文档库 最新最全的文档下载
当前位置:文档库 › 自组网路由协议

自组网路由协议

2012-11-07 14:33 183人阅读评论(0) 收藏举报

与单跳的无线网络不同,自组网节点之间需通过多跳数据转发机制进行数据交换,每个节点都可能充当其它节点的路由器。无线信道质量的不规则变化,节点的移动、加入和退出等均会引起网络拓扑结构的动态变化。自组网路由协议的作用就是在这种环境中,监控网络拓扑结构的变更,交换路由信息,定位目的节点位置,产生、维护和选择路由,提供网络的连通性。路由协议是移动节点互相通信的基础。

常规的路由协议,如路由信息协议(RIP)[29]和开放式最短路径互连(OSPF)[30]是为有线网络而设计的,它们的拓扑结构相对固定,不会出现大的网络结构变化。自组网结构则是动态变化的,若仍使用常规路由协议,则将会在路由发现和维护上付出很大的代价,而全网路由也可能始终处于不收敛状态。除此之外,自组网不能采用常规路由协议还包含如下几种方面的原因:

(1)自组网中主机间的无线信道可能是单向的;

(2)若仍使用常规路由,则无线信道的广播特性将产生许多冗余链路;

(3)常规路由协议路由信息的周期性广播更新报文会消耗大量的网络带宽。由于无线信道本身的物理特性,它所能提供的网络带宽相对有线信道要低得多。此外,考虑到竞争共享无线信道产生的碰撞、信号衰减、

噪音干扰、信道间干扰等多种因素,节点可得到的实际带宽是远远小于理论上的最大带宽值;

(4)无线移动终端的局限性。移动终端在带来移动性、灵巧、轻便等好处的同时,其固有的特性,例如采用电池一类可耗尽能源提供电源,内存较小,CPU性能较低等要求路由算法简单有效,实现的程序代

码短小精悍,需要考虑如何节省能源等。而常规路由协议通常基于高性能路由器作为运行的硬件平台,没有上述的限制。

由于自组网路由协议对自组网的重要性,它便成了研究的一个热点。到目前为止,已经有相当多的标准和草案推出。当前提出的自组网路由协议可依两种标准进行分类,一是以触发时机进行分类,一是以网络拓扑结构进行分类。

2.1依据触发时机分类

根据路由触发原理,目前的路由协议可分为三类:

1)基于路由表驱动(Table Driven)的路由协议

2)按需驱动(On-Demand Driven)的路由协议

3)表驱动和按需驱动的混合

2.1.1表驱动路由

表驱动路由(又称先验路由、主动路由)继承了传统的路由算法,但在消除路由环路和已过时路由等方面进行了适应于自组网特性的改进。传统有线网络的经典路由算法包括链路状态协议和距离矢量两种。链路状态协议中每个节点都要保存整个网络的拓扑信息以及每条链路的开销,为了使所有节点中保存的路由保持一致,每个节点必须周期性地广播其与周围邻居节点的路由信息,其它节点在收到这些信息时更新网络拓扑,以最短路径算法来计算到达目的节点的下一跳节点。然而,某些节点保存的路由可能因为传播的延迟等原因与实际网络中的状态不一致,这时就可能会在网络中生成路由环路。距离矢量算法也会导致路由环路的生成。路由环路问题在无线环境下表现地更为明显,所以继承传统路由协议的表驱动路由协议需在此方面进行了改进。

表驱动路由协议中无论路由是否被用到,每个节点都要进行周期性地路由信息交换以维护路由表。表驱动路由协议的优点是在有信息传送时不需要等待建立路由,源节点一旦要发送报文,可以立即获得到达目的节点的路由。而其在无需通信节点之间的路由维护则浪费了大量的网络带宽。常见的表驱动路由协议有DSDV[31],HSR[32],GSR[33],WRP[34],FSR[35]等。

DSDV(Destination-Sequenced Distance-Vector Routing)协议通过修改RIP协议而得到,它基于

Bellman-Ford算法。DSDV在每条路由信息中加人由目的节点产生的序列号,以避免路由环。

在DSDV协议中,每个节点周期性地广播它当前的路由表(路由信息包括对应于每个目的节点的距离及最大序列号,还包含发送者自身的序列号,每广播一次就自动加1)。每个收到该广播报文的节点将报文中的对应各目的节点的序列号与自身路由表中相应表项比较,如果报文中的序列号较高,则更新自己的路由表,将发送者指定为下一跳,并将距离增加一跳。在序列号相等但是报文中路由距离更小的情况下,节点也要更新自己的路由表。

