文档库 最新最全的文档下载
当前位置:文档库 › 材料制备工艺流程设计

材料制备工艺流程设计

材料制备工艺流程设计
材料制备工艺流程设计

材料合成工艺设计

设计题目:

碳热还原法制备纳米Si3N4粉末工艺设计

学生姓名:胡魁

学号:20110412310042

专业班级:材料科学与工程(11理实)

指导老师:陈永

完成日期:2014年6月9日

目录:

碳热还原法制备Si3N4粉末工艺设计

一、引言 (3)

二、设计原理和反应原理 (3)

三、工艺过程及流程图说明与论证 (7)

1、工艺过程 (7)

2、方案说明 (8)

3、工艺流程图 (9)

四、物料衡算 (9)

五、热量衡算 (10)

六、设备选型及依据 (12)

七、生产车间(实验室)布置 (13)

八、对设计的评述及体会 (13)

九、致谢 (14)

十、参考文献 (15)

一、引言

Si3N4基陶瓷是一种典型的高温结构材料,具有密度高、热膨胀系数小、硬度大、高弹性模量以及热稳定性、化学稳定性和电绝缘性好等特点,已广泛应用到汽车、机械、冶金和化学工程等领域,并逐渐渗透到空间技术、海洋开发、电子技术、医疗卫生、无损检测、自动控制、广播电视等多个尖端科学领域。但作为高温结构材料,它还存在抗机械冲击强度低、容易发生脆性断裂等缺点,要得到性能优异的Si3N4陶瓷材料,首先必须制备出高纯超细的Si3N4粉末。

Si3N4粉末的制备方法有很多,目前人们研究最多的有下列几种:1)硅粉直接氮化法;2)热分解法;3)碳热还原氮化法;4)高温气相反应法;5)激光气相反应法;6)等离子体气相反应法;7)溶胶-凝胶(sol-gel)法;8)自蔓延法。其中,碳热还原氮化法是一种适合于工业化生产,很有前途的合成方法。此法所得粉末纯度高、颗粒细、α-Si3N4含量高、反应吸热,不需要分阶段氮化,氮化速度比硅粉直接氮化法快。

二、设计原理和反应原理

1、反应原理

此法的原理是以C还原SiO2,同时用N2或NH3进行氮化,使硅氮结合生成氮化硅,可能反应式有:

3SiO2(s)+3C(s)+2N2(g)→Si3N4(s)+3CO2(g) (1)

3SiO2(s)+6C(s)+2N2(g)→Si3N4(s)+6CO(g) (2)

得到产物Si3N4中可能的产物还有SiC和Si2N2O的可能反应有:SiO2(s)+2C(s)→SiC(s)+CO2(g)(3)

SiO2(s)+3C(s)→SiC(s)+2CO(g)(4)

Si3N4(s)+3C(s)→3SiC(s)+2N2(g)(5)

配料中的碳含量通常超过化学反应所需的含量,若反应温度过高(超过1500℃),可以生成SiC。为此,可添加一些Fe2O3以抑制SiC的生成并加速Si3N4的转化过程,合成后再进行处理以去除所添加的催化剂。

2、设计原理

Si3N4粉末的制备是Si3N4陶瓷制备的第一步,也是决定陶瓷结构性能的关键步骤。

氮化硅晶体中存在两种十分相似,但力学性能差异很大的不同晶体结构:α-Si3N4和β-Si3N4。都是由[SiN4]正四面体共用顶角构成的三维空间网络。通常α-Si3N4为低温相稳定晶型,β-Si3N4为高温相稳定晶型,两者并没有绝对的界限,只有在1400℃左右发生明显的α相向β相的不可逆转变,β-Si3N4呈等轴状晶粒和较差的力学性能,故要获得力学性能较好的氮化硅陶瓷,需尽可能减少β相的量,氮化硅陶瓷中α相含量也是评价氮化硅粉料的重要指标,一般α相含量至少在90.2%,要制备高强度和高韧性的氮化硅陶瓷α相含量应在95%以上。但并非绝对,要制备多孔氮化硅则需要β相的存在。有研究表明有大量碳核存在时主要生成α-Si3N4而在缺少C的情况下,熔融液相的Si-O-N中间体促进形成β-Si3N4.

SiO2还原氮化法的特点是原料来源丰富,反应产物经热处理后为疏松粉末,无需再进行粉碎处理,从而避免了杂质的直接引入,故该法制得的Si3N4粉体形状规则,粒度分布窄,并且α-Si3N4含量高。

碳热还原法通常在SiO2-C-N2体系中进行还原,有研究发现在氮气氛不足的条件下,这一系统的反应产物将由氮化硅变为碳化硅;在氮气充足的情况下,随着温度的升高,生成物中碳化硅的量也会逐步增加.这一分析结果已经通过实验得到了验证.

