文档库 最新最全的文档下载
当前位置:文档库 › 高考数学解答题专题函数与导数

高考数学解答题专题函数与导数

高考数学解答题专题函数与导数
高考数学解答题专题函数与导数

高考数学解答题专题--函数与导数

2.(辽宁卷22).(本小题满分14分) 设函数ln ()ln ln(1)1x

f x x x x

=

-+++. (Ⅰ)求f(x)的单调区间和极值;

(Ⅱ)是否存在实数a ,使得关于x 的不等式()f x a ≥的解集为(0,+∞)若存在,求a 的取值范围;若不存在,试说明理由.

本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.满分14分. 解:(Ⅰ)22

1ln 11ln ()(1)(1)1(1)x x

f x x x x x x x '=

--+=-++++. ········································· 2分

故当(01)x ∈,时,()0f x '>,

(1)x ∈+,∞时,()0f x '<

所以()f x 在(01),单调递增,在(1)+,∞单调递减. ····························································· 4分 由此知()f x 在(0)+,∞的极大值为(1)ln 2f =,没有极小值. ·········································· 6分 (Ⅱ)(ⅰ)当0a ≤时,

由于[]ln(1)ln(1)ln (1)ln(1)ln ()011x x x x x x x x f x x x

+++-++-=

=>++, 故关于x 的不等式()f x a ≥的解集为(0)+,∞. ·

······························································· 10分 (ⅱ)当0a >时,由ln 1()ln 11x f x x x ??=++ ?+??

知ln 21(2)ln 1122n n

n n

f ??

=++ ?+??

,其中n 为正整数,且有

22

211ln 11log (1)2

22n n

n

n a e n e ?

?+-- ???

. ·

····················································· 12分

又2n ≥时,ln 2ln 2ln 22ln 2

(1)121(11)12

n n n

n n n n n =<=-+++-. 且

2ln 24ln 2

112a n n n

+-. 取整数0n 满足2

02log (1)n

n e >--,04ln 2

1n a

>

+,且02n ≥, 则0000ln 21(2)ln 112222

n

n n

n a a

f a ?

?=

++<+= ?+??, 即当0a >时,关于x 的不等式()f x a ≥的解集不是(0)+,∞.

综合(ⅰ)(ⅱ)知,存在a ,使得关于x 的不等式()f x a ≥的解集为(0)+,∞,且a 的取值范围为(]0-∞,. 14分 1.已知函数)(ln )(R a x

a

x x f ∈+=

(Ⅰ)求)(x f 的极值;

(Ⅱ)若函数)(x f 的图象与函数)(x g =1的图象在区间],0(2

e 上有公共点,求实数a 的取值范围。

1解:(1)2

)

(ln 1)(),,0()(x a x x f x f +-=

'+∞的定义域为

令a e x x f -=='10)(得

当)(,0)(,),0(1x f x f e x a

>'∈-时是增函数

当)(,0)(,),(1x f x f e

x a

<'+∞∈-时是减函数

∴111)()(,)(---===a a a

e e

f x f e x x f 极大值处取得极大值在

(2)(i )当21e e a

<-时,时1->a ,由(Ⅰ)知),0()(1a e x f -在上是增函数,在]

,(21e e a -上是减函数

11()()a a max f x f e e --∴==

又当],(.0)(],0(,0)(,2e e x x f e

x x f e x a a

a

---∈<∈==当时当时时,).0()(1-∈a e x f 所以

1)()(=x g x f 与图象的图象在],0(2e 上有公共点,等价于11≥-a e

解得1,1,1≥->≥a a a 所以又 (ii )当121-≤≥-a e e

a

即时,],0()(2e x f 在上是增函数,

∴2

222)(],0()(e a

e f e x f +=上的最大值为在 所以原问题等价于

.2,122

2

-≥≥+e a e

a 解得 又1-≤a Θ,∴无解 2.已知函数)1ln()ln(1

)

ln()(++-+=

x ax x ax x f , ),0(R a a ∈≠ (Ⅰ)求函数()f x 的定义域; (Ⅱ)求函数()f x 的单调区间;

(Ⅲ)当a >0时,若存在x 使得()ln(2)f x a ≥成立,求a 的取值范围. 2解:(Ⅰ)当0>a 时函数()f x 的定义域为),0(+∞;

当0

(Ⅱ)111)

1()

ln(1

)(2

++-+-+='x x x ax x x x f 2

22)

1()

ln()1()1()1()ln()1(+-=++++--+=x ax x x x x x ax x x 令()0f x '=时,得ln 0ax =即1

x a

=

, ①当0a >时,1(0,)x a

∈时()0f x '>,当1(,)x a

∈+∞时,()0f x '<, 故当0a > 时,函数的递增区间为1(0,)a ,递减区间为1(,)a

+∞ ②当10a -≤<时,10ax -<<,所以()0f x '>, 故当10a -≤<时,()f x 在(1,0)x ∈-上单调递增.