当一个节点发现链路失效时,它将所有通过该节点转发的路由的距离设为无穷并将其序列号加1。由于更新了序列号,因此这一消息会传播到整个网络。这样所有这些目的路由指向的目的节点都有效地与此节点断开,直到有新的序列号产生并包含新的路由信息。

HSR(Hierarchical State Routing)是一种用于分级网络的路由协议,高级节点保存它所有子孙节点的位置信息,沿从最高级的根节点到最低级的叶节点的路径为节点分配逻辑序列地址,可以用序列地址进行节点寻址。

GSR(Global State Routing)协议的工作原理与DSDV协议类似,在该算法中,每个节点维护邻居列表、拓扑表、下一跳节点表和距离表。邻居列表记录所有能侦听到该节点信息的节点列表。对于每个目标节点,拓扑表记录链路状态信息和该信息的时间戳(timestamp),下一跳节点表记录分组转发的下一跳节点,而距离表则记录到达目的节点的最短路径。当链路的状态发生变化时,通过比较报文与本地拓扑表中的目的节点路由序列号大小,决定网络拓扑表的修改,若拓扑表发生变化则广播给其它节点。

GSR协议中,较长的路由修改报文会浪费相当大的网络带宽,针对这一缺陷,FSR(Fisheye State Routing)对GSR进行了修改,FSR的路由信息报文中并不包含所有节点的信息,因此可大大缩短报文的大小。与中心节点的距离越近,信息交换越频繁,每个节点都可获得其邻近节点准确详尽的信息;而随着与中心节点距离的加大,交换频率开始减小,超过节点的鱼眼范围时,信息的准确性降低,但并不影响路由的正确选择。通过这种算法,可大大降低路由修改信息对网络的负荷。这种算法的拓扑组织结构像鱼的眼睛,所以称之为FSR。

WRP(Wireless Routing Protocol) 是一种距离向量路由算法,每个节点维护距离表、路由表、链路开销表和信息重传列表。信息重传节点列表记录信息更新报文中需要传送的信息序列以及需要对该信息更新报文作出确认的节点列表。节点周期性或者在链路状态改变的情况下交换路由表,信息更新报文中反馈节点列表中的节点需要确认其接收。如果从上次广播更新报文后节点没有新的路由信息需广播,则其需发送HELLO报文,以确认节点之间的连通性。如果节点没有发送HELLO信息,则认为节点的链路信息无效。当节点收到来自邻居节点的信息更新报文后,修改自身的距离表依据该报文寻找更好的路由。如果某个移动节点收到了新节点的HELLO信息,则把新节点信息填入路由表,并且把它自己的路由表发给新节点。

2.1.2按需驱动路由

与表驱动路由相反,源始发的按需驱动路由(又称反应路由)认为在动态变化的自组网环境中,没有必要维护去往其它所有节点的路由。按需驱动路由因其更适合自组网特性,近些年来更被关注。按需路由一般分为路由建立和路由维护两个过程。它仅在需要给目的节点发送报文而又没有去往目的节点路由的时候才按需进行路由发现。因此,路由表是按需建立的,它可能仅仅是整个拓扑结构信息的一部分。它的优点是不需要周期性的路由信息广播,节省了一定的网络资源。缺点是发送数据分组时,如果没有去往目的节点的路由,数据分组需要等待因路由发现引起的延时,不适合于实时性要求高的应用。

常用的按需驱动路由协议有DSR[36],AODV[37],TORA[38],LAR[39]等。

DSR(Dynamic Source Routing)协议是最早被提出的按需驱动路由协议。DSR的路由发现过程如图2.2所示,当源节点没有到达目的节点的路由时,它广播一个路由请求报文。每个收到该报文的中间节点附上自身的ID然后重新广播。当路由请求到达目的节点(或者某个知道某条到达目的节点的路由的中间节点)时,它就可以决定一条到达目的节点的完整的源路由。目的节点(或中间节点)将所得的源路由包含在路由响应报文中,然后沿着所得路由反向发送回源节点,也可以附带在目的节点的路由请求报文中。源节点收到路由响应报文后,它将源路由存人缓存,并置入每个数据报的报头。中间节点根据数据报头中的路由信息中转数据报文。

路由维护过程也需要使用缓存信息。如果数据报在逐跳传输过程中发现链路失败,则可以由中间节点用缓存中的可用路由来代替报头中含有失效链路的路由,同时向源节点发送一个路由错误报文。和其它路由控制报文一样,路由错误报文可以被中间节点监听到,并且根据它将中间节点中的失效路由删除掉。这样可以使缓存中的错误路由信息的影响最小。如果路由失效,源节点则重新开始一个新的路由发现过程。