通过实验研究硅碳比、反应温度、氨气流量、保温时间等工艺因素对氮化硅粉体生成的影响,从而确定氮化硅粉体制备工艺的最佳工艺条件。

①碳硅比对氮化硅粉体的影响

碳热还原法合成Si3N4,理论上计算所需碳(C)与硅(Si)的摩尔比为2,但为使SiO2反应完全,及有机前驱体中的氧也需要消耗一部分的碳

(C),一般加入过量的碳。实验设计碳与二氧化硅摩尔比分别玩为

2.0,2.5,

3.0,3.5,

4.0的混合配料在1500℃,氮气流量为3L/min条件下反应进行研究,得出配料比为3.5时,产物几乎全部是氮化硅,此为原料最佳配比,反应在氮气气氛下进行保证氮元素的充分过量,所以此处对于氮元素的量不作考虑。

②氮化温度对氮化硅粉体的影响

采用C和SiO2的摩尔比为3.5的粉末,在NH3气流量3L/min、保温2h氮化条件下分别在1300、1350、1400、1450、1500℃进行试验,得到结果:在实验温度范围内,氮化硅的产率随温度升高而增加,当

温度达1500℃时,产率达到最大;而Si2N2O的生成量随温度的升高先增加后减小,1500℃时产物中没有Si2N2O。

③氮气流量对氮化硅粉体的影响

采用C和SiO2的摩尔比为3.5:1的粉末,取相同的量,在1500℃下、保温2h,NH3流量分别为1、2、3L/min的氮化条件下进行试验,得到的粉末在600℃下脱碳4h,结果表明:当氮气流量为1L/min和2L/min时,产物中存在SiO2和Si2N2O;而氨气流量为3L/min时,产物都是Si3N4。

④保温时间对氮化硅粉体的影响

采用C和SiO2的摩尔比为3.5的粉末,在1500℃、NH3流量3L/min、分别保温1、2、3、4h的氮化条件下进行试验,结果是:氮化反应时间在1~3h范围内产物含氮量变化不大,最佳保温时间为2h。

对于各因素对反应影响的机理不作深入探究,总结前人实验结果,得出氮化硅粉末合成工艺的最佳条件是:碳硅比(摩尔比)为 3.5:1,氨气流量为3L/min,1500℃条件下,可制备出纯的氮化硅纳米粉体,其中α-Si3N4为90.8%,β-Si3N4为9.2%,平均粒径为43.82nm。

SiO2碳热还原法工艺过程须注意的问题与技术重点有:①通常状况下上述反应速度较慢,在原料中引入Si3N4晶种可加速反应;②反应过程较复杂,得到产物Si3N4中可能的产物还有SiC和Si2N2O。通过添加5%左右的Fe2O3可抑制SiC的生成,并促进氮化反应,提高产物中α-Si3N4的含量,生成物中的含铁化合物可用盐酸除去;③原料颗粒应足够细(10μm以下),加入过量碳可确保SiO2的完全反应,

剩余碳在空气中加热排除时可能导致Si3N4粉末表面氧化使氧含量增加。

分析制备出的氮化硅粉末通常有方法有:X射线衍射(XRD),扫描电子显微镜(SEM)。

分析指标有:产物的纯度,平均粒径大小,α相含量的多少,晶体内部小晶粒分布情况

三、工艺过程及流程图说明与论证

1、工艺过程

①配料

原料配比:活性炭(37wt%),二氧化硅(53wt%),β-Si3N4(5wt%),Fe2O3(5wt%)充分混合均匀

此次按实验室方法制备少量氮化硅粉末,原料总质量按20g来取样,用普通电子天平称量后倒入球磨罐中

②球磨

用球磨机将原料磨细和混合均匀,一般球磨6h左右

③高温还原反应

将球磨后的样品放在氧化铝坩埚中,将氧化铝坩埚放入管式高温炉中,不断通入高纯度的氮气,并用转子流量计监控氮气的流量在3L/min左右,并将温度控制在1350℃—1480℃左右反应,升温过程:①开始加热,60min后加热至1200℃。②继续加热,40min后加热至1400℃。当温度达最大后保持温度稳定,保温2h左右,关闭高温炉电源,样品降至试温后,取出坩埚。

