钟周期Tclock的倒数。 Fclock=1/Tclock

雷达信号处理的MATLAB仿真

11目录 1. 设计的基本骤 (1) 1.1 雷达信号的产生 (1) 1.2 噪声和杂波的产生 (1) 2. 信号处理系统的仿真 (1) 2.1 正交解调模块 (2) 2.2 脉冲压缩模块 (3) 2.3 回波积累模块 (3) 2.4 恒虚警处理(CFAR)模块 (4) 结论 (11)

1 设计的基本骤 雷达是通过发射电磁信号,再从接收信号中检测目标回波来探测目标的。再接收信号中,不但有目标回波,也会有噪声(天地噪声,接收机噪声);地面、海面和气象环境(如云雨)等散射产生的杂波信号;以及各种干扰信号(如工业干扰,广播电磁干扰和人为干扰)等。所以,雷达探测目标是在十分复杂的信号背景下进行的,雷达需要通过信号处理来检测目标,并提取目标的各种信息,如距离、角度、运动速度、目标形状和性质等。 图3-6 设计原理图 2 信号处理系统的仿真 雷达信号处理的目的是消除不需要的信号(如杂波)及干扰,提取或加强由目标所产生的回波信号。雷达信号处理的功能有很多,不同的雷达采用的功能也有所不同,本文是对某脉冲压缩雷达的信号处理部分进行仿真。一个典型的脉冲压缩雷达的信号处理部分主要由A/D 采样、正交解调、脉冲压缩、视频积累、恒虚警处理等功能组成。因此,脉冲压缩雷达信号处理的仿真模型.

2.1 正交解调模块 雷达中频信号在进行脉冲压缩之前,需要先转换成零中频的I 、Q 两路正交信号。中频信号可表示为: 0()()c o s (2())IF f t A t f t t π?=+ (3.2) 式(3.2)中, f 0 为载波频率。 令: 00()()cos2()sin 2IF f t I t f t Q t f t ππ=- (3.3) 则 00()()cos2()sin 2IF f t I t f t Q t f t ππ=- (3.4) 在仿真中,所有信号都是用离散时间序列表示的,设采样周期为T ,则中频信号为 f IF (rT ) ,同样,复本振信号采样后的信号为 f local =e xp(?j ω 0rT ) (3.5) 则数字化后的中频信号和复本振信号相乘解调后,通过低通滤波器后得到的基带信号f BB (r ) 为: 1 1 000 {()cos()}(){()sin()}()N N BB IF IF n n f f r n r n T h n j f r n r n T h n ωω--==-----∑∑ (3.6) 式(3.6)中, h (n ) 是积累长度为N 的低通滤波器的脉冲响应。 根据实际的应用,仅仅采用以奈奎斯特采样率进行采样的话,得不到较好混频信号和滤波结果,采样频率f s 一般需要中心频率的4 倍以上才能获得较好的信号的实部和虚部。当采样频率为f s = 4 f 0时,ω0 T = π/2,则基带信号可以简化为 1 1 0(){()cos()}(){()sin()}()22N N BB IF IF n n f r f r n r n h n j f r n r n h n π π --==-----∑∑ (3.7) 使用Matlab 仿真正交解调的步骤: (1) 产生理想线性调频信号y 。 (2) 产生I 、Q 两路本振信号。设f 0为本振信号的中心频率,f s 为采样频率,n 为线性 调频信号时间序列的长度,则I 路本振信号为cos(n2πf 0/f s ),同样,Q 路本振信号sin(n2πf 0/f s )。当f s = 4 f 0 时,I 、Q 两路本信号分别为cos(πn/2)和sin( n π /2)。 (3) 线性调频信号y 和复本振信号相乘,得到I 、Q 两路信号。 (4) I 、Q 两路信号通过低通滤波器,滤除高频分量,以获得最终的检波结果。Matlab