③当1a <-时,若1(1,)x a ∈-,()0f x '<;若1(,0)x a

∈,()0f x '>, 故当1a <-时,()f x 的单调递增区间为1(,0)a ;单调递减区间为1(1,)a

-.

(Ⅲ)因为当0a >时,函数的递增区间为1(0,)a ;单调递减区间为1(,)a

+∞ 若存在x 使得()ln(2)f x a ≥成立,只须1()ln(2)f a a

≥,

即0

11ln()ln 2201112

a a a a a a a a a >?++?

≤?≥??<≤?-≤≤?? 4.已知函数21()x g x x c +=+的图像关于原点成中心对称 ,设函数21()()ln x cx f x g x x

++=.

(1)求()f x 的单调区间;

(2)已知x

m

e x >对任意(1,)x ∈+∞恒成立.求实数m 的取值范围(其中e 是自然对数的底数).

4解: (1) 由已知可得C=0, ∴,ln

)(,1)(2x x

x f x x x g =+= 2ln 1

()ln x f x x

-'=

, 令()0f x '=,得x e =.列表如下: x

(0,1) (1,)e

(,)e +∞

()f x ' - - + ()f x

单调减

单调减

单调增

所以()f x 的单调增区间为(,)e +∞,单调减区间为(0,1)和(1,)e (2)在x m

e x >两边取对数,得ln x m x >.而1x >.所以ln x m x

< 由(1)知当(1,)x ∈+∞时,()()f x f e e ≤=.所以m e <. 5.设函数x b x x f ln )1()(2

+-=,其中b 为常数. (Ⅰ)当2

1

>

b 时,判断函数()f x 在定义域上的单调性; (Ⅱ)若函数()f x 的有极值点,求b 的取值范围及()f x 的极值点; (Ⅲ)若1b =-,试利用(II )求证:n ≥3时,恒有

()

211

ln 1ln n n n n

<+-<。 5解:(1)由题意知,()f x 的定义域为),0(+∞,

)0( 21)21(22222)('22

>-

+-=+-=+-=x x

b x x b x x x b x x f ∴当2

1

>b 时, ()0f x '>,函数()f x 在定义域),0(+∞上单调递增.

(2) ①由(Ⅰ)得,当1

2

b ≥

时,/()0f x ≥,函数()f x 无极值点. ②当1

2

b <

时,()0f x '=有两个不同解,221211b x --=22121 ,2b x -+=

)≤∴b i 时

,舍去),0(02

21211+∞?≤--=

b x ,

),0(12

2121 2+∞∈≥-+=

b

x 而, 此时 ()f x ',()f x 随x 在定义域上的变化情况如下表:

x

),0(2x 2x 2()x +∞,

()f x '