④除杂

得到的产品中由于碳的过量,产生少量杂质,少量杂质对后面氮化硅陶瓷的烧结和成品结构性能影响很大,需要除去杂质才能得到纯度较高的氮化硅粉末。

由于碳的过量,反应后粉末中有:Si3N4,SiC,C,Fe,Fe2O3

试样首先用稀盐酸酸洗后,多次洗涤后过滤,除去样品中的Fe 元素;过滤后的试样,在鼓风干燥箱中通过鼓风机不断通入空气600℃烘干2h左右,除去试样中的水分和C元素

由于碳化硅与氮化硅同属于六方晶体,结构相似,化学性质都十分稳定,几乎难以分离两者,试样中的少量SiC很难除去,且SiC的存在有利于增强氮化硅的结构性能,只能尽可能的减少反应中SiC的产生

⑤产品分析

除杂后的干燥粉末,取少量分别置于两个样品袋中,对样品做XRD,SEM分析得到相关图谱分析。

2、方案说明

①配料中活性炭和二氧化硅的量按碳硅摩尔比3.5:1换算

②球磨使原料颗粒尽可能的小,具体球磨时间视情况而定

③除杂过程中,试样中的少量SiC很难除去,且SiC的存在有利于增强氮化硅的结构性能,只能尽可能的减少反应中SiC的产生

④酸洗过后的样品需要干燥,之后需要高温除碳,我选择在鼓风干燥机中两步一起进行,温度设定在稍高于活性炭氧化的最低温度500℃,

不断鼓入空气,这样既可以干燥又可以氧化除碳

3、工艺流程图

四、物料衡算

①假设按比例配制ag 原料,则原料中m(C)=0.37agm(SiO 2)=0.53ag;m(β-Si 3N 4)=0.05ag;m(Fe 2O 3)=0.05ag

②按Si 元素守恒:n(SiO 2)+n(β-Si 3N 4)=3n(Si 3N 4)+n(SiC )

③按O 元素守恒:n(CO )=2n(SiO 2)+3n(Fe 2O 3)

④按C 元素守恒:n(C)=n(CO )+n(SiC )+n 剩(C)

由上述等式得:

n(Si 3N 4)=n(SiO 2)+n(Fe 2O 3)+31n(β-Si 3N 4)-3

1[n(C)-n 剩(C)] =0.53a/60+0.05a/160+31×0.05a/140-3

1[0.37a/12-m 剩(C)/12] =m 剩(C)/36-1.013×10-3a

m(Si 3N 4)=3.89m 剩(C)-0.142a

n(SiC )=n(C)-n 剩(C)-2n(SiO 2)-3n(Fe 2O 3)

=0.37a/12-m 剩(C)/12-2×0.53a/60-3×0.05a/160

=1.223×10-2a-m 剩(C)/12

m(SiC )=0.832a-5.667m 剩(C)

配料

球磨 还原反应

除杂

产品分析

显然0.037a≤m剩(C)≤0.147a

五、热量衡算

在SiO2-C-N2系统中,实验证明反应的最终固体产物为氮化硅和碳化硅,这一系统能够产生这两种产物的主要反应有:

根据化学热力学,化学反应能够自发进行的判断依据

是:.由吉布斯-赫尔姆兹公式计算:

(6)

式中:为反应的自由焓变,为反应的焓变,为反应的熵变。

(7)查阅反应所涉及的几种物质的热力学数据带入公式(7)得到如下数据

反应式(1)(2)(3)(4)(5)

105.55 146.76 190.65 314.78 125.50

43.29 89.91 53.42 179.39 72.34

将表中的数据代入(6)式,可以得到反应(1)~(5)的△G;随温度的变化曲线,如图1.

从图中可以看出,在温度1800K,反应(2)、(4)、(5)的

相继由变为,而反应(1)、(3)在所达到的温度范围内,

因此反应(1)、(3)实际上无法进行.反应自由烩从热力学上保证了(2)、

(4)、(5)有可能自发的进行,但这三个反应能否进行,

不但要看它们的

是否小于零,还要根据其它的反应条件,由于反应始终在氮气氛下进行,因此需要考虑这一气氛对反应产生的影响.

六、设备选型及依据

根据各步工艺流程及试验规格,需要选用不同规格的仪器及设备:

设备的选型,对于没有特殊要求的工艺以实验室常见为主,

配料:普通JJ500电子天平,称量纸

此设计应用于化工生产,产量较高,对于仪器精密度要求不会太(3)

(4)

(1)

(2)

(5)

ΔG/kcal.mol -1

高,用普通天平及称量纸即可

②球磨:球磨罐,QM-QX 球磨机

原料物理化学性质较稳定,产量不太高,对于球磨粒径没有太高的要求,选用普通球磨机即可,选用实验室常用QM-QX全方位行星式球磨机(南京南大仪器厂)

③高温还原反应:CVD(Z)-06/50/2 中温双温区管式炉,氧化铝坩埚,LZW—12F转子流量计,氮气瓶(5MPa)