AODV(Ad hoc On demand Distance Vector Routing)协议是在DSDV协议的基础上结合类似DSR中按需驱动的思想而提出的。它与DSR协议的不同之处在于报头并不携带路由信息,中继节点依据自身的路由表逐跳转发。因为在AODV协议中,各节点隐式地将路由请求和路由应答分组中的路由信息保存于自身的路由表中,而DSR 却将完整地路由信息显示地保存在分组中。AODV基于双向路径的假设,不支持单向路径。

TORA(temporarily-ordered routing algorithm)协议是在有向无环图DAG(directed acyclic graphic)算法的基础上提出的一种按需驱动路由协议。它分为路由发现,路由维护,路由消除三个过程。TORA协议与其它按需驱动路由协议一样,首先在网中发送路由请求分组,但是在路由应答部分,则采用了DAG算法。其主要思想是:对于某一目标节点,网络中每个节点都保留了相对于它的“势能”。势能可以通过从目标节点的反向广播来获得。离目标节点越远的节点,势能越高,目标节点势能最低。在数据传播过程中,数据包会从高势能的节点向低势能的节点转发,最终流向目标节点。当局部链路发生变化时,只需要局部势能的调整,这种改变一般不会影响到全局。TORA协议的主要特点是控制报文定位在最靠近拓扑变化的一小部分节点处,因此节点只保留邻近点的路由信息。该算法中路由不一定是最优的,常常使用次优路由以减少发现路由的开销。

LAR(location aided routing)协议是一种依据节点物理位置信息而获得路由信息的算法。LAR协议从GPS 获得位置信息,且每个节点需知道其它节点的平均运动速度。在路由请求分组中携带寻径范围信息,寻径范围依据位置信息和节点平均运动速度而得到。这样,只有在寻径范围内的节点才转发路由请求分组。当源节点在当前寻径范围内寻径失败时,它将扩大寻径范围。LAR协议的优点是在小范围内寻径,减少了寻径开销;缺点是依赖GPS提供的位置信息,限制了其应用范围。

2.1.3混合式路由协议

Ad hoc无线网络中单纯采用表驱动或按需驱动路由协议都不能完全解决路由问题,因此,许多学者提出了结合表驱动和按需驱动路由协议优点的混合式路由协议。

ZRP(zero routing protocol)协议[40]是一个表驱动和按需驱动路由协议的组合,网络内的所有节点都有一个以自己为中心的虚拟区。在区内使用表驱动路由算法,中心节点使用区内路由协议IARP(Intra-zone Routing protocol)维持一个到区内其它成员的路由表,对区外节点的路由使用按需路由,利用区间路由协议IERP(Inter-zone Routing protocol)建立临时的路由。

混合式路由协议在小范围局部区域内使用表驱动路由协议,局部区域间则采用按需路由协议。这样可将表驱动路由协议的周期性广播限定在一个局部区域内,从而减轻由全网广播带来的路由负荷。混合路由协议实现了按需路由协议和表驱动路由协议强弱互补,具有相对低的带宽消耗和路由发现延迟。

2.1.4性能比较

衡量路由协议好坏的两个重要指标是路由发现延迟和路由开销。路由延迟是指源节点获取一个新的到达目的节点的路由所需的时间。平均路由发现延迟最小的是表驱动路由协议,其次是混合型路由协议,按需路由协议最长。

文献[42]对比了DSDV、AODV、TORA、DSR四种路由协议的性能。显然,在网络拓朴变更的情况下,表驱动的DSDV协议的路由开销是基本不变的。在拓朴变更不明显的情况下(pause time较大),按需驱动的DSR、AODV、TORA协议的路由开销远小于表驱动的DSDV协议。实际上,自组网总是要工作在拓朴变更较慢的情况下。因为,当拓扑结构变化快到一定程度时,任何基于路由协议的数据包转发已经成为不可能,泛洪(flooding)方式成为数据包传输的唯一选择,而泛洪将会耗费大量的网络带宽。

表驱动路由协议的负荷随着节点运动的加快虽基本保持不变,但在拓朴变更加快的情况下,无法及时收敛,从而造成大量的不可靠路由和路由环,引起丢包。图2.4给出的报文发送率证明了这一点。当拓朴变更剧烈时,DSDV的报文发送率急剧下降,此时按需驱动的路由协议表现较好。

根据上面的结果可以得出结论,在路由开销和报文发送率方面,按需方式的路由算法要比表驱动的路由算法在性能上有明显的优势。如果某类网络对报文发送的实时性要求不高,能容忍路由发现延迟,则应优先考虑按需驱动的路由协议。

2.2依据网络拓朴分类

按网络的拓朴结构分,ad hoc网络路由协议可分为:

1) 平面结构路由

2) 层次结构路由

2.2.1平面结构路由

在平面结构中,网络中的所有节点都在同一水平位置并且节点的地位是平等的,彼此之间没有层次概念,不存在特殊节点,路由协议的鲁棒性好,通信流量平均地分散在网络中,此类协议主要用在小型网络中。DSR、AODV、ZRP、TORA、GSR、DSDV等都是基于平面结构的路由。平面结构路由的缺点是当网络规模很大时,可能会导致整个网络都充斥着路由信息报文,网络的可扩展性差。

2.2.2层次结构路由

当网络变得很大时,如果仅使用平面结构路由,则每个节点要维护的路由信息量很大,路由信息到达边缘节点也将花费很长的时间。对于规模较大的网络,层次结构(基于簇)路由可以被用来解决上面的问题。在层次结构的路由中,网络由多个簇组成,节点分为三种类型:普通节点、簇首节点和网关,处于同一簇的簇首节点和普通节点共同维护所在簇内的路由信息,簇首节点负责所管簇的拓扑信息处理,簇间通过网关通信。分簇结构可以提高网络规模和减少路由开销,可扩展性好,符合人类管理大型系统的习惯,适合管理超大型网络。

分层协议主要包括成簇协议,簇维护协议,簇内路由算法和簇间路由协议。成簇协议解决如何在动态分布式网络环境下使移动节点高效地聚集成簇,它是分层路由协议的关键。簇维护协议要解决在节点移动过程中的簇结构维护,其中包括移动节点退出簇和加入新簇,而簇本身又会随着节点的加入和退出而产生和消亡。典型的分层结构

协议有CBRP(cluster based routing protocol)[43]、CGSR(Cluster head Gateway Switch Routing)[44]等,前者为按需驱动,否则为表驱动。

2.3小结

根据路由触发的时机,自组网路由协议分为表驱动、按需驱动路由协议以及表驱动和按需驱动融合模式路由协议。按需驱动是自组网路由协议引入的新思想,它只在源节点需要传输报文给目的节点时才启动路由发现过程,不依赖于传统表驱动路由协议的周期性路由交换,而且只维护需要通信节点间的路由,减小了路由开销。其缺点是传输前需要等待路由建立。但如果数据传输的实时性要求不高,则可以忽略这个因素。

根据网络拓朴结构,自组网路由协议分为平面结构和层次结构。对于小规模网络而言,平面结构路由简单而有效;但当网络拓朴变得很大时,层次结构路由协议则更适合,层次结构可以避免大规模网络结构中如果只采用平面结构路由则需要维护大量路由信息的问题,但是该结构也需要在簇形成和维护上付出开销。

今天先这些!

基于信道传播模型的车载网V2X通信协议研究

基于信道传播模型的车载网V2X通信协议研究随着汽车工业及人工智能的加速发展,汽车在给人们生活带来方便与快捷的同时,也带来一些交通拥堵的问题。车载自组网(Vehicles Ad-Hoc Networks,VANETs)的相关技术作为智能交通系统(Intelligent Transportation System,ITS)的最重要的部分,受到国内外研究者广泛关注。 VANETs主要任务是实现车辆与车辆之间(Vehicles to Vehicles,V2V)以及车辆与道路设施之间(Vehicles to Road Side Units,V2R)的信息交换。通过频繁的信息的交互,为实现道路上的无人驾驶提出了可靠的技术保障。 因此,在复杂的城市环境下设计性能良好的VANETs路由协议是本文的研究的核心问题。针对复杂多变的城市场景,本文提出一种改进的Nakagami-m信道传播模型来模拟环境的变化,将信息传输方式分为视距(Line of Sight,LOS)和非视距(Not Line of Sight,NLOS)两种传输方式。 在构建的城市信道模型的基础上,本文提出一种基于Nakagami-m中断概率的V2X通信协议(V2X Communication protocol based on Nakagami-m Outage Probability,VCNOP),其主要的工作优势有以下三点:(1)采用动态信标机制来进行车辆间信息的交互,其动态信标周期的大小与车辆的速度和车辆所在道路的密度两个因素有关,该机制有效的减少广播风暴的发生。(2)考虑基于路边基础单元(Road Side Units,RSU)辅助的路径选择机制,在传递信息时优先考虑RSU作为中继节点,借助RSU来提高车辆传递信息的准确性和实时性。 (3)在选择中继节点时考虑车辆与邻居节点的信道中断概率,相对速度,归一化的距离这三个因素,使用层次分析法来计算这三个影响因素的权重值,进而提高选出最优下一跳的概率。在仿真过程中,使用SUMO软件处理选择的真实场景的