小信号分析法重点笔记

开关电源的反馈环路设计是开关电源设计的一个非常重要的部分,它关系到一个电源性能的好坏。要设计一个好的环路,必须要知道主回路的数学模型,然后根据主回路的数学模型,设计反馈补偿环路。开关电源是一个非线性系统,但可以对其静态工作点附近进行局部线性化,这种方法称为小信号分析法。 以一个CCM模式的BOOST电路为例 其增益为: 其增益曲线为: 其中M和D之间的关系是非线性的。但在其静态工作点M附近很小的一个 区域范围内,占空比的很小的扰动和增益变化量之间的关系是线性的。因此在这个很小的区域范围内,我们可以用线性分析的方法来对系统进行分析。这就是小信号分析的基本思路。 因此要对一个电源进行小信号建模,其步骤也很简单,第一步就是求出其静态工作点,第二步就是叠加扰动,第三步就是分离扰动,进行线性化,第四步就是拉氏变换,得到其频域特性方程,也就是我们说的传递函数。 要对一个变换器进行小信号建模,必须满足三个条件,首先要保证得到的工作点是“静”态的。因此有两个假设条件: 1,一个开关周期内,不含有低频扰动。因此叠加的交流扰动小信号的频率应该

远远小于开关频率。这个假设称为低频假设 2,电路中的状态变量不含有高频开关纹波分量。也就是系统的转折频率要远远小于开关频率。这个假设称为小纹波假设。 其次为了保证这个扰动是在静态工作点附近,因此有第三个假设条件:3,交流小信号的幅值必须远远小于直流分量的幅值。这个称为小信号假设。 对于PWM模式下的开关电源,通常都能满足以上三个假设条件,因此可以使用小信号分析法进行建模。 对于谐振变换器来说,由于谐振变换器含有一个谐振槽路。在一个开关时区或多个开关时区内,谐振槽路中各电量为正弦量,或者其有效成分是正弦量。正弦量的幅值是在大范围变化的,因此在研究PWM型变换器所使用的“小纹波假设”在谐振槽路的小信号建模中不再适用。 对于谐振变换器,通常采用数据采样法或者扩展描述函数法进行建模。 以一个CCM模式下的BUCK电路为例,应用上面的四个步骤,来建立一个小信号模型。对于一个BUCK电路 当开关管开通时,也就是在(0-DTs)区间。其状态方程为 当开关管S断开时,二极管D导通,忽略二极管D的压降,可得到等效电路

信号处理常用方法

信号处理常用方法 对于实时数据采集系统,为了消除干扰信号,通常需要对采集到的数据进行数字滤波,常采用的数字滤波法有以下几种: 一、算术平均滤波法 算术平均滤波法是指对一点数据连续采n个值,然后取其平均值。这种方法能够滤除一般的随机干扰信号,使信号变的平滑,但当n值较大时,灵敏度会降低,故n值要视具体情况进行选取。一般情况下取3~5平均即可。 二、滑动平均滤波法 算术平均滤波法每计算一次数据需要采集n次数据,这对于测量数据较慢或要求数据计算速度较快的实时控制系统则无法使用,此时可采用滑动平均滤波法。滑动平均滤波法是把n个采样值看成一个队列,队列是长度为n,每进行一次采样就把采样值放入队尾,而去掉原队首的一个采样值,这样,队列中就始终有n个“最新”的采样值,对这n个值进行平均就可以得到新的滤波值。 滑动平均滤波法对周期性的干扰具有较好的抑制作用,但对偶然出现的脉冲性干扰抑制作用差,难以消除由于脉冲干扰而引起的采样值的偏差。 三、去极值滤波法 算术平均滤波法和滑动平均滤波法都难以消除脉冲干扰所引起的误差,会将脉冲干扰“平均”到结果中去。在脉冲干扰严重的场合可采用去极值平均滤波法。去极值平均滤波法的思想是:连续采样n个值,找出并去除其中的最大值和最小值,然后对其余的n-2个值求平均,即可得到有效采样值。为了使算法简单,n通常取偶数,如4,6,8,10等。 四、中位值滤波法 对某一被测信号连续采样n次,然后把n次采样值按大小排序,取中间值为本次采样值。为方便,n一般取奇数。算法上,则可以采用“冒泡法”来对这n个数据进行排序。中位值滤波法能有效地克服因偶然因素引起的波动干扰,但对于一些快变参数则不宜采用。