此反应对于温度的要求较高,不能超过1500℃,过高会产生碳化硅,降低产品纯度,因此选用中温的管式炉。转子流量计应选用N2专用的,不同气体的转子流量计,应用不同的刻度和示数方法。

④除杂:烧杯,玻璃棒,减压抽滤机(GM—0.33A隔膜真空泵),抽滤瓶,滤纸,DHG—9053A 鼓风干燥箱,鼓风机

抽滤机没有要求,干燥箱选用鼓风式干燥箱,干燥和除碳两步一起在鼓风式干燥箱中进行。

⑤样品分析:样品袋(小型),D8—ADV ANCE型XRD,SEM

最后对样品进行XED,SEM分析时,不能直接放在坩埚中进行检测,去少量产品放入样品袋中进行分析。

七、实验室布置

1—XRD 2—CVD(Z)-06/50/2 中温双温区管式炉 3—QM-QX 全方位行星式球磨机(南京南大仪器厂) 4—实验台 5—抽滤机(GM —0.33A 隔膜真空泵) 6—DHG —9053A 鼓风干燥箱 7—SEM

XRD 操作时,可能发生辐射泄漏,因此外面围上防辐射玻璃。

八、对设计的评述及体会

1、设计的评述

①此次设计是综合了前人的一些研究成果在实验室的合成,所以对于某些实验条件的选择没有做十分详细的解释(可以参考后面的文献),对于反应机理也没有十分详细解释。

②由于反应过程比较复杂也缺乏实践的经验,对于反应机理做出了合1 2 3 4 5 6 7 8×8m 2

理的假设(主要是对与反应产物的假设),工艺流程尽可能的简洁,难免会有遗漏。

实验室的少量合成,各种误差对于产率的影响很大,由于反应机理十分复杂,除杂只能基于合理假设,且不能完全除杂。

2、体会

通过这次利用碳热还原法制备氮化硅陶瓷的工艺设计,使我对于实际化工生产中工艺流程有了更深的了解,并学习到如何将所学知识应用于实际,有利于对项目综合处理能力及信息收集和处理能力的培养,帮助我们思维更加全面。

虽然不能深入到工厂实际接触生产工艺线,却为以后从事此方向的工作打下了基础。

九、致谢

首先感谢陈老师教会我们化工生产工艺设计的方法和细节,学到很多。其次非常感谢周小惠在设计过程中提供相关文献和资料给予极大的支持。

十、参考文献:

[1]陈宏,穆柏春,赵连俊.溶胶凝胶—碳热还原法制备纳米Si3N4粉末.粉末冶金技术,2009,27(2):114

[2]陈宏,穆柏春,郑黎明.氮化硅微粉制备技术.辽宁工学院学报,2006,26(3):191

[3]王锐,高峰,李道火.Si3N4超微粉体及其制备.安徽建筑工业学院学报(自然科学版),2006,14(2):49

[4]陈宏,穆柏春,李辉,郭学本.碳热还原氮化制备氮化硅粉体反应条件研究.粉末冶金技术,2010,28(1):43

[5]李虹,黄莉萍,蒋薪.碳热还原法制备氮化硅粉体的反应过程分析.无机材料学报,1996,11(2):241

[6]谢志鹏.结构陶瓷.清华大学出版社,2011,6

专业设计表达与材料样板制作

第6章专业设计表达与材料样板制作 6.1 专业写作与语汇表达 6.1. 1 文本的定义 ☆1.室内建筑师专业设计说明类文本包括概念设计说明、方案设计说明、施工图设计说明。 ☆2.室内建筑师专业设计文本根据其内容可分为说明类、文件类、合同类。☆3.室内建筑师专业设计文件类文本包括: (1)设计建议书、可行性研究报告; (2)投标标书、项目估算、概算、预算。 6.1.2 文本的作用 ☆1.文本的作用包括: (1)为设计及施工提供了切实可行的技巧、建议和法律依据; (2)以明确、清晰、方便的语言成为设计及施工中不可缺少的重要组成部分。 6.1.3 设计说明 ☆1.概念设计主要表达创意构思和主要的设计元素。 2.概念设计说明主要表达设计概念,设计建议书不包括在内。 3.施工图设计说明是用语言的形式表达设计师对材料、设备的选择和对质量的要求并精确描述建造安装方法和质量。 ☆4.概念设计的基本内容包括: (1)项目基本情况; (2)项目设计的背景和依据; (3)项目设计构思和主要的设计元素。 5.在方案评标中,评标单位进行综合评价,择优确定中标单位的依据是: (1)方案设计说明、方案图纸; (2)投标单位的报价、工期;