无线自组织网络路由协议概述

无线自组织网络路由协议概述 作者:唐敏赵贵 摘要:移动自组网由一组带有无线收发装置的移动节点组成,用来为远程操作、战场和地震或者洪水救援等紧急通信和易变的移动通信提供服务。由于移动自组网与有线网的区别,使得为移动自组网设计一个合适的分布式路由协议具有一定程度上的难度。本文主要是介绍了DSR和ADOV协议以及与有线网络中DV路由协议的区别。 关键词:无线自组网、DSR、ADOV 无线自组织网络即MANET(Mobile Ad Hoc Network),是一种不同于传统无线通信网络的技术。传统的无线蜂窝通信网络,需要固定的网络设备如基地站的支持,进行数据的转发和用户服务控制。而无线自组织网络不需要固定设备支持,各节点即用户终端自行组网,通信时,由其他用户节点进行数据的转发。这种网络形式突破了传统无线蜂窝网络的地理局限性,能够更加快速、便捷、高效地部署,适合于一些紧急场合的通信需要,如战场的单兵通信系统。但无线自组织网络也存在网络带宽受限、对实时性业务支持较差、安全性不高的弊端。目前,国内外有大量研究人员进行此项目研究。 无线自组织网络(mobile ad-hoc network)是一个由几十到上百个节点组成的、采用无线通信方式的、动态组网的多跳的移动性对等网络。其目的是通过动态路由和移动管理技术传输具有服务质量要求的多媒体信息流。通常节点具有持续的能量供给。 由于Adhoc网络具有节点节电、减少带宽消耗、拓扑快速变化、适应单向信道环境等多方面的要求,使得现有的IP路由协议,如RIP(选路信息协议)和OSPF(开放最短路径优先协议)等不能满足要求,Adhoc网络路由协议的设计具有很大难度。IETF的MANET工作组重点研究无线Adhoc中的路由协议。主要有如下几种草案: 1.AODV(AdhoconDemandDistmceVectorRouting)Adhoc网络的距离矢量路由算法。 2.TORA(TemporallyOrderedRoutingAlgorithm)临时顺序路由算法。 3.DSR(DynamicSourceRouting)动态源路由协议。 4.OLSR(OptimizedLinkStateRoutingProtocol)优化的链路状态路由协议。 5.TBRPF(TopologyBroadcastBasedonReversePathForwarding)基于拓扑广播的反向路径转发。 6.FSR(FisheyeStateRoutingProtocol)鱼眼状态路由协议。 7.IERP(theInterzoneRoutingProtocol)区域间路由协议。 8.IARP(theIntrazoneRoutingProtocol)区域内路由协议。 9.DSDV(DestinationSequencedDistanceVector)目标序列距离路由矢量算法。 下面我将重点就DSR和AODV两种协议进行介绍。 (一).DSR(DynamicSourceRouting)动态源路由协议。

移动自组网中避洞路由协议

移动自组网中避洞路由协议 移动自组网(Mobile Ad-hoc NETworks,MANETs)是一种没有基础设施支持的无线网络,具有多跳、无中心、自组织、可移动等特点,使得移动自组网组网方便、快捷,不受时间和空间限制,可应用于紧急救援、战场、探险、远距离或危险环境中的目标监控等场合,因而具有很广阔的应用前景。路由技术是移动自组网中的关键技术,也是影响网络整体性能的最主要的因素之一。由于节点的移动性,造成网络拓扑结构始终处于不稳定状态,使得在移动自组网中经常出现一片一片的无节点区域也就是所谓的洞。本文将在基于洞影子路由协议的基础上,对大规模移动自组网中的避洞的路由协议进行研究。本论文提出了一种基于洞椭圆化的避洞路由协议(HRR),其基本思想是在洞边界的节点首先利用右手规则绕洞转一圈,收集洞边界节点的信息,进而把洞规则化为一个椭圆,然后再把洞的信息向外广播,这样就可以解决洞经常引起的局部最优化问题。该协议与GPSR相比较也缩短了路径长度,降低了路由延迟。本论文还提出了一种基于锚点的避洞路由协议(GAR),该协议首先利用锚点发现算法进行锚点的发现,然后利用锚点路由算法建立任意相邻锚点之间的路径,进而可以直接利用贪婪算法进行数据转发,从而进一步在HRR算法的基础上缩短了路径。通过对上述的路由协议进行模拟仿真,结果表明,本文所提出的HRR路由协议和GAR能较好地解决局部最优化问题,在大规模的网络环境下,也能够取得良好的性能。 同主题文章 [1]. 于翔. 蔓延的网格' [J]. 微电脑世界. 2002.(19) [2]. 龚强. 关于网格特征的研究' [J]. 信息技术. 2004.(10) [3]. 曹仲霖. 悄然到来的网格浪潮' [J]. 互联网周刊. 2002.(04) [4]. 欣. 网格棋局' [J]. 软件世界. 2004.(02) [5]. 任浩. 规避网格泡沫' [J]. 信息系统工程. 2004.(01) [6]. 丁甲. 谁在旁观网格' [J]. 信息系统工程. 2004.(09) [7]. 刘玉昕,马小雨. 网格——信息技术的下一个浪潮' [J]. 郑州经济管理干部学院学报. 2004.(04) [8]. 网格' [J]. 科技广场. 2002.(05)