-

+

()f x

极小值

由此表可知:0b ≤时,()f x 有惟一极小值点2

2121 ,b

x -+=

, ii ) 当1

02

b <<

时,0<21x x <<1 此时,()f x ',()f x 随x 的变化情况如下表: x

()10,x

1x

12()x x , 2x 2()x +∞,

()f x ' +

-

+

()f x

极大值

极小值

由此表可知:1

02

b <<

时,()f x 有一个极大值221211b x --=和一个极小值点

2

21212b

x -+=

; 综上所述:当0≤b 时,()f x 有惟一最小值点2

2121 ,b

x -+=

; 当1

02

b <<

时,()f x 有一个极大值点22121b x --=和一个极小值点22121b x -+=

(3)由(2)可知当1b =-时,函数x x x f ln )1()(2

--=,此时()f x

有惟一极小值点

x =

且为减函数在时,)2

3

1,0()( ,0)(')231,

0(+<+∈x f x f x 成立

时恒有当,即恒有恒有,时,当 1

ln )1ln( 3 )1

1ln(10 )11(f(1) 23

134111 0 3 22n

n n n n n

n f n n >-+≥∴+->+>∴+<≤+

<<≥Θ

令函数 )0 ln )1()(>--=x x x x h (x x x x h 1

11)(' -=

-=则 2

1

ln )1ln(1 3 1

)11ln(ln )1ln(0

)1

1ln(n 1 )1()11( 111 3)(),1[1)( 0)(' 1n

n n n n n n n n n

h n h n n x h x x x h x h x >-+>≥<

+=-+∴>+->+∴+<≥+∞∈∴=>>∴时恒有综上述可知即时为增函数

时处连续在,又时,Θ 6.已知函数2

2

1

()ln(1),().1

f x x

g x a x =+=

+- (1) 求()g x

在P g 处的切线方程;l

(2) 若()f x 的一个极值点到直线l 的距离为1,求a 的值; (3) 求方程()()f x g x =的根的个数. 6解:(1)'

22

2()(1)

x g x x -=

-Q

'

g ∴=-

且1g a =+ 故()g x

在点P g

处的切线方程为:50y a +--= (2)由'

2

2()01

x

f x x =

=+得0x =, 故()f x 仅有一个极小值点(0,0)M ,根据题意得:

513

a d +== 2a ∴=-或8a =-

(3)令2

21

()()()ln(1)1

h x f x g x x a x =-=+--- '2222222211()21(1)1(1)x x h x x x x x x ??

=

+=+??+-+-??

当[0,1)(1,)x ∈?+∞时,'

()0h x ≥ 当(,1)(1,0)x ∈-∞-?-时,'

()0h x <

因此,()h x 在(,1),(1,0)-∞--时,()h x 单调递减, 在(0,1),(1,)+∞时,()h x 单调递增.

又()h x 为偶函数,当(1,1)x ∈-时,()h x 极小值为(0)1h a =- 当1x -→-时,()h x →-∞, 当1x +

→-时,()h x →+∞ 当x →-∞时,()h x →+∞, 当x →+∞时,()h x →+∞ 故()()f x g x =的根的情况为:

当10a ->时,即1a <时,原方程有2个根; 当10a -=时,即1a =时,原方程有3个根;

当10a -<时,即1a >时,原方程有4个根

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

2020年高考数学导数压轴题每日一题 (1)

第 1 页 共 1 页 2020年高考数学导数压轴题每日一题 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例1 (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-10+m =0?m =1, 定义域为{x |x >-1}, f ′(x )=e x -1x +m =e x (x +1)-1x +1, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2), 则g ′(x )=e x -1x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1(x +2)2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -132 <0,g ′(0)=1-12>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =(1+t )2t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.

导数练习题 含答案

导数练习题 班 级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2 +1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4+2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2 运动,则在t =3时的瞬时速度为( ) A . 6 B .18 C .54 D .81 5.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C . 2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程 为( ) A .y =x -2 B .y =x C .y =x + 2 D .y =-x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点 处的切线倾斜角为π 4的是( ) A .(0,0) B .(2,4) C .(14,1 16) D .(12,1 4) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b = 1 B .a =-1,b =1 C .a =1,b =- 1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C . 6 D .9 12.已知函数f (x )=1 x ,则f ′(-3)=( ) A . 4 B.1 9 C .-14 D .-1 9 13.函数y =x 2 x +3 的导数是( )

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答 案) 选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是() A.b2-4ac0 B.b0,c0 C.b=0,c D.b2-3ac0 [答案] D [解析]∵a0,f(x)为增函数, f(x)=3ax2+2bx+c0恒成立, =(2b)2-43ac=4b2-12ac0,b2-3ac0. 2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3) C.(1,4) D.(2,+) [答案] D [解析]考查导数的简单应用. f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex, 令f(x)0,解得x2,故选D. 3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+) B.(-,2]

C.(-,-1)和(1,2) D.[2,+) [答案] B [解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2]. 4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf(x)0 f(x)0,故y=f(x)在(0,1)上为减函数 当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x(-)的单调增区间是() A.-,-2和0,2 B.-2,0和0,2 C.-,-2, D.-2,0和 [答案] A [解析]y=xcosx,当-x2时, cosx0,y=xcosx0, 当02时,cosx0,y=xcosx0. 6.下列命题成立的是() A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

函数与导数解答题训练

函数与导数解答题训练2 1.设函数ax x x a x f +-=22ln )(,0>a . (1)求)(x f 的单调区间; (2)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立.注:e 为自然对数的底数. 2.已知函数322()4361,f x x tx t x t x R =+-+-∈,其中t R ∈. (1)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0t ≠时,求()f x 的单调区间; (3)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 3.设01a <<,集合{|0}A x R x =∈>,2{|23(1)60}B x R x a x a =∈-++>,D A B =. (1)求集合D (用区间表示); (2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点.