(3)主要材料用量、施工方案; (4)质量实绩、企业信誉。 6.在方案设计说明中应特别注意: (1)说明工程项目所在位置、规模、性质等概况;说明工程项目的设计原则和设计依据、规范,如防火规范等; (2)作为投标方的资质、材料要准备充分;设计的材料品质、质量等各方面要有详细的说明; (3)经济技术指标要完备;文字与图形相结合的处理应相得益彰,以描述设计主题为要; (4)由于方案设计内容繁多,可考虑用不同的色纸表达不同的内容,以方便查阅;可应用计算机演示。 7.施工图的作用包括: (1)可使施工单位对工程概况有总体认识; (2)是指导施工的重要依据; (3)是竣工验收及结算的依据。 6. 1. 4 文件 ☆1.设计建议书是室内建筑师向业主提供其设计服务的最直接的形式。 2.对设计分析的表述错误是设计分析必须放在设计建议书中,不能单独作为一个设计文件出现。 ☆3.可行性报告的主体和核心部分是正文。 ☆4.附件包含项目运行的主要法律依据,是可行性研究报告必不可少的部分。 5.不属于可行性研究报告正文概况的选项是市场调查和分析。 6.方案投标书可分为明标和封闭标。 7.施工过程质量控制体系包括施工技术管理工作,质量的控制和施工操作质量控制。 ☆8.通常在设计的概念设计阶段采取估算的方法计算工程造价。

材料制备工艺课程设计

课程设计说明书PZT压电陶瓷蜂鸣器片 学院名称:材料科学与工程学院 专业班级:无机非金属材料1001班 学号: 3100703002 学生姓名:程小伟 指导教师:杨娟、周明 2014年1月

目录 前言 (3) 1压电蜂鸣片简介 (4) 1.1蜂鸣器的作用 (4) 1.2蜂鸣器的结构原理 (4) 2 陶瓷工艺设计的目的和意义 (5) 3设计任务及说明 (5) 4计算 (6) 4.1以1mol为基准对Pb0.95Sr0.05(Zr0.52Ti0.48)O3 进行计算 (6) 4.2以100g为基准对Pb0.95Sr0.05(Zr0.52Ti0.48)O3+0.5wt%Cr2O3+0.3wt%Fe2O3进行计算 (7) 5 PZT陶瓷制备的工艺流程 (7) 5.1称量与混合 (8) 5.2预烧 (8) 5.3粉体制备 (9) 5.4造粒 (10) 5.5成型 (10) 5.6排塑 (11) 5.7烧成 (12) 5.8极化 (15) 5.9焊接 (16) 5.10测试 (17) 6 工艺参数 (18) 6.1预烧工艺参数 (18) 6.2烧结工艺参数 (18) 6.3极化工艺参数 (18) 7主要设备选型 (19) 7.1球磨机 (19) 7.2 喷雾造粒干燥机 (19) 7.3滚压成型机 (20) 7.4 冲片机 (20) 7.5微波烧结装置 (20) 8总结 (21) 参考文献 (22)

前言 1880年,居里兄弟首先在单晶上发现压电效应。在1940年前,人们知道有两类铁电体:罗息盐和磷酸二氢钾盐。在1940年后,发现了BaTiO3是一种铁电体,具有强的压电效应,这是压电材料发展的一个飞跃。在1950年后,发现了压电PZT体系,具有非常强和稳定的压电效应,这是具有重大实际意义的进展。在1970年后,添加不同添加剂的二元系PZT陶瓷具有优良的性能,已经用来制造滤波器、换能器、变压器等。随着电子工业的发展,对压电材料与器件的要求就越来越高了,二元系PZT已经满足不了使用要求,于是研究和开发性能更加优越的三元、四元甚至五元压电材料。 由于PZT压电陶瓷具有优异的压电、介电和光电等电学性能,广泛地应用于电子、航天等高技术领域,用于制备传感器、换能器、存储器等电子元器件,是一种很有发展前途的功能材料。由此,国内外研究学者对PZT压电陶瓷进行了大量的研究,包括PZT压电陶瓷元器件,以PZT为基料的三元、四元压电陶瓷,PZT铁电陶瓷薄膜,PZT纤维等铁电陶瓷材料。由于PZT基压电陶瓷的制备工艺简单,原材料容易获得,价格低廉,并可方便地制成各种复杂的形状,在工程技术方面的应用非常广泛,甚至超过了压电晶体。 PZT系列压电陶瓷的研究已有即几十年的历史,取得了重大进展。其未来的热点趋势主要有:①高转换效率的PZT压电陶瓷。高能量转换效率的PZT压电陶瓷正在兴起,日本富士通研究实验室研制出了由铌酸镍铅、钛酸铅和锆酸铅组成的铅基钙钛矿型压电陶瓷,其烧结温度在1000℃以下,能量转换效率指数 K 33为80.8 %。②低温烧结PZT陶瓷材料的新技术和新工艺。开发低温烧结PZT

