文档库 最新最全的文档下载
当前位置:文档库 › 纺织品颜色迁移检测技术浅析

纺织品颜色迁移检测技术浅析

纺织品颜色迁移检测技术浅析
纺织品颜色迁移检测技术浅析

纺织品颜色迁移检测技术浅析

纺织品上颜色迁移进入聚氯乙烯涂层的评定纺织品上颜色迁移进入聚氯乙烯涂层评定的相关检测方法有ISO105-Xl0纺织品色牢度试验纺织品上颜色泳移到聚氯乙烯涂层的评定方法

和FZ/T 01087—1999纺织品上颜色迁移进入聚氯乙烯涂层的评定。该标准最早的版本号为GB 8442—87.后被FZ/T 01087—1999替代,FZ/T 01087—1999等效采用Is0lO5一Xl0标准。Is0lO5一Xl0标准的主要内容如下。

1、适用范围:测定纺织品上的颜色耐迁移到含有增塑剂的聚氯乙烯(PVC)中去的能力。

2、原理:

将一块浸透增塑剂的纺织品试样与一块白色涂料聚氯乙烯薄膜膜贴合.在80℃±2℃温度条件下受压处理后.用灰卡评定评定薄膜上的沾色。

3、试样:

制成40mm×100mm的织物试样:40mm×100 mm的聚氯乙烯薄膜。

4、仪器与材料耐汗渍色牢度仪相同的夹持样品装置(用玻璃板代替聚丙烯酸树脂板);烘箱:80℃±2℃:白色涂料聚氯乙烯薄膜;增塑剂:石油醚;灰卡等。

5、程序用浸有石油醚的未染色布擦净白色涂料聚氯乙烯薄膜.并将其放在玻璃板上。然后把试样放在聚氯乙烯薄膜上.以待测面对着聚氯乙烯薄膜.用等于试样重量的增塑剂均匀滴加在试样上.然后用另一片玻璃盖住.组成组合试样.用耐汗渍色牢度仪的夹持器夹持组合试样,使其受压约l2.3 kPa.在80℃±2℃烘箱内保持3~h,取出组合试样.用石油醚;中洗氯乙烯薄膜,自然干燥。

6、结果报告:

用标准灰卡评定氯乙烯薄膜上的沾色等级,并说明所用的增塑剂类型。

在实际工作中.我们遇到许多PVC涂层服装或包袋的颜色迁移案例,主要原因都是内层深色衬里颜色迁移到有聚氯乙烯涂层的外层面料上.造成包袋表面颜色差异.影响使用。在试验过程中.由于目前市场上PVC薄膜使用较少,为更好模拟实际.也可用PVC涂层织物代替白色聚氯乙烯薄膜进行试验.注意需将PVC涂层面与试样接触.评定方法不变,但要在报告中说明所用的是PVC涂层织物。

芯片类检测:LuminexPLEXMAPBIOPLEX液相芯片检测

【嘉美实验】嘉美生物可提供Luminex、Mllipore的FLEXMAP和Bio-Rad的BioPlex液相芯片检测实验外包服务。Luminex的代表产品 Luminex 100/200以及新推出的Mllipore的FLEXMAP 3D TM 和Bio-Rad公司的BioPlex system都是基于xMAP技术原理,整合了荧光编码微球、激光检测、应用流体学、最新的高速数字信号和计算机运算法则等多项技术,真正实现了“高通量”检测,并荣获2005年度国际临床诊断技术革新奖。是唯一得到美国FDA批准的,也是唯一被纳入美国临床实验室质控网络的高通量诊断技术。被国际业界专家评价为临床诊断的趋势性技术之一。 Luminex\PLEXMAP\BIOPLEX的技术原理 Luminex\PLEXMAP\BIOPLEX的技术优势 高通量,高速度:每个微球作为单独的检测体,可同时进行大量的生物检测,只需要10~20 μl的样本量就可以一次检测多达100个指标(FLEXMAP 3D TM可多达500个指标),最快可达10000次测试/小时,真正实现了“高通量”与“高速度”。 多功能性:xMAP技术可以运用到多种生物检测中,包括免疫分析、基因分型、基因表达、酶分析等。既能检测蛋白,又能检测核酸。除了用于临床外,也能用于科研、CDC、血站、农业、生物及制药专业实验室等。 灵活性高:微球上可连接特异性的探针、抗原或抗体等来满足不同客户的需要。 灵敏度高:检测低限可达0.01pg/ml。 重复性好:类均相反应模式,每个指标有1000-5000个反应单元,分析100次取中位均值。 准确性高:检测范围达3.5-6个数量级,与ELISA和质谱分析具有很强的一致性。 成本低:流式荧光技术联检的试剂用量少,能有效降低临床应用的成本。

高效液相色谱仪(HPLC)校正方法

高效液相色谱仪(HPLC)校正方法 0.1输液系统: 0.1.1梯度误差G C不超过±3% 0.1.2泵流量设定值误差 S s<±2% 0.1.3流量稳定性误差 S R<±2% 0.2紫外检测器性能 0.2.1基线噪声不超过5×10-4AU,基线漂移不超过5×10-3AU 0.2.2定量测量重复性误差(6次进样)RSD≤1.5% 0.2.3最小检测浓度不超过1×10-7g/ml萘/甲醇溶液 0.2.4可调波长紫外可见光检测器波长示值不超过±2nm(HP1100高效液相色谱仪可由仪器自身完成) 1校正条件 1.1环境温度10-30℃,相对湿度低于65% 1.2校正设备 1.2.1秒表分度值小于0.1 s 1.2.2分析天平最大称量200g,最小分度值0.1mg 1.2.3容量瓶 1.2.4微量注射器 1.3标准物质和试剂 1.3.1HPLC用甲醇、纯水,分析纯的丙酮 1.3.21×10-4g/ml,1×10-7g/ml的萘甲醇溶液 1.3.3紫外波长标准溶液 2校正方法 2.1梯度误差G C的校正 2.1.1进行梯度洗脱程序,A溶剂为水,B溶剂为0.1%丙酮的水溶液,B经5个阶段从0变到100%, 20%—40%—60%—80%—100%,重复测量两次,取平均值,求各段梯度误差Gci,取最大作为仪器梯度误差,公式:Gci=(Li—Lm)/Lm×100% Li:第i段信号值的平均值; Lm :各段输出信号平均值的平均值 可接受标准: -3%≤Gci≤3% 2.2泵流量设定值误差Ss、流量稳定性误差S R的校正 2.2.1将仪器的输液系统、进样器、色谱柱和检测器联接好,以甲醇为流动相,按表一设定流量,待 流速稳定后,在流动相排出口用事先清洗称重过的容量瓶收集流动相,同时用秒表计时,准确的收集10-25