4.已知函数321()3 f x x x ax =++. (1)讨论()f x 的单调性; (2)设()f x 有两个极值点12,x x ,若过两点11(,())x f x ,22(,())x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值. 5.已知函数32()f x x ax bx c =+++在23 x =-与1x =时都取得极值. (1)求a 、b 的值与函数()f x 的单调区间; (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围. 6.设函数2()ln f x x ax b x =++,曲线()y f x =过(1,0)P ,且在P 点处的切斜线率为2. (1)求,a b 的值; (2)证明:()2 2.f x x ≤-

函数与导数专题试卷(含答案)

高三数学函数与导数专题试卷 说明:1.本卷分第Ⅰ卷(选择题),第Ⅱ卷(填空题与解答题),第ⅠⅡ卷的答案写在答题卷的答案纸上,学生只要交答题卷. 第Ⅰ卷 一.选择题(10小题,每小题5分,共50分) (4)()f x f x +=,当(0,2)x ∈时,()2f x x =+,则(7)f =( ) A . 3 B . 3- C . D . 1- 2.设A ={x ||x |≤3},B ={y |y =-x 2+t },若A ∩B =?,则实数t 的取值范围是( ) A .t <-3 B .t ≤-3 C .t >3 D .t ≥3 3.设0.3222,0.3,log (0.3)(1)x a b c x x ===+>,则,,a b c 的大小关系是 ( ) A .a b c << B .b a c << C .c b a << D .b c a << 4.函数x x f +=11)(的图像大致是( ) 5.已知直线ln y kx y x ==是的切线,则k 的值为( ) A. e B. e - C. 1e D. 1e - 6.已知条件p :x 2+x-2>0,条件q :a x >,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .1≥a B .1≤a C .1-≥a D.3-≤a 7.函数3()2f x x ax =+-在区间(1,)+∞上是增函数,则a 的取值范围是( ) A. [3,)+∞ B. [3,)-+∞ C. (3,)-+∞ D. (,3)-∞- 8. 已知函数f (x )=log 2(x 2-2x -3),则使f (x )为减函数的区间是( ) A .(-∞,-1) B .(-1,0) C .(1,2) D .(-3,-1)

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

函数与导数练习题(有答案)

函数与导数练习题(高二理科) 1.下列各组函数是同一函数的是 ( ) ①()f x = ()g x =()f x x = 与()g x =; ③0()f x x =与01 ()g x x = ;④2()21f x x x =--与2()21g t t t =--. A 、①② B 、①③ C 、③④ D 、①④ 2.函数2 4 ++= x x y 的定义域为 . 3.若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 4.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 5.下列函数中,在()0,2上为增函数的是( ) A .12 log (1)y x =+ B .2 log y =C .2 1log y x = D .2 log (45)y x x =-+ 6.)(x f y =的图象关于直线1-=x 对称,且当0>x 时,,1 )(x x f =则当2-

集合与简易逻辑函数与导数测试题(含答案)

集合与简易逻辑、函数与导数测试题 1.若集合{ }8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U )B 等于 ( )A.{}5 B . { }7,3,1 C .{}8,2 D. {}8,7,6,5,4,3,1 2.函数()2()3log 6f x x x =+-的定义域是( ) A .{}|6x x > B .{}|36x x -<< C .{}|3x x >- D .{}|36x x -<≤ 3.已知23:,522:≥=+q p ,则下列判断中,错误的是 ( ) A .p 或q 为真,非q 为假 B . p 或q 为真,非p 为真 C .p 且q 为假,非p 为假 D . p 且q 为假,p 或q 为真 4.下列函数中,既是偶函数又在)0,(-∞上单调递增的是 ( ) A .3y x = B .y cos x = C .y ln x = D .2 1 y x = 5.对命题” “042,02 00≤+-∈?x x R x 的否定正确的是 ( ) A .042,02 00>+-∈?x x R x B .042,2≤+-∈?x x R x C .042,2>+-∈?x x R x D .042,2≥+-∈?x x R x 6.为了得到函数x y )3 1(3?=的图象,可以把函数x y )31 (=的图象 A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度 7.如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是 A .在区间(-2,1)上)(x f 是增函数 B .在(1,3)上)(x f 是减函数 C .在(4,5)上)(x f 是增函数 8. 若函数) )(12()(a x x x x f -+= 为奇函数,则a 的值为 ( ) A .21 B .32 C .4 3 D .1 9.已知定义域为R 的函数f (x )在区间(4,+∞)上为减函数,且函数y =f (x +4)为偶函数,则( ) O y x 1 2 4 5 -3 3 -2