制造流程及工艺方案设计

目录 摘要 (3) 引言 (4) 1.任务与分析 (5) 1.1确定生产纲领 (5) 1.2确定生产类型 (5) 2.设计的目的、要求和内容 (6) 2.1设计目的 (6) 2.2设计要求 (7) 2.3设计内容 (7) 3.工艺分析 (8) 3.1技术要求 (8) 3.2零件特点 (8) 4.毛坯的选择 (9) 4.1毛坯的选择 (9) 4.2轴类零件的毛坯和材料 (9) 4.3轴类零件加工工艺规程注意点 (10) 4.4轴类零件加工的技术要求 (10) 5.基准的选择 (11)

5.1粗基准的选择原则 (11) 5.2选择精基准 (11) 6.加工余量、工序尺寸和公差的确定 (12) 6.1加工余量概述 (12) 6.2影响加工余量的因素 (12) 6.3加工余量的确定 (12) 6.4零件图的加工余量、工序尺寸和公差的确定 (12) 7.切削用量的确定 (16) 7.1粗车 (16) 7.2半精车 (16) 7.3精车 (16) 8.机床及工艺装备的确定 (17) 8.1机床的选择 (17) 8.2工艺装备的确定 (17) 9.拟定机械加工工艺路线 (17) 9.1选择定位基准 (17) 9.2表面加工方法的选择 (17) 9.3拟定工艺路线 (18) 结论 (20) 致谢 (20) 参考文献 (20)

摘要 车削加工是在车床上利用工件相对于刀具旋转对工件进行切削加工的方法。车削是最基本、最常见的切削加工方法,在生产中占有十分重要的地位车削适于加工回转表面,大部分具有回转表面的工件都可以用车削方法加工,如加工轴类零件的内外圆柱面、内外圆锥面、端面、沟槽、螺纹和回转成形面等,所用刀具主要是车刀。 在各类金属切削机床中,车床是应用最广泛的一类,约占机床总数的50%。车床既可用车刀对工件进行车削加工,又可用钻头、铰刀、丝锥和滚花刀进行钻孔、铰孔、攻螺纹和滚花等操作。按工艺特点、布局形式和结构特性等的不同,车床可以分为卧式车床、落地车床、立式车床、转塔车床以及仿形车床等,其中大部分为卧式车床。 在各种机械产品中,带有螺纹的轴类零件应用很广泛。螺纹切削是加工螺纹件效率最高、经济性最好的加工方法,用车削方法加工螺纹是机械制造业目前常用的加工方法。 在车床上车削螺纹轴可采用成形车刀或螺纹梳刀(见螺纹加工工具)。用成形车刀车削螺纹,由于刀具结构简单,是单件和小批生产螺纹工件的常用方法;用螺纹梳刀车削螺纹,生产效率高,但刀具结构复杂,只适于中、大批量生产中车削细牙的短螺纹工件。普通车床车削梯形螺纹的螺距精度一般只能达到8~9级。在专门化的螺纹车床上加工螺纹,生产率或精度可显著提高。 关键词:车削加工卧式车床螺纹轴工艺

发光材料

上海理工大学 目录 一、引言 (1) 二、发光现象及其原理 (1) 2.1荧光现象 (1) 2.2 LED现象 (2) 2.3白炽灯现象 (2) 2.4 HID现象 (2) 2.5有机发光原理 (2) 三、发光材料的应用 (3) 3.1光致发光材料 (3) 3.2阴极射线发光材料 (4) 3.3电致发光材料 (4) 3.4辐射发光材料 (4) 3.5光释发光材料 (5) 3.6热释发光材料 (5) 3.7高分子发光材料 (5) 3.8纳米发光材料 (6) 四、结束语 (6) 五、参考文献 (7)