TCS3200颜色传感器说明颜色检测色谱检测

TCS3200颜色传感器测试实验 TCS3200颜色传感器是一款全彩的颜色检测器,包括了一块TAOS TCS3200RGB感应芯片和4个白光LED灯,TCS3200能在一定的范围内检测和测量几乎所有的可见光。它适合于色度计测量应用领域。比如彩色打印、医疗诊断、计算机彩色监视器校准以及油漆、纺织品、化妆品和印刷材料的过程控制。 通常所看到的物体颜色,实际上是物体表面吸收了照射到它上面的白光(日光)中的一部分有色成分,而反射出的另一部分有色光在人眼中的反应。白色是由各种频率的可见光混合在一起构成的,也就是说白光中包含着各种颜色的色光(如红R、黄Y、绿G、青V、蓝B、紫P)。根据德国物理学家赫姆霍兹(Helinholtz)的三原色理论可知,各种颜色是由不同比例的三原色(红、绿、蓝)混合而成的。 由上面的三原色感应原理可知,如果知道构成各种颜色的三原色的值,就能够知道所测试物体的颜色。对于TCS3200D 来说,当选定一个颜色滤波器时,它只允许某种特定的原色通过,阻止其它原色的通过。例如:当选择红色滤波器时,入射光中只有红色可以通过,蓝色和绿色都被阻止,这样就可以得到红色光的光强;同理,选择其它的滤波器,就可以得到蓝色光和绿色光的光强。通过这三个光强值,就可以分析出反射到TCS3200D传感器上的光的颜色。 TCS3200D传感器有红绿蓝和清除4种滤光器,可以通过其引脚S2和S3的高低电平来选择滤波器模式,如下图。

TCS3200D有可编程的彩色光到电信号频率的转换器,当被测物体反射光的红、绿、蓝三色光线分别透过相应滤波器到达TAOS TCS3200RGB感应芯片时,其内置的振荡器会输出方波,方波频率与所感应的光强成比例关系,光线越强,内置的振荡器方波频率越高。TCS3200传感器有一个OUT引脚,它输出信号的频率与内置振荡器的频率也成比例关系,它们的比率因子可以靠其引脚S0和S1的高低电平来选择,如下图。 这个测试实验,我把TCS3200传感器OUT引脚输出信号频率与其内置振荡器频率比率因子设为2%,有了输出频率比例因子,但是如何通过OUT引脚输出信号频率来换算出被测物体由三原色光强组成的RGB颜色值呢?这还需进行白平衡校正来得到RGB比例因子才行! 白平衡校正方法是:把一个白色物体放置在TCS3200颜色传感器之下,两者相距10mm左右,点亮传感器上的4个白光LED灯,用Arduino控制器的定时器设置一固定时间1s,然后选通三原色的滤波器,让被测物体反射光中红、绿、蓝三色光分别通过滤波器,计算1s时间内三色光对应的TCS3200传感器OUT输出信号脉冲数(单位时间的脉冲数包含了输出信号的频率信息),再通过正比算式得到白色物体RGB值255与三色光脉冲数的比例因子。有了白平衡校正得到的RGB比例因子,则其它颜色物体反射光中红、绿、蓝三色光对应的TCS3200输出信号1s内脉冲数乘以R、G、B比例因子,就可换算出了被测物体的RGB标准值了。 现在谈谈,如何进行TCS3200各控制引脚与Arduino控制器的硬件连线问题,下图分别是TCS3200传感器和其连线图。

国家纺织品检测标准

国家纺织品检测标准 国家纺织品检测标准保证了纺织产品的基本安全性 纺织品的安全主要包括制品所用面料是否含有有害物质,所用材料是否卫生,产品的结构和附件是否安全和牢固等。主要有: ——甲醛:含过量甲醛的纺织品在人们的穿着过程中会释放出甲醛,对呼吸道黏膜和皮肤产生强烈刺激,引发呼吸道炎症和皮肤炎。 ——PH值:人的皮肤带有一层弱酸性物质,以防止疾病的侵入,因此纺织品上的PH值在中性至弱酸性对皮肤最为有益。如果PH值过高,会对皮肤产生刺激,并使皮肤易受到其他病菌的侵害。 ——异味:一些挥发性物质,特别是一些奇特气味的物质表示有过量的化学药剂残留在纺织品上。 ——禁用偶氮染料:部分偶氮染料在一定条件下会还原出有致癌作用的芳香胺。这些染料被皮肤吸收后,在人体的正常代谢反应条件下,可能发生还原反应而分解出致癌芳香胺,并经过活化作用改变人体的DNA结构,引起人体病变和诱发癌症。 ——色牢度:染色牢度不佳时,染料会从纺织品转移到皮肤上,在细菌的生物催化作用下发生还原反应,诱发癌症或引起过敏。有的纺织晶和服装遇水、遇摩擦就会发生掉色的情况。 强制性国家标准GB 18401-2003《国家纺织产品基本安全技术规范》是以控制纺织品中主要的有害物质,提升纺织产品的质量,保证人们的基本安全健康为目的,在全国范围内强制实施的一部适用于服用和装饰用纺织产品的通用安全技术规范。该标准适用于品、装饰用品等,对纺织产品中的甲醛含量、pH值、色牢度(耐水、耐汗渍、耐摩擦、耐唾液)、异味和禁用偶氮染料项目提出A类、B类和C类