函数与导数经典例题高考压轴题含答案

函数与导数经典例题-高考压轴 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥L . 3. 设函数ax x x a x f +-=2 2ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2 )(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数 的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

导数与函数的单调性练习题

2.2.1导数与函数的单调性 基础巩固题: 1.函数f(x)= 21 ++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.021 C.a>2 1 D.a>-2 答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>2 1 . 2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( ) A .a ≥0 B .a <-4 C .a ≥0或a ≤-4 D .a >0或a <-4 答案:C 解析:∵f ′(x )=2x +2+a x ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1) 上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),02 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

函数与导数解答题答案文科

函数与导数解答题答案(文科) 1. (2017省一统21)解:(I)当 f‘(x)令f‘ (x)=0计算得出当时,f' (x)函数(II )对 令时f (x), 此时函数 ,此时函数单调递减.时, 单调递减区间为, 恒成立 ? 单调递增; 当, 时, 函数, 的单调递增区间为: , 恒成立?, 则g‘ (x),① 此时函数 时,g‘(x)在R上单调递增 ,,恒成立,满足条件.②时,令g‘ (x)=0计算得出,则时,g‘ (x),此时函数在R上单调递增;时,g‘ (x),此时函数在R上单调递减.当时,函数取得极小值即最小值,则, 计算得出③ 则 时,令

g‘(x)=0计算得出时,g‘ (x) 时,g‘(x),此时函数, 此时函数,在R上单调递增;在R上单调递减.当时,函数取得极小值即最小值, 则综上可得:a 的求值范围是, 计算得出 2.(2017 省二统21)解:(1)根据题意可以知道函数的定义域为 当时,, ①当②当综上 , 或时 5 的单调递增区间为时, 5 ,单调递减. ,单调递增. ,单调递减区间为 (2)由,得, 整理得, , 令,则 令,, 在上递增

得,, 存在唯一的零点 当 在 当时 ,上递减; 时 ,, 在上递增. , 要使对任意恒成立,只需 又 3.解 :(1),且时 ,,的最大值为3. 5 '(x),‘(1)=3,,数在点处的切线方程为,(2)函数在上是增函数,‘(x),在上恒成立, 即,在上恒成立, 令,当且仅当时,取等号, 5 (3) 的取值范围为 5 '(x),①当时,在上单调递减,, 计算得出(舍去); ②当且时,即,在上单调递减,在 上单调递增,,计算得出,满足条件;③当,且时,即,在上单调

集合与简易逻辑函数与导数测试题(含答案)

集合与简易逻辑、函数与导数测试题 时间:100分钟 满分:130分 1.若集合{ }8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U )B 等于( ) A.{}5 B . { }7,3,1 C .{}8,2 D. {}8,7,6,5,4,3,1 2.函数()2()3log 6f x x x =+-的定义域是( ) A .{}|6x x > B .{}|36x x -<< C .{}|3x x >- D .{}|36x x -<≤ 3.已知23:,522:≥=+q p ,则下列判断中,错误的是 ( ) A .p 或q 为真,非q 为假 B . p 或q 为真,非p 为真 C .p 且q 为假,非p 为假 D . p 且q 为假,p 或q 为真 4.下列函数中,既是偶函数又在)0,(-∞上单调递增的是 ( ) A .3y x = B .y cos x = C .y ln x = D .21 y x = 5.对命题” “042,02 00≤+-∈?x x R x 的否定正确的是 ( ) A .042,02 00>+-∈?x x R x B .042,2≤+-∈?x x R x C .042,2>+-∈?x x R x D .042,2≥+-∈?x x R x 6.为了得到函数x y )3 1(3?=的图象,可以把函数x y )31 (=的图象 A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度 7.如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是 A .在区间(-2,1)上)(x f 是增函数 B .在(1,3)上)(x f 是减函数 C .在(4,5)上)(x f 是增函数 8. 若函数) )(12()(a x x x x f -+= 为奇函数,则a 的值为 ( ) A .21 B .32 C .4 3 D .1 9.已知定义域为R 的函数f (x )在区间(4,+∞)上为减函数,且函数y =f (x +4)为偶 O y x 1 2 4 5 -3 3 -2