发光材料 一、引言 众所周知[1],材料、能源和信息是21世纪的三大支柱。发光材料作为人类生活中最为重要的材料之一,有着极其重要和特殊的地位。随着科学技术的进一步发展,发光材料广泛运用于化工、医药食品、电力、公用工程、宇航、海洋船舶等各个领域。各种新型高科技在运用于人类日常生活中,势必都需要用到部分不同成分和性质的发光材料。 从20世纪70年代起,科学家们发现将稀土元素掺入发光材料,可以大大提高材料的光效值、流明数和显色性等性能,从此开启了发光材料发展的又一个主要阶段。世界己经离不开人造光源,荧光灯作为最普遍的人造光源之一己在全世界范围内开始应用,据统计全世界60%以上的人工造光是由荧光灯提供的,而大部分荧光灯就是利用稀土三基色荧光粉发光的。 二、发光现象及其原理 不同发光材料的发光原理不尽相同,但是其基本物理机制是一致的:物质原子外的电子一般具有多个能级,电子处于能量最低能级时称为基态,处于能量较高的能级时称为激发态;当有入射光子的能量恰好等于两个能级的能量差时,低能级的电子就会吸收这个光子的能量,并跃迁到高能级,处于激发态;电子在激发态不稳定,会向低能级跃迁,并同时发射光子;电子跃迁到不同的低能级,就会发出不同的光子,但是发出的光子能量肯定不会比吸收的光子能量大。 2.1荧光现象 荧光发光的主要原理:紫外线的光子的能量比可见光的能量大;当荧光物质被紫外线照射时,其基态电子就会吸收紫外线的光子被激发而跃迁至激发态;当它向基态跃迁时,由于激发态与基态间还有其他能级,所以此时释放的光子能量就会低于紫外线的能量,而刚好在可见光的范围内,于是荧光物质就会发出可见光,这种光就叫做荧光。常见的日光灯发 1

阳极氧化工艺流程

阳极氧化工艺流程 阳极氧化已经慢慢淘汰了,现在已经升级到了微弧氧化,可以做镁和铝合金产品,原理都是一样,通过有机溶剂做为介质,采用尖端放电,在产品表面生成保护膜,类似於陶瓷层。外观除了一些起跑引起的颜色问题,是很难看出来的,主要通过,盐雾、耐摩擦、电导率、电击穿等测试来判定膜层的好坏。工艺:除油--水洗--水洗--阳极反应--水洗--封闭--烘烤铝 制品阳极氧化工艺流程铝制品阳极氧化通用的工艺流程如下:铝工件→上挂具→脱脂→水洗→碱蚀→水洗→出光→水洗→阳极氧化→水洗→去离子水洗→染色或电解着色→水洗→去离子水洗→封闭→水洗→下挂具对于要求高光亮度的铝制品,可采用如下的工艺流程:铝工件→机械抛光→脱脂→水洗→中和→水洗→化学或电化学抛光→水洗→阳极氧化→水洗→去离子水洗→染色或电解着色→水洗→去离子水洗→封闭→水洗→机械光亮铝及铝合金阳极氧化着色工艺流程(图) 铝及铝合金阳极氧化着色工艺规程1、主题内容与适用范围:本规程规定了铝及铝合金阳极氧化、着色、电泳生产的工艺和操作的技术要求及规范。2、工艺流程(线路图)基材→装挂→脱脂→碱蚀→中和→阳极氧化→电解着色→封孔→电泳涂漆→固化→卸料包装→入库3、装挂:3.1装挂前的准备。3.1.1 检查导电梁、导电杆等导电部位能否充分导电、并定期打磨、清洗或修理。3.1.2准备好导电用的铝片和铝丝。3.1.3检查气动工具及相关设备是否正常。3.1.4核对流转单或生产任务单的型号、长度、支数、颜色、膜厚等要求是否与订单及实物相符。3.1.5根据型材规格(外接圆尺寸、外表面积等)确定装挂的支数和间距、色料间距控制在型材水平宽度的1.2倍左右,白料间距控制在型材宽度的1倍左右。3.1.6选择合适的挂具,确保正、副挂具的挂钩数与型材的装挂支数一致。3.2 装挂:3.2.1装挂时应先挂最上面一支,再固定最下面一支,然后将其余型材均匀排布在中间、并旋紧所有铝螺丝。3.2.2装挂前在型材与铝螺丝间夹放铝片,以防型材与挂具间的导电不良而影响氧化、着色或电泳。3.2.3装挂时,严禁 将型材全部装挂在挂具的下部或上部。3.2.4装挂的型材必须保持一定的倾斜度(>5°)以 利于电泳或着色时排气,减少斑点(气泡)。3.2.5装挂时必须考虑型材装饰面和沟槽的朝向、防止色差、汽泡、麻点产生在装饰面上。3.2.6易弯曲、变形的长型材,在型材的中间部位增加一支挂具或采用铝丝吊挂以防型材间碰擦或触碰槽内极板,而擦伤或烧伤型材表面。3.2.7选用副杆挂具时,优先选用插杆,采用铝丝绑扎时,一定要间隔均匀,露头应小于25mm。3.2.8截面大小、形状悬殊的型材严禁装挂在同一排上。3.2.9装挂或搬运型材,必须戴好干净手套,轻拿轻放、爱护、防护好型材表面,严禁野蛮操作。3.2.10装挂或搬运型材时必须加强自检和互检,不合格的型材严禁装挂,表面沾有油污或铝屑(毛刺)的型材必须采取适当的措施处理干净。3.2.11剔除不合格型材后,必须按订单支数及时补足。 3.2.12装挂区的型材不宜存放太久,以防废气腐蚀型材表面。3.2.13认真填写《装挂记录》和《氧化工艺流程卡》上装挂部分的记录,准确计算填写每挂氧化面积,随时核对订单,确