三档指标进行控制,其中婴幼儿用品要求符合A类指标,内衣、衬衣、袜子、床单等直接接触皮肤的产品要求符合B类指标,外套、毛衣、床罩等非直接接触皮肤的产品要求符合C类指标。 GB18401—2003《国家纺织产品基本安全技术要渤的发布和实施标志着我国政府不仅对食品和药品直接入口类产品的安全性严格监控,也对危险性较小的纺织品和服装的安全性问题进行关注,强制引导生产者制造安全的纺织品,并倡导消费者转向对纺织产品安全性和环保性的注重;标志着我们的纺织标准更进一步地与国际接轨,由注重产品的耐用质量和外观质量转向安全质量,提高了行业的生态生产意识。 广大的纺织企业和经营单位积极执行GB18401—2003,努力为消费者提供安全健康的纺织产品。再加上近两年国家对纺织产品有害物质的严格监控,有效地控制了不良产品在市场上的流通和进口,对规范市场和保护消费者的健康安全有着显著的作用,目前市场上销售的纺织产品在安全性方面有明显的提高。根据国家主管部门对各类纺织产品质量的抽查监督结果,可以说商场销售的纺织产品能够让人放心穿着,甲醛含量基本上都能达到国家标准的要求,禁用的偶氮染料也很少有检出,消费者可以放心购买、穿着和使用纺织品和服装产品。 消费者在选购纺织品时,首先看产品上有无符合性说明,标明“婴幼儿用品”、(GBl8401)A类、B类或C类字样的产品应该是符合国家基本安全标准要求的。专业的检验人员在进行纺织品异味检测时是靠嗅的。消费者在选购纺织品和服装时,应该首先闻一下产品是否有霉味、高沸程石油味(如汽油、煤油味)、鱼腥味、芳香烃味、香味等气味。尤其是一些香味毛巾、香味手帕等,要避免购买。内衣,尤其是婴幼儿用品,量买那些素色、小面积印花图案的产品,所用染料、涂料越少越好,尽量不要买印花摸起来较硬的纺织品。内衣以及婴幼儿服装,穿之前最

颜色识别

题目九:色彩识别装置 设计要求:设计一个装置,对30cm左右的一张有色纸,装置能够在自然光或者辅助光配合下,识别出有色纸的颜色,并用汉字显示出来。装置的识别效果的衡量,以与肉眼识别吻合为佳。 题目分析:本题要求设计一个色彩识别装置,该装置能够在自然光或者辅助光源的配合下,识别出一定距离(30cm)内的有色纸的颜色,并可以在屏幕上将识别结果用汉字显示出,颜色的承载体是纸张,颜色环境相对简单,色彩的辨别以人眼识别的为准(非CIE色度学颜色),可采用ColorChecker 卡24种颜色作为参照标准。 在许多应用中,颜色的辨别具有重要作用,如材料、工业自动化、遥感技术、图像处理、产品检测,还是某些模糊的探测技术都需要对颜色进行探测。通过传感器或CCD/CMOS图像传感器检测进而识别颜色是两种常见的检测手段。 设计方案: 鉴于模块化设计在系统设计中的优越性,我们将该系统分为以下4个模块: 主要实现方式有以下几种 方案一:采用非晶硅彩色传感器,经信号处理电路处理后,利用微处理器(单片机)作为控 制器,外接显示器输出测量结果。系统的实现框图如下:

方案二: 利用CCD/CMOS传感器,将采集的数据输入到计算机,通过软件进行分析,在屏幕上输出结果,典型的方案是将数码相机(或者摄像头)采集的数据传输到计算机,通过软件Matlab 编写模糊神经网络程序进行分析。 方案三:选用Photo sensor颜色信号进行提取和采集,采用基于人工神经网络的高速并行模数转换模式进行数据的模数转换,嵌入式系统对数据进行处理,完成筛选和分拣工作,系统结构 如图所示 . 方案四:利用可编程彩色光到频率的传感器TCS230进行信号的收集与处理,单片机SPCE061A 进行数据的分析处理,并将结果通过显示输出电路输出。 方案比较: 方案一是目前常用的,颜色传感器通常是在独立的光电二极管上覆盖经过修正的红绿蓝滤光片,然后对输出信号进行相应的处理,输出的是模拟信号,需要A/D电路进行采样、转换,才能被微处理器识别,增加了电路的复杂性,存在较大误差,影响了识别效果。 方案二的识别精度较高,但涉及图像处理,算法复杂,软件开销大,硬件成本高。 方案三具有检测速度快,可靠性高等优点,但同样其成本高,算法复杂,一般用于专业领域。方案四给出了一种基于数字颜色传感器TCS230和16位单片机SPEC061A及LCD显示的颜色识别系统。TCS230是美国TAOS公司推出的一款可编程光频率转换传感器,这种传感器输出 和入射光基色分量成正比的频率信号,能够和微处理器直接接口,因此可以简化系统的设计

高效液相色谱方法的验证

高效液相色谱方法的验证 ?方法验证的目的 ?方法验证的内容 ?方法验证的项目及测定方法

方法验证的目的 目的:证明采用的方法适合相应检测的要求。 方法验证是实验室针对特定方法的研究过程,通过设计方案,有步骤、系统地收集、处理实验数据,最终形成文件,以证明所用试验方法准确、灵敏、专属并重现。同一分析方法用于不同的检测项目会有不同的验证要求。

方法验证的内容 ?准确度 ?精密度 ?专属性 ?检测限 ?定量限 ?线性和范围 ?耐用性

准确度 定义:方法测定结果与真实值或参考值的接近程度。一般用回收率%表示。 1. 主成分含量测定 原料药:对照品或方法比对 2. 制剂、中药:标准加样回收 杂质定量 测定:加样回收(n 3 9) 杂质对照品 方法比对 回收率 C-A %=′ B 100% 杂质与主成分的相对含量 A:试验供试品中被测成分的量 (通常为含量测定量的50%) B: 试验供试品中加入的对照品的量 (通常为±20%) C:试验测定值

精密度 定义:在规定测试条件下,同一个均匀供试品,经多次取样测定所得结果之间的接近程度。一般用偏差,相对偏差和相对标准偏差 1. 重复性(n 9) 3 2. 中间精密度 3. 重复性 测定:HPLC方法的精密度测试,应从样品制备开始,设计3个浓度, 分别平行制备3份,以测定含量计算相对标准偏差;或同一样品平行制备6份供试品,分别进样,以峰面积计算相对标准偏差。 同一份供试品连续进样6次,计算得到的相对标准偏差只能表征进样精密度,不能作为方法精密度。

专属性 定义:在其它成分可能存在下,方法能正确测定出被测物的特性。 1. 鉴别反应 2. 含量测定 杂质测定 测定: 限量检查 空白制剂,模拟复方 加速破坏试样测试 DAD峰纯度检查