自组网路由协议

2012-11-07 14:33 183人阅读评论(0) 收藏举报 与单跳的无线网络不同,自组网节点之间需通过多跳数据转发机制进行数据交换,每个节点都可能充当其它节点的路由器。无线信道质量的不规则变化,节点的移动、加入和退出等均会引起网络拓扑结构的动态变化。自组网路由协议的作用就是在这种环境中,监控网络拓扑结构的变更,交换路由信息,定位目的节点位置,产生、维护和选择路由,提供网络的连通性。路由协议是移动节点互相通信的基础。 常规的路由协议,如路由信息协议(RIP)[29]和开放式最短路径互连(OSPF)[30]是为有线网络而设计的,它们的拓扑结构相对固定,不会出现大的网络结构变化。自组网结构则是动态变化的,若仍使用常规路由协议,则将会在路由发现和维护上付出很大的代价,而全网路由也可能始终处于不收敛状态。除此之外,自组网不能采用常规路由协议还包含如下几种方面的原因: (1)自组网中主机间的无线信道可能是单向的; (2)若仍使用常规路由,则无线信道的广播特性将产生许多冗余链路; (3)常规路由协议路由信息的周期性广播更新报文会消耗大量的网络带宽。由于无线信道本身的物理特性,它所能提供的网络带宽相对有线信道要低得多。此外,考虑到竞争共享无线信道产生的碰撞、信号衰减、 噪音干扰、信道间干扰等多种因素,节点可得到的实际带宽是远远小于理论上的最大带宽值; (4)无线移动终端的局限性。移动终端在带来移动性、灵巧、轻便等好处的同时,其固有的特性,例如采用电池一类可耗尽能源提供电源,内存较小,CPU性能较低等要求路由算法简单有效,实现的程序代 码短小精悍,需要考虑如何节省能源等。而常规路由协议通常基于高性能路由器作为运行的硬件平台,没有上述的限制。 由于自组网路由协议对自组网的重要性,它便成了研究的一个热点。到目前为止,已经有相当多的标准和草案推出。当前提出的自组网路由协议可依两种标准进行分类,一是以触发时机进行分类,一是以网络拓扑结构进行分类。 2.1依据触发时机分类 根据路由触发原理,目前的路由协议可分为三类: 1)基于路由表驱动(Table Driven)的路由协议 2)按需驱动(On-Demand Driven)的路由协议

自组织网络

自组织网络 求助编辑百科名片 自组织网络 移动自组织网络是一种移动通信和计算机网络相结合的网络,是移动计算机网络的一种,用户终端可以在网内随意移动而保持通信。 目录 自组织网络概述 自组织网络特点 自组织网络应用领域 展开 编辑本段自组织网络概述 移动自组织(Ad Hoc)网络是一种多跳的临时性自治系统,它的原型是美国早在1968年建立的ALOHA网络和之后于1973提出的PR(Pac ket Radio)网络。ALOHA网络需要固定的基站,网络中的每一个节点都必须和其它所有节点直接连接才能互相通信,是一种单跳网络。直到P R网络,才出现了真正意义上的多跳网络,网络中的各个节点不需要直接连接,而是能够通过中继的方式,在两个距离很远而无法直接通信的节点之间传送信息。PR网络被广泛应用于军事领域。IEEE在开发802. 11标准时,提出将PR网络改名为Ad Hoc网络,也即今天我们常说的移动自组织网络。