浅谈信号分析与处理方法及应用论文

浅谈信号分析与处理方法及应用论文 作者:魏旺 摘要 今天的人们正生活在分享着信息学科与技术日新月异发展带来的各种成果之中。信息科学与技术的研究对象是信息传输、处理和控制等。信息科学与技术的基础是信号、系统和信号分析与处理的理论与方法。“信号分析与处理”这门课程正是近几年来在适应信息学科迅速发展、相应基础理论教学要求不断更新的情况下,形成的一门新课程。它整合了“信号与系统分析”和“数字信号处理”两门课程体系彼此存在的内存联系,注重了与“自动控制理论”的分工,从电子信息学科的基本任务出发,以信号分析为基础,系统分析为桥梁,处理技术为手段,设计系统为目的,实现原理、方法和应用三结合,把系统分析与设计系统服从于信号交换与处理的需要,从根本上改变了传统的以系统分析为主、信号处理为辅的状况,加强了两门课程之间的联系。 随着信息技术的不断发展和信息技术应用领域的不断扩展,这门课程已经从电子信息工程类专业的专业基础课程扩展成电子信息、自动控制、电子技术、电气工程、计算机技术、生物医学工程等众多电类专业的专业基础课程,甚至在很多非电专业中也设置了这门课程。而其内容也从单一的电系统分析扩展到许多非电系统分析。虽然各个专业开设这门课程时的侧重点会有所不同,应用背景也有差异,但是,本课程所提练的信号与系统的分析与处理的基本理论与基本方法是通用的。 关键词:信号系统与处理信号分析电子信息

第一章、信号系统的线性分析 数字信号处理是一个新的学科领域,它通过计算机或专用处理设备,用数字方式去处理数字或符号所表示的序列,以得到更符合人们要求的信号形式。 传统的超声波检测用手工进行,操作人员凭借经验对探伤仪上显示的波形进行评定,有一定的主观性,缺乏对信号本身的解剖,无法从根本上求证信号与被测对象之间的必然联系。为了能准确地提取出蕴涵于超声波信号中的信息,我们可以利用数字信号处理技术,从时域方面建立超声波信号的有限参数模型,从而将含在大量数据中的信息浓缩在有限个参数上。模型不仅可用于对信号的内在变化规律性与统计特性的描述,还可用于对过程的预测、控制,或对设备的工况监测、故障诊断等等,它比一个具体的时间序列或按数据所估计的特征量,更具有代表性。 信号可定义为一个承载信息的函数,通常表示为时间,的函数。对于幅度和时间都取连续值的信号称为模拟信号或时域连续信号;对于幅度值取连续值,而时间耿离散值的信号成为时域离散信号;而对于幅度和时问均为离散值的信号称为数字信号。我们所研究的超声回波信号就属于幅度和时间均为离散值的信号,亦称为超声回波的数字信号。 数字信号处理是一个新的学科领域,它是把数字或符号表示的序列,通过计算机或专用处理设备,用数字方式去处理这些序列,以达到更符合人们要求的信号形式。例如对信号的滤波、信号有用分量的提取和增强、无用分量的削弱以及对信号某些特征参数的估计。总之,凡是用数字方式对信号进行滤波、变换、增强、压缩、估计、识别等都是数字信号处理的研究对象。 时域信号到频域信号的转换是进行超声波频谱分析的基础。频谱分析是对信号在频率域内进行分析,分析的结果是以频率为坐标的相关物理量的谱线或曲线。以模拟信号的数字化处理系统为例,此系统先把模拟信号变换为数字信号,然后用数字技术进行处理,最后再还原成模拟信号。 由于数字信号处理的直接对象是数字信号,处理的方式是数值运算方式,使它相对模拟信号处理具有许多优点,归纳起来有以下几点: (1)灵活性 数字信号处理系统的性能取决于系统参数,这些参数存储在存储器中,很容易改变,因此系统的性能容易改变,甚至通过参数的改变,系统变成了另外完全不同的系统。灵活性还表现在数字系统可以分时复用,用一套数字系统分时处理

相关文档