颜色检测技术综述

摘要 LED作为现在最重要的光源之一,正在以其独特的特性全面渗入到社会的各个层面和角落。LED具有亮度高、寿命长、运行稳定、驱动简单等特点,且经过简单处理后其光束质量也可以有较大改善,研究LED的必要性不言而喻。而LED光源虽然应用方便,但同激光器相比,其发射光谱宽,发射角大,对她的应用有一定的限制。在可见光波段,研究LED的单色性是一个重要课题,因此,如何在近似的波段里面准确区分LED的发光颜色,如何准确检测和判断LED是我们的实际操作。本文介绍了LED光源的一些特性和目前的几种LED颜色检测方法,对其未来的发展趋势作了预测。 关键词:LED光源;颜色检测;颜色评价

一、LED及LED光源 LED(Light Emitting Diode),发光二极管,是一种能够将电能转化为可见光的半导体。它的一端附在一个支架上,一端是负极,另一端连接电源的正极,整个被环氧树脂封装起来。由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子,当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量。 由于LED的半导体本质和其发光原理,LED很明显的拥有高亮度、高光效、长寿命、无辐射、功耗低等优点。同时,根据其P-N结材料的不同,LED可以发出不同波长的光,所以其发射光谱很宽,在可见光波段,我们可以比较容易得到多种颜色的LED光源。LED亮度高,在照明领域,目前LED已开始了广泛的应用,而且由于LED发光效率高,且在小角度上光能集中,几W的LED已经可以媲美数十W的传统光源,在单位功率内的成本大大降低。根据其发光原理,LED光源的驱动结构比较简单,这大大节省了其在驱动部分的消耗,也减小了光源的体积。 目前,LED光源已广泛应用于照明、汽车、LCD背光、测量、仪器等领域,方便了人们的生活。根据专家作出的预测,未来,LED的最大优势----寿命将在现有基础上大大提高,理论上LED可拥有无限的生命周期,目前,常用的LED光源也已经达到和大于了10万小时。所以,LED的全面应用是毋庸置疑的。目前,LED的限制条件主要是

油墨颜色检验方法

油墨颜色检验方法 1、原理 将试样与标样以并列刮样的方法对比,检视试样颜色是否符合标样。 2、工具与材料 (1)调墨刀木柄锥形钢身,长200mm,最宽处20mm,最窄处8mm。 (2)刮片不锈钢片制,92mm×59mm×0.5mm,刃部宽9mm处向外弯曲25°。 (3)玻璃板200mm×200mm×5mm。 (4)刮样纸晒图的纸(符合ZB Y32 002),规格110mm×65mm,顶端往下60-65mm处有5mm宽黑色实底横道。 (5)玻璃纸65mm×30mm。 3、检验条件 (1)检验应在在温度(25±1)℃,相对湿度65±5条件下进行。 (2)检视面色及色光应在入射角45°±5°的标准照明体下进行。 (3)检视底色应将刮样对光透视。 4、检验步骤 (1)用调墨刀取标样及试样各约5g,置于玻璃板上,分别将其调匀。 (2)用调墨刀取样约0.5g涂于刮样纸的左上方,再取试样约0.5g涂于刮样纸的右上方,两者应相邻不相连。 (3)将刮片置于涂好的油墨样品上方,使刮片主体部分与刮样纸呈90°。用力自上而下将油墨于刮样纸上刮成薄层,至黑色横道下15mm处时,减少用力。使刮片内侧角度近似25°,使油墨在纸上涂成较厚的墨层。最终刮样形状应与图13-1相似。 (4)刮样纸上的油墨薄层称为面色;刮样纸下部的油墨进取层称为墨色;刮样纸上的油墨薄层对光透视称为底色。 (5)油墨颜色检验完毕,将玻璃纸覆盖在厚墨层上。

5、检验结果 (1)平版油墨、凸版油墨重点检视试样的面色和底色是否与标样近似、相符。 (2)网孔版油墨、纸张用凹版油墨重点检视试样的面色是否与标样近似、相符。 (3)检验结果应以刮样后5min内观察的面色和底色为准,墨色供参考。

生态纺织品及检测技术

生态纺织品及检测技术 摘要: 生态纺织品是指从原料的选择到生产、销售、使用和废弃处理整个过程中,对环境或人体健康无害的纺织品,又称环保纺织品或绿色纺织品 生态纺织品的安全检测越来越受到人们的关注。本文介绍了气相色谱—质谱联用技术在对生态纺织品有害物质,如甲醛、禁用偶氮染料、农残、气味及VOC 含量等的测定过程中的应用。 关键词:生态纺织品;检测;气相色谱-质谱联用 一、生态纺织品 生态纺织品是指从原料的选择到生产、销售、使用和废弃处理整个过程中,对环境或人体健康无害的纺织品,又称环保纺织品或绿色纺织品。它必须符合四个基本前提: 1.资源可再生和可重复利用; 2.生产过程对环境无污染; 3.在穿着和使用过程中对人体没有危害; 4.废弃后能在环境中自然降解,不污染环境,即具有“可回收、低污染、省能 源”等特点的纺织品。 狭义的生态纺织品是指在现有的科学知识下,经过测试不含有会损害人类健康的物质,且具有相应标志的纺织品。目前生态纺织品的检测主要是针对狭义上的有关内容。 1.生态纺织品内容 1)生产生态性 从生产生态学的角度,控制包括从纤维种植、养殖、生产到产品加工的全过程对环境无污染、产品自身不受“污染”; 2)消费生态性 从人类生态学的角度,考察纺织品中残留有毒物质对人体健康的影响;

3)处理生态性 从处理生态学的角度,控制纺织品可回收利用、自然降解、废物处理中其释放的有毒物对环境无害。 2.生态纺织品应符合以下技术要求 1)产品不得经过有氯漂白处理。 2)产品不得进行防霉蛀整理和阻燃整理。 3)产品中不得添加五氯苯酚和四氯苯酚。 4)产品不得有霉味、汽油味及有毒的芳香气味。有气味,则有残留物存在。 5)产品不得使用分解为有毒芳香胺染料的偶氮染料、可致癌的染料和可能 引起过敏的染料。 6)产品中甲醛、可提取重金属含量、浸出液PH值、色牢度及杀虫剂留量 均应符合要求。 3.检测对象 1)有关的生态纺织品(和皮革制品)检测对象包括: 2)服装、睡袋、床上用品、毛巾、发饰、假发、帽子、尿片及其它卫生用 品; 3)鞋袜、颈挂式钱袋、手套、表带、手袋、钱包/皮夹子、行李箱、座椅套; 4)纺织品或皮革制成的玩具,包括纺织制品和皮革服装上的玩具; 5)最终将为消费者使用的纤维和织物。 不属生态纺织品检测范围的有: 1)土工布、防水油毡基布等工程用纺织品 2)造纸毛毯、帘子布、过滤布、绝缘纺织品等工业用纺织品 3)无土栽培基布等农业用纺织品 4)防毒、防辐射、耐高温、阻燃等特种防护用纺织品 5)渔网、缆绳、登山用绳索等绳网类产品 6)麻袋、邮包等包装用纺织品 7)医用纱布、绷带等医疗用纺织品