移动自组织网络。一方面,网络信息交换采用了计算机网络中的分组交换机制,而不是电话交换网中的电路交换机制;另一方面,用户终端是可以移动的便携式终端,如笔记本、PDA等,用户可以随时处于移动或者静止状态。无线自组网中的每个用户终端都兼有路由器和主机两种功能。作为主机,终端可以运行各种面向用户的应用程序;作为路由器,终端需要运行相应的路由协议。这种分布式控制和无中心的网络结构能够在部分通信网络遭到破坏后维持剩余的通信能力,具有很强的鲁棒性和抗毁性。 作为一种分布式网络,移动自组织网络是一种自治、多跳网络,整个网络没有固定的基础设施,能够在不能利用或者不便利用现有网络基础设施(如基站、AP)的情况下,提供终端之间的相互通信。由于终端的发射功率和无线覆盖范围有限,因此距离较远的两个终端如果要进行通信就必须借助于其它节点进行分组转发,这样节点之间构成了一种无线多跳网络。[1] 网络中的移动终端具有路由和分组转发功能,可以通过无线连接构成任意的网络拓扑。移动自组织网络既可以作为单独的网络独立工作,也可以以末端子网的形式接入现有网络,如Internet网络和蜂窝网。 编辑本段自组织网络特点 移动自组织网络能够利用移动终端的路由转发功能,在无基础设施的情况下进行通信,从而弥补了无网络通信基础设施可使用的缺陷。自组网技术为计算机支持的协同工作系统提供了一种解决途径,主要特点有:

车载通信系统的协议

车载通信系统 1 Frontier topics 2 Typical problems 3 Related algorithms or protocols

车载自组网 ?出现的背景: 道路交通事故成为全球性公共安全问题,交通事故因其极强的“杀伤力”成为世界“头号杀手”,在2003年ITU-T的汽车通信标准化会议上,各国专家正式提出车载网络VANET(vehicle ad hoc networks)车载自组网是专门为车辆间通信而设计的自助式网络。

VENET 网络 特点: 具有ad hoc的基本特点:无中心和自组织性,动态的拓扑网络,多跳路由,无线传播,移动终端便携,安全性差 具有自身的特点: 1 节点高速移动,拓扑结构变化快,路径寿命短 2 节点移动具有一定的规律性 3 无线信道质量不稳定,受到多种因素的影响 4 GPS和电子地图相结合,利用路径规划功能,使路由策略的实现变得更为简单

车载网络通信系统结构: 车间通信(IVC iner vehicle communication )车与车通信系统(V2V,vehicle-to-vehicle communication) 车与路边基础设施通信系统(V2I vehicle -to-infrastucture communication )

?V2V 通信使车辆能够通过多跳的方式进行自动互联,起到车辆运行的安全和疏导交通流量的作用。 ?V2I 通过路灯、加油站等作为接入点的网关,连接到其他固定或移动通信网络上,如根据车辆运行情况在交叉路口调度信号灯,路边加油站及服务区向车辆提供服务等,应用开展有赖于路边设施,投资比较大

基于NS2的无线自组网路由协议的研究与仿真毕业论文

湖南城市学院本科毕业设计(论文)诚信声明 本人郑重声明:所呈交的本科毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业设计(论文)作者签名: 二○一○年五月二十日

目录 摘要 (1) 关键词 (1) Abstract (2) Key words (2) 1 绪论 (3) 1.1 课题研究的背景 (3) 1.2 国内外研究现状 (3) 1.3 本课题研的研究内容和方法 (4) 2 无线自组网 (4) 2.1 无线自组网的产生和发展 (4) 2.2 无线自组网的特征 (5) 2.3 无线自组网应用领域 (5) 2.4 无线自组网体系结构 (6) 3 网络模拟器NS2 (7) 3.1 NS2简介 (7) 3.2 NS2组成部分 (9) 3.3 NS2模拟基本流程 (10) 4 无线自组网路由协议 (11) 4.1 无线自组网与传统移动通信网络的区别 (11) 4.2 无线自组网路由协议分类 (11) 4.3 几种典型的无线自组网路由协议 (12) 4.3.1 目的序列距离矢量路由协议DSDV (12) 4.3.2 按需平面距离矢量路由协议AODV (12) 4.3.3 动态源路由协议DSR (13) 4.3.4 临时排序路由算法TORA (13) 4.4 路由协议性能评标准 (14)

5 无线自组网路由协议的仿真 (14) 5.1 移动节点 (14) 5.1.1 移动节点的结构 (15) 5.1.2 移动节点的创建 (15) 5.1.3 移动节点的运动 (16) 5.2 无线自组网路由模拟的实现 (17) 5.2.1 无线自组网路由协议场景的构建 (17) 5.2.2 TCP代理的创建和设置 (17) 5.2.3 仿真参数的设置 (17) 5.3 仿真结果分析 (18) 5.3.1 动画演示工具nam (18) 5.3.2 无线Trace文件格式 (19) 5.3.3 数据分析工具gawk (20) 5.3.4 绘图工具gnuplot (20) 5.3.5 仿真结果分析 (21) 结论 (25) 参考文献 (27) 致谢 (29)