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

函数与导数测试题

《函数与导数》测试题 一、选择题 1.函数x e x x f )3()(-=的单调递增区间是 ( ) A. )2,(-∞ B.(0,3) C.(1,4) D. ),2(+∞ 解析 ()()(3)(3)(2)x x x f x x e x e x e '''=-+-=-,令()0f x '>,解得2x >,故选D 2. 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为 ( ) B. 2 C.-1 解:设切点00(,)P x y ,则0000ln 1,()y x a y x =+=+,又0' 01 |1x x y x a == =+Q 00010,12x a y x a ∴+=∴==-∴=.故答案 选B 3.已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点 (1,(1))f 处的切线方程是( ) A.21y x =- B.y x = C.32y x =- D.23y x =-+解析 由2()2(2)88f x f x x x =--+-得几何 2(2)2()(2)8(2)8f x f x x x -=--+--, 即22()(2)44f x f x x x --=+-,∴2()f x x =∴/()2f x x =,∴切线方程 12(1)y x -=-,即210x y --=选A 4.存在过点(1,0)的直线与曲线3y x =和215 94 y ax x =+ -都相切,则a 等于 () A .1-或25-64 B .1-或214 C .74-或25 -64 D .74-或7 解析 设过(1,0)的直线与3y x =相切于点300(,)x x ,所以切线方程为 320003()y x x x x -=- 即230032y x x x =-,又(1,0)在切线上,则00x =或03 2 x =-,

(word完整版)高考导数解答题中常见的放缩大法

(高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为 sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ??? , ) ln 1x x <>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102 x x x x +≤--<<,()()21ln 102 x x x x +≥-> (放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+ 第二组:指数放缩

变化率与导数测试题

变化率与导数测试题Last revision on 21 December 2020

变化率与导数测试题 一、选择题: 1、函数y =x 2co sx 的导数为( ) A 、y ′=2xcosx -x 2sinx B 、y ′=2xcosx+x 2sinx C 、 y ′=x 2cosx -2xsinx D 、y ′=xcosx -x 2sinx 2设曲线1 1 x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .1 2 - D .2- 3、已知函数2()21f x x =-的图象上一点(11),及邻近一点(11)x y +?+?,,则y x ??等于( ) A.4 B.42x +? C.4x +? D.24()x x ?+? 4、曲线3 () 2f x x x 在0p 处的切线平行于直线41y x ,则0p 点的坐标为( ) A.( 1 , 0 ) B.( 2 , 8 ) C.( 1 , 0 )或(-1, -4) D.( 2 , 8 )和或(-1, -4) 5、已知32()(6)1f x x ax a x =++++,f '(x)=0有不等实根,则a 的取值范围为( ) A .12a -<< B .36a -<< C .1a <-或2a > D .3a <-或6a > 6、在函数x x y 83-=的图象上,其切线的倾斜角小于4 π 的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D . 0 7、已知,12132431()cos ,()(),()(),()() ()(),n n f x x f x f x f x f x f x f x f x f x -''''=====则 2008()f x = ( ) A. sin x B. sin x - C. cos x D. cos x - 8、32()32f x ax x =++,若(1)4f '-=,则a 的值等于( ) A .319 B .316 C .313 D .310 9、某汽车的路程函数是3221 2(10m/s )2 s t gt g =-=,则当2t s =时,汽车的加速度是( )

函数与导数例题高考压轴题含答案

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(), ,,;()2t t f x ??-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(),,,;()2t t f x ??-∞-+∞ ??? 的单调递减区间是,.2t t ? ?- ??? (Ⅲ)证明:由(Ⅱ)可知,当0t >时,()f x 在0,2t ? ? ??? 内的单调递减,在,2t ?? +∞ ??? 内单调递增,以下分两种情况讨论: (1)当1,22 t t ≥≥即时,()f x 在(0,1)内单调递减, 所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零点。

相关文档
相关文档 最新文档