纺织品颜色迁移及其检测技术

纺织品颜色迁移及其检测技术 纺织品颜色迁移及其检测技术The Color Migration of Textiles and Related Testing Methods9 f/ s' r* R# E) A8 c 来源: 程立军戴金兰 /纺织导报: {4 z L* z A) `4 ~8 K+ }; f - ]) v, X8 Y/ a& Z! ` 在生产、储藏、运输、使用过程中.不同颜色纺织品叠在一起紧密接触时.可能会发生在相邻织物或同一织物间的颜色迁移现象.从而影响纺织品固有的颜色。目前,因纺织品颜色迁移造成的损失和贸易纠纷屡屡发生.有关人员对颜色迁移原因的认识以及采取的预防措施都远远不够.因此对纺织品颜色迁移问题进行深入研究显得较为迫切。5 j2 V6 S3 e3 U; C: h0 n 1 相关定义& G1 Y3 c# ~% Y. Z/ \( H$ _ 泳移(migration):指染料或颜料由于毛细效应产生的在纤维内部或纤维间的化学运动.一般习惯称“染料泳移”。迁移(transfer):指在纺织品生产、检测、储存、使用过程中.染料或颜料在纤维内部或纤维间的化学运动.一般习惯称“颜色迁移。渗色:由底层颜色迁移至面层涂膜之上的现象称为渗色.也称迁移.一般习惯称”油墨渗色“。风印:一般是指印染加工后的纺织品在烘燥、存放过程中在往复折叠处与其它正常部位的颜色差异。 从以上定义可以看出.“泳移与”迁移意义基本一致.纺织品颜色迁移现象实际上是由于染料或颜料的泳移引起的。 2 颜色迁移现象及原因分析 2.1 纺织品的颜色迁移 纺织品颜色迁移有两种过程:I)当温度达到染料升华温度时产生的颜色迁移.可用耐升华色牢度来评价:2)当温度低于染料升华温度时造成的不同织物之间的颜色迁移.通常是由深色向浅色转移.可用染料迁移牢度或沾色等级来评价。升华色牢度与迁移牢度两者产生的机理不同,升华是染料先气化,呈单分子状态再转移;迁移是染料以固态凝聚体或单分子向纤维表面迁移,耐升华牢度好.迁移牢度并不一定好。本文所探讨的是后者。即温度低于染料升华温度的颜色迁移现象。 对纺织品来说,颜色迁移现象大多会在以下两种情况下发生:I)在生产处理过程中,由于纤维表面助剂在高温时能溶解染料.热又使纤维内部的染料通过扩张后的纤维毛细管由纤维内部泳移到纤维表面.产生与染色时逆向的迁移.导致染料在纤维表面堆积.造成织物整体颜色差异:2)在生产整理过程中使用的许多柔软剂和防水剂会溶解染料.使已染色的染料不仅因受热作用发生泳移.还会因溶解在载体中而泳移至纤维表面.由此带来一系列问题.如色变.熨烫时沾污.耐摩擦、耐水洗、耐光牢度下降等.这些现象也可能出现在染色纺织品和服装长期储存和运输过程中。 2.2 涂层面料的颜色迁移; \0 L6 }$ k" f. R- J 由于涂层面料具有防水、防污、耐磨、色泽鲜艳等特点而具有广泛的应用价值。根据涂层材质的不同.涂层面料可分为PVC涂层、PU涂层和半PU涂层三大类,涂层面料颜色迁移现象主要发生在聚氯乙烯相关产品中。对PVC 涂层面料来说.PVC颗粒分散在增塑剂中.在加热时,树脂吸收增塑剂.发生交联反应而固化,在织物表面形成一个PVC薄膜,与纤维分子牢固结合。当塑胶中增塑剂和颜料的添加量增多时.塑胶分子间的距离增大.结构疏松,加上色粉分散不良.容易在软胶中发生迁移现象。因此,涂层面料生产时要注意尽量减少增塑剂和颜料的添加量,提高分散性。

色度检测方法

色度检测方法——稀释倍数法 水的颜色:改变透射可见光光谱组成的光学性质。 水的表观颜色:由溶解物质及不溶解性悬浮物产生的颜色用未经过滤或离心分离的原始样品测定。 1、原理 : 将样品用光学纯水稀释至用目视比较与光学纯水相比刚好看不见颜色时的稀释倍数,作为表达颜色的强度单位为倍;同时用目视观察样品检验颜色性质颜色的深浅(无色浅色或深色)、色调(红橙黄绿蓝和紫) 等,如果可能包括样品的透明度(透明混浊或不透明) 用文字予以描述,结果以稀释倍数值和文字描述相结合表达。 2、试剂:光学纯水、蒸馏水。 3、仪器: 实验室常用仪器及具塞比色管、 pH 计:具塞比色管50mL 规格一致光学透明玻璃底部无阴影,pH 计精度0.1pH 单位,容量瓶250mL ,漏斗,滤纸等。 4、采样和样品: 所用与样品接触的玻璃器皿都要用盐酸或表面活性剂溶液加以清洗最后用蒸馏水或去离子水洗净沥干。 将样品采集在容积至少为1L 的玻璃瓶内在采样后要尽早进行测定 如果必须贮存则将样品贮于暗处在有些情况下还要避免样品与空气接触,同时要避免温度的变化。 5、操作步骤: 将样品倒入250mL(或更大)量筒中静置15min 倾取上层液体作为试料进行测定。 分别取试料水和光学纯水于具塞比色管中充至标线,将具塞比色管放在白色表面上,具塞比色管与该表面应呈合适的角度使光线被反射,自具塞比色管底部向上通过液柱垂直向下观察液拄,比较样品和光学纯水描述样品呈现的色度和色调,如果可能包括透明度。 将试料用光学纯水逐级稀释成不同倍数分别置于具塞比色管,并充至标线。将具塞比色管放在白色表面上,用上述相同的方法与光学纯水进行比较将试料稀释至刚好与光学纯水无法区别为止记下此时的稀释倍数值。 稀释的方法试料的色度在50 倍以上时用移液管计量吸取试料于容量瓶中用光学纯水稀至标线。每次取大的稀释比使稀释后色度在50 倍之内。 试料的色度在50 倍以下时在具塞比色管中取试料25mL 用光学纯水稀至标线每次稀释倍数为2 。 试料或试料经稀释至色度很低时,应自具塞比色管倒至量筒适量试料并计量,然后用光学纯水稀至标线,每次稀释倍数小于2 ,记下各次稀释倍数值。 另取试料测定pH 值。 6、结果的表示: 将逐级稀释的各次倍数相乘所得之积取整数值以此表达样品的色度 同时用文字描述样品的颜色深浅色调如果可能包括透明度