无线移动自组织网络

无线移动自组织网络 【摘要】本文介绍了无线移动自组织网络的特点、关键技术和应用。近年来,无线移动自组织网络已引起了人们的广泛注意,并成为一个新的研究热点。 【关键词】无线移动自组织(Ad Hoc)网络;应用 无线移动自组织(以下简称Ad Hoc)网络是由一组移动或固定的无线节点组成的,不依赖于任何基础设施(如基站、接入点)的自组织的网络,网络中每个节点可以和其发射范围内的其他节点直接通信,同时利用其他节点作为中继而与发射范围外的节点进行通信。与传统的带固定设备(如基站)的无线网络相比,其显著特点是网络中没有固定的通信设施,网络中所有通信节点都是移动的,每个移动节点既是终端又是路由器,能够提供包的存储转发功能。由于无须固定通信设施的支持,因此,无线自组织网络具有很高的灵活性,可广泛应用于敌对和不易建设固定通信设施的环境中,如野战通信、紧急搜救、临时会议等。近年来,无线自组织网络已引起了人们的广泛注意,并成为一个新的研究热点。 1.网络的特点 Ad Hoc网络是一种无中心的网络,它与传统的有线网络以及蜂窝移动网络不同,具有如下特点: 1.1独立组网 Ad Hoc网络具有独立组网能力,即网络的布设无需依赖于任何预先架设的网络设施。节点开机后就可以快速、自动地组成一个独立的网络。 1.2无中心 Ad Hoc网络采用无中心结构,所有节点的地位平等,组成一个对等式网络,节点可以随时加入或离开网络,任意节点的故障不会影响整个网络的运行。与有中心网络相比,Ad Hoc网络具有很强的抗毁性。 1.3自组织 Ad Hoc网络没有严格的控制中心,所有节点通过分层的网络协议和分布式算法协调各自的行为。无中心和自组织特点使得Ad Hoc网络可以实现快速自动组网。 1.4多跳路由 与普通网络中的多跳不同,Ad Hoc网络中的多跳路由是由普通节点共同协作完成的,而不是由专用的路由设备(如路由器)完成的。反过来,如果可以使

基于OPNET的无线移动自组织网络

基于OPNET的无线移动自组织网络 1 引言 1.1 课题研究的背景及意义 最近几年来,随着Internet的发展,连入网络的主机和用户数目逐年呈指数增长。网络的普及为我们的生活带来了许多方便而快捷的服务,如下载网上信息、收发电子邮件、实现远程办公等等,人们变得越来越依赖于计算机网络。与此同时,移动计算机网络业务也逐渐成为人们日益关注的话题。在网络中提供移动性支持可使网络用户在任何时刻、任何地点通过网络发送和接收各种数据,实现人们提出的“Anytime, Anywhere, Mobile Networks in your pocket”的愿望。 无线移动自组织网络作为移动计算机的一种特殊形式,由于它不需要固定的基站,各个节点均可自由移动,且能实现动态的连接,加上其具有生存性极强,且创建与移动极为方便的特点,使之弥补了蜂窝系统与有线网络的不足,在许多特殊情况下有着不可替代的作用。可广泛应用于国防战备、灾难援助、法律执行等无法得到有线网络支持或某些只是临时需要通信但建立有线通信网络代价太大的环境,且可以作为生存性极强的后备网络[2]。因此,移动自组网的研究对科技进步具有重大促进作用。同时,随着移动自组网络研究的发展和相关产品的成熟,移动自组网必将越来越受到人们的重视,会有越来越多的应用领域,因而其具有广泛的研究与发展前景。而天线模型作为影响网络性能的一个重要因素,是确保移动自组网络正确运行的关键。对该领域进行深入而广泛的研究将为移动自组网的应用提供重要科学依据[3]。 1.2 无线移动自组织网络网络的特征 无线移动自组织网络是一种不同于现有网络的特殊无线网络,强调无中心接入、多跳路由,移动终端节点不仅具有主机的功能,还具有路由器的功能。 无线移动自组织网络是由一些带有无线收发装置的移动节点,通过无线信道连接形成的,具有网状拓扑结构的特殊网络。节点的移动性,导致了网络拓扑结构随时间的变化性。在无线移动自组织网络中,由于无线通信覆盖范围的有限性,两个无法直接通信的节点可以利用其他节点的路由转发功能进行通信。它可以在没有或不便利用现有的网络基础设施的情况下提供一种通信支撑环境,从而拓宽了移动通信网络的应用环境。 在无线移动自组织网络中,节点兼备主机和路由器两种角色。一方面,节点作为用户主机运行相关的协同应用程序;另一方面,节点作为路由器运行相关的路由协议,进行路由发现、路由维护等常见的路由操作,对接收到的信宿不是自

相关文档