颜色检验方法

一铂钴、赛波特。加德纳、1500、酸洗、熔融色 测量各类有机溶液或油品的铂钴指数、赛波特指数、1500指数、加德纳指数、酸洗色 度等等指标。涉及标准主要有两类,人眼观察法(目视法)和仪器法,前者存在误差较大,后者稳定,但仪器碱有很大差异,需要了解差异并筛选自己的仪器。 1.常用标准: 1)铂钴:目视法ASTM D1209,GB3143,仪器法ASTM D5386,GB3143 2)赛波特:目视法:SH/T0168、GB/T6540、GBT3555,仪器法ASTM D156、1500、6045等 3)加德纳:GBT22295、ASTM D1544/6166 4)酸洗:ASTM D848、GB2012 5)ASTM颜色 铂钴,0-500色号 赛波特,-16-30 常用黄色指数表征方法 在视觉上,样品的黄度是同灼烧、沾染,光照降解、化学品的暴露和加工相关联,因此黄色指数(yellowness index , YI))主要用来测定这类现象的黄化程度。 常用的黄色程度表征指数有YI E313、YI D1925、Platinum-Cobalt、APHA、Hazen、Saybolt、Gardner、ASTM色度。适用对象即可为清澈、近无色的液体或固体(透射模式),又可为近白色、不透明固体(反射模式). 黄度指数简介 YI E313 是由ASTM E313推荐的黄度指数,适用于D65和C标准光源(也称标准照 明体)。2006年采用的计算式为: 100(CxX-CzZ)/Y 其中X、Y、Z分别为CIE三刺激值,Cx、Cz为系数(其值随标准光源,标准观察者角度而变,参见table 1). YI E313 适用于主波长在570-580nm的样品,或Munsell色调约在2.5GY-2.5Y范围内。YI E313可用于比较相同材质和外观的样品,比如样品的光泽、纹理、厚度(半透明或透明 样品)、透光性应较接近。 YI D1925是由ASTM D1925(TestMethod for Yellowness Index of Plastics)推荐的黄度指数,1962年采纳的计算公式为: 100(1.28X-1.06Z)/Y 该计算式只用于C/20,并于1995年退出。 Platinum-Cobalt(Pt-Co,铂-钴)色度、APHA色度、Hazen色度是相同颜色标尺的三 个名称,三者均以铂钴标准溶液为参比,但三者的使用范围稍有不同。一般来说,APHA色度用于废水行业进行水质分级;Hazen用于描述说明液态产品的色度(单位:HU)Pt-Co适用于捎带黄色,接近无色、清澈无雾度、光吸收特性近似铂钴标准溶液的液态样品,它表征的是液体样品的黄度。

火焰检测技术

火焰检测 火焰有着与众不同的特征,他的颜色、温度、形状以及跳动的形式都可以作为识别的依据。下面,我们将从火焰的静态特征和动态特征两方面入手进行火焰识别。 静态特征(颜色与形状) 首先,火焰有着与众不同的颜色特征。描述其颜色的模型有很多,图7就是其中一种,它可以由RGB空间经过简单比较计算得到。 图7 火焰颜色分布图 由上图,任何RGB图像中只要满足R>=G且G>B的颜色都可以看作是火焰。图8中显示了由该模型对各种火焰的检测结果。虽然这种模型的误报会很多,但可以作为最初始的筛选手段排除掉最不可能是火焰的物体。 图8 火焰图片(上行)及相应颜色检测结果(下行) 火焰的外形也是用来识别的重要特征。一种模型是采用嵌套式轮廓模型。它

默认火焰存在一个或几个燃烧点,火焰从这些燃烧点一层层的向外扩散。越到外层的地方其形状的可边度越大,而且是连续的。图9展示了一个燃烧点的火焰模型,它由三层火焰轮廓组成,对于其右侧图10中的火焰经过该模型捕捉得到图11结果。 图9 火焰模型 图10 火焰图片 图11 符合模型的火焰 动态特征(频率) 火焰是跳跃着的,或者说是移动变化着的。初看起来没有什么规律,其实,经研究发现,火焰的外焰部分的运动存在一定频率。从图12中红色标出的火焰外焰部分来看,这些像素点在经历着有火焰和无火焰两种状态的切换,这个切换的频率经过计算是10HZ 。这样,我们通过捕捉这个10赫兹的特征可以进一步确认是否有火焰的存在。 图12 火焰外焰部分 图13 外焰运动存在一定频率 除此之外,火焰的运动是有能量变化的。燃烧的物理变化和化学变化造成了火焰能量的不均衡分布。这点可以作为区分火焰与其他颜色相似运动物体的特征。图14中红色衣服上被黑色边框划出的区域能量变化在其右侧显示,可见衣服的能量分布是均匀的(显示为均一灰色,没有亮暗变化)。与之对比,火焰的能量变化就显得非常不均匀,在能量分布图上看得到明显的亮暗变化。

液相芯片

液相芯片技术及其临床应用 生物芯片主要包括基因芯片和蛋白芯片两大类,按寻址方式和最终检测载体又可分为固相芯片(flat microarrays)和液相芯片(1iquid chip or microsphere arrays)。近年来,液相芯片以其独特的优点及临床实用性,正受到越来越多的重视。现就液相芯片的技术原理、特点及临床应用前景作简要介绍。 【摘要】液相芯片技术是一种利用混悬在液相中的分类编码微球作为反应及信号检测载体的检测技术,它充分利用发展成熟的流式细胞术检测原理,对临床大多数生物分子(如核酸、蛋白质等)进行高通量分析。目前已在研究和临床检测中得到了广泛的应用,现就其技术原理、特点及临床应用作简要介绍。 【关键词】芯片分析技术流式细胞术 生物芯片主要包括基因芯片和蛋白芯片两大类,按寻址方式和最终检测载体又可分为固相芯片(flat microarrays)和液相芯片(1iquid chip or microsphere arrays)。近年来,液相芯片以其独特的优点及临床实用性,正受到越来越多的重视。现就液相芯片的技术原理、特点及临床应用前景作简要介绍。 液相芯片技术原理 1.微球编码与反应原理:固相芯片通过空间位置寻址来识别不同点阵元素(即区别不同的特异性反应),液相芯片则通过反应载体——微球所具有的物理、光学信号(如大小或颜色)来识别点阵元素?。液相芯片技术是一种以经过特殊编码、可识别的微球(encoded microspheres or beads)作为生物分子(抗原、抗体、蛋白质、核酸等)反应及信号检测载体的阵列分析技术。液相芯片采用的分子杂交反应类型与固相芯片类似,只是所有的反应在混悬于液相中的微球表面上进行,故也称为悬浮式点阵技术(suspension array technology,SAT)。 SAT技术主要包括点阵信号识别和检测信号识别两部分,现以临床最常用的双位点夹心法来说明液相芯片的基本技术原理。SAT主要由微球、探针分子(A)、被检测物(B)、报告分子(c)4个部分构成。 微球的主要化学成分为聚苯乙烯,其表面修饰的羧基功能基团在一定条件下可以共价结合任何含有氨基的目标分子,对其表面进行不同的化学结构修饰,可使结合的目标分子更具选择性。将微球采用物理或化学方法进行编码分类,不同编码类别的微球即可区分不同的特异性反应。微球编码方式多种多样],如微球大小、颜色、荧光金属纳米技术等,其中最常用的是荧光编码技术,即在制备过程中掺人两种或多种不同颜色分类荧光分子,根据加入比例不同将同种大小的微球进行独特编码。 探针分子是可以和微球表面的羧基等基团偶联并能与被检测物特异性结合的生物分子。报告分子的作用是为每种不同的特异性反应提供检测信号,其可以是一种能与被检测物特异性结合的荧光染料,也可以是标记有荧光的、能与被检测物结合的其他物质(如抗体、抗原、核酸等)。为了和微球分类荧光有明显区别,一般以绿色荧光作为报告分子的标记荧光,任何一种可以激发绿色荧光的荧光染料均可作为报告分子的荧光标记物。 将不同编码类别的微球分别与不同的探针分子反应结合后,混合在一起,再依次加入样品及报告分子,不同微球上的探针分子与样品中需要检测的各种目标分子进行特异性结合,报告分子与目标分子特异性结合,即构成了一个液相芯片系统。因此,可在同一混悬体系中对同一样品中的多种目标分子进行同时分析。 2.检测原理:微球编码技术不同,信号的检测方式也各不相同。流式细胞术是目前应用最广、技术最成熟的一种信号识别和检测技术。 微球单个逐一通过检测通道时受到双色激光(如红色和绿色)同时照射,第一束激光激发微球的分类荧光,根据荧光编码确定微球的类别,即微球内部的两种荧光物质受激发后可发射两种不同波长的荧光,不同类别微球内这两种荧光物质比例不同,则荧光强度比率也不同,从而将不同的特异性反应区分开来(定性、分类);第二束激光激发报告分子

GB纺织品检测标准

服装理化性能的检验方法 1 范围 本标准规定了服装及服饰产品理化性能检验的取样方法、测试设备、测试方法等。 本标准适用于服装及服饰产品的理化性能技术指标的检验。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 18401 国家纺织产品基本安全技术规范 GB/T 2910 纺织品二组分纤维混纺产品定量化学分析方法 GB/T 2911 纺织品三组分纤维混纺产品定量化学分析方法 GB/T 2912.1 纺织品甲醛的测定第1部分:游离水解的甲醛(水萃取法) GB/T 3917.1 纺织品织物撕破性能第1部分:撕破强力的测定冲击摆锤法 GB/T 3917.2 纺织品织物撕破性能第2部分:舌形试样撕破强力的测定 GB/T 3917.3 纺织品织物撕破性能第3部分:梯形试样撕破强力的测定 GB/T 3920 纺织品色牢度试验耐摩擦色牢度 GB/T 3921.1 纺织品色牢度试验耐洗色牢度 GB/T 3921.3 纺织品色牢度试验耐洗色牢度 GB/T 3922 纺织品色牢度试验耐汗渍色牢度 GB/T 5453 纺织品织物透气性的测定 GB/T 5455 纺织品燃烧性能试验垂直法 GB/T 5711 纺织品色牢度试验耐干洗色牢度 GB/T 5713 纺织品色牢度试验耐水洗色牢度 GB/T 6152 纺织品色牢度试验耐热压色牢度 GB/T 7573 纺织品水萃取液pH值的测定 GB/T 8427 纺织品耐光色牢度试验方法:氙弧 GB/T 8629 纺织品试验用家庭洗涤和干燥程序 GB/T 11048 纺织品保温性能试验方法 GB/T 12704 织物透湿量测定方法透湿杯法 GB/T 14644 纺织品燃烧性能45°方向燃烧速率测定 GB/T 17592.1 纺织品禁用偶氮染料检测方法第1部分:气相色谱/质谱法 GB/T 17593 纺织品重金属离子检测方法原子吸收分光光度法 GB/T 18886 纺织品色牢度试验耐唾液色牢度 FZ/T 01026 纺织品四组分纤维混纺产品定量化学分析方法 FZ/T 01057 纺织纤维鉴别试验方法

Merck Millipore-液相芯片技术在肿瘤检测和研究中的应用

Milliplex/Luminex液相芯片技术在肿瘤检测和研究的应用 前言 目前,肿瘤标志物的研究与应用已成为肿瘤防治的重点和热点。但当前肿瘤标志物检测能否达到早期诊断的效果?有无在人群中进行普查或筛查的价值?其临床意义如何解释?怎样规范与合理应用?尚存在诸多争议。为此,中华医学会检验医学分会肿瘤标志物专家委员会,在2002年至2004年分别召开3次专家研讨会,起草制订了“肿瘤标志物临床检测的基本原则(建议稿) ”对以上问题进行了解释。本文主要从以下几个方面进行介绍: ●肿瘤标志物临床检测的基本原则 ●肿瘤标志物的检测指标 ●肿瘤标志物的高危人群检测项目 ●肿瘤血管的形成 ●慢性炎症与肿瘤微环境 ●趋化因子与肿瘤微环境 ●液相芯片技术原理 ●Milliplex肿瘤微环境相关试剂盒介绍 ●肿瘤微环境与肿瘤标记应用的相关文献 一、肿瘤标志物临床检测的基本原则 肿瘤标志物( TM) 是指在恶性肿瘤发生和增殖过程中,由肿瘤细胞的基因表达而合成分泌的或是由机体对肿瘤反应而异常产生和/ 或升高的,反映肿瘤存在和生长的一类物质,包括蛋白质、激素、酶(同工酶) 、多胺及癌基因产物等。TM 存在于病人的血液、体液、细胞或组织中,可用生物化学、免疫学及分子生物学等方法测定,且对肿瘤的辅助诊断、鉴别诊断、观察疗效、监测复发以及预后评价具有一定的价值。 TM在肿瘤监测中的价值:TM的主要临床应用价值是判断治疗肿瘤治疗疗效和复发监测。临床可通过对肿瘤患者治疗前后及随访中TM浓度变化的监测,了解肿瘤治疗是否有效,并判断其预后,为进一步治疗提供参考依据。为确定何种TM适用于对肿瘤患者进行治疗监测,在患者治疗前应做相关TM检测。 TM浓度变化对肿瘤的疗效判断价值:恶性肿瘤治疗后TM浓度的变化与疗效之间有一定的相关性。治疗前TM浓度变化,常有三种类型:①TM浓度下降到参考范围,提示肿瘤治疗有效。②TM浓度下降但仍持续在参考范围以上,提示有肿瘤残留和/ 或肿瘤转移。 ③TM浓度下降到参考范围一段时间后,又重新升高,提示肿瘤复发或转移。 TM的定期随访原则:恶性肿瘤治疗结束后,应根据病情对治疗前升高的TM作定期随访监测。不同的TM半衰期不同,所以监测的时间和周期也不同。大部分国内外专家建议,治疗后6 W做首次测定,3年内每3月测定一次;3~5 年每半年一次,5~7 年每年一次。随访中如发现有明显升高,应1 月后复测一次,连续2次升高,可预示复发或转移。此预示常早于临床症状和体征,而有助于临床及时处理。 TM 的联合检测原则:同一种肿瘤或不同类型的肿瘤可有一种或几种TM异常;同一种TM可在不同的肿瘤中出现。为提高TM 的辅助诊断价值和确定何种TM可作为治疗后的随访监测指标,可进行联合检测,但联合检测的指标须经科学分析、严格筛选。在上述前提下,合理选择几项灵敏度、特异性能互补的TM 构成最佳组合,进行联合检测。经过临床应用,以循证医学的观点来评价和修改联合检测的TM 组合。 二、肿瘤标志物的检测指标 每年全球癌症死亡人数约为700万人,其中24%发生在中国。中国癌症患者的生存患者和治愈患者仅为13%,肿瘤防治水平远低于世界平均水平。世界卫生组织作出最新权威

纤维和纺织品测试技术.doc

内容简介 《纤维和纺织品测试技术(第3版)》内容简介:纤维和纺织品的生产,在国民经济和人民生活中占有重要地位。随着纤维工业的迅速发展,纤维和纺织品日益丰富多彩,品种不断增加,性能不断改善。穿着用纺织品不但要有外观美感、风格和穿着舒适性,而且要符合生态安全要求。装饰用和产业用纺织品的需求量也在增加,对纺织品的阻燃、抗静电、隔热等性能也提出了新的要求。纺织品所表现出来的各种特性,是和组成它的纤维品种、纱线和织物的结构以及织物后整理工艺等多方面因素有关。为了能生产品质优良且符合使用要求的纺织品,研究开发新型纺织纤维材料,纤维、纱线和织物结构和性能的测试十分重要。 随着科学技术的进步,纺织测试技术有了很大发展。新的测试方法、新型传感器以及计算机技术的应用,使纺织测试技术发展到了一个新的阶段,出现了不少功能齐全、自动化程度高、数 处理能力强以及结构精密的测试设备。由于纤维和纺织品的结构和性能是多方面的,纺织测试仪器的种类十分繁多,同一类型的仪器也在不断更新换代。如果能深入地掌握仪器的测试原理和测试技术的基本要求,就能在使用中更好地把握仪器的性能,在科学研究中更好地发挥它的作用。纤维和纺织品的测试不仅和纺织、化纤和服装工业有关,还和轻工业、建筑材料等其他工业用纺织材料有关,与农业和畜牧业的培育改良品种有关,与贸易中的商品交换验收和定价有关,与军用被服、特种纺织品以及航天服研究有关,和纺织院校教学科研关系密切。纤维和纺织品测试技术在国民经济、科学技术和国防工业等各个领域中的应用是十分广泛的。 在编写中,《纤维和纺织品测试技术(第3版附DVD光盘1张)》由浅人深、较系统地阐明了纤维和纺织品测试的基本原理,对国内外发展的新测试方法和典型仪器进行介绍,使其既有理论,又有应用实践;既有广度,又有深度。编写中注意其内容能适合不同类型人员的需要。在第一版和第二版的出版基础上,根据教学和研究工作需要对原书多章内容进行了修改和充实。 《纤维和纺织品测试技术(第3版附DVD光盘1张)》是一本内容较为完整的纺织测试技术书籍,是涉及基础和专业知识以及多学科交叉的教科书,可供纺织院校本科生、研究生作为教材,也可供生产企业、测试中心、检验机构和研究单位专业技术人员阅读参考。 为了能提高学生使用教材进行学习的直观效果,《纤维和纺织品测试技术(第3版附DVD光盘1张)》第三版开始附加教学光盘,内容除提便 于教师讲课的各章PPT外,重点对反映测试技术发展的以下四部分内容进行实际操作录像:(1)新纤化学纤维测试系统;(2)乌斯特棉纤维测试系统;(3)生态纺织品测试技术;(4)纤维结构分析技术。 编辑推荐 《纤维和纺织品测试技术(第3版)》:普通高等教育“十一五”国家级规划教材 目录 第一章测量方法与误差 第一节概述 第二节测量误差 第三节仪器的静态和动态特性 第四节试样误差 第五节异常值处理和试验方法精密度估计 第六节测量结果的不确定度 第二章纤维长度、卷曲和热收缩测试 第一节纤维长度测量概述

相关文档
相关文档 最新文档