铝及铝合金阳极氧化着色工艺规程

铝及铝合金阳极氧化着色工艺规程(1) 铝及铝合金阳极氧化着色工艺规程 1、主题内容与适用范围 本规程规定了铝及铝合金阳极氧化、着色、电泳生产的工艺和操作的技术要求及规范。 2、工艺流程(线路图) 基材→装挂→脱脂→碱蚀→中和→阳极氧化→电解着色→封孔→电泳涂漆→固化→卸料包装→入库 3、装挂: 3.1装挂前的准备。 3.1.1检查导电梁、导电杆等导电部位能否充分导电、并定期打磨、清洗或修理。 3.1.2准备好导电用的铝丝,并打磨导电杆 3.1.3检查传送带及相关设备是否正常。 3.1.4核对随料单或生产任务单的型号、长度、支数、颜色、膜厚等要求是否与订单及实物相符。 3.1.5根据型材规格(外接圆尺寸、外表面积等)确定装挂的支数和间距、色料间距控制在型材与型材间3公分左右,白料间距控制在型材与型材间2公分左右。

3.1.6选择合适的导电杆,在保证导电充分的前提下,导电斑痕最小。 3.2 装挂: 3.2.1装挂时应将型材均匀排布在导电杆有效区间、并上紧每一根料. 3.2.2装挂前应打磨净导电杆上的氧化膜,以防型材与挂具间的导电不良而影响氧化、着色或电泳。 3.2.3装挂时,严禁将型材全部装挂在挂具的下部或上部。 3.2.4装挂的型材必须保持一定的倾斜度(>5°)以利于电泳或着色时排气,减少斑点(气泡)。 3.2.5装挂时必须考虑型材装饰面和沟槽的朝向、防止色差、汽泡、麻点产生在装饰面上。 3.2.6易弯曲、变形的长型材,在型材的中间部位增加一支挂具或采用铝丝吊挂以防型材间碰擦或触碰槽内极板,而擦伤或烧伤型材表面。 3.2.7选用副导杆时,优先选用截面小的副杆,采用铝丝绑扎时,一定要间隔均匀,上紧铝丝防止因料移动而引起大面积的擦伤。 3.2.8截面大小、形状悬殊的型材严禁装挂在同一排上。 3.2.9装挂或搬运型材,必须戴好干净手套,轻拿轻放、爱护、防护好型材表面,严禁野蛮操作。

材料的制备与技术答卷

一. 1、为什么成型技术是复合材料研发的重要内容? 复合材料是由有机高分子,无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料,他既保留原组成材料的重要特色,又通过材料设计使各组分的性能互相补充并彼此关联,从而获得更优越的性能。但复合材料的最终性能与效益不仅取决于基体和增强材料,还取决于其加工工艺。 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,一些成型工艺日臻完善,新的成型方法不断涌现。 2、简述树脂传递模塑(RTM)工艺的工艺概要以及工艺的优缺点。 树脂传递模塑(Resin Transfer Moulding,简称RTM)是将树脂注入到闭合模具中浸润增强材料并固化的工艺方法。 工艺的优点: 可以制造两面光的制品 不用预浸料、热压罐; 成型效率高、有效地降低设备成本、成型成本; 闭模操作、污染小; 制品的可设计性、可方向性增强。 原材料及能源消耗少

缺点: 制造周期长;制品空隙率较高;制品的纤维含量较低;大面积、结构复杂的模具型腔内,树脂流动不均衡,此动态过程无法观察。 2、请给出含能分子carbonyl diazide 分解为3N2和CO 的示意图。 CO N 3C(O)N 2/6+??→??νh

1、什么是二维晶体材料?以一个例子说明二维晶体材料与块体材料相比有什么特殊性质? 二维晶体材料是由几层单原子层堆叠而成的纳米厚度的平面晶体材料。特殊性质:溶涨稳定且可逆。 2、如何获得二维晶体材料及其有什么用途? 干法:等离子体化学气相沉积法,溅射法,热分解化学气相沉积法,真空沉积法,准分子脉冲激光沉积法;湿法:溶胶-凝胶法,计量棒涂布法,凹版印刷法,逆转辊涂布法,浸渍法,旋涂法。 功能薄膜材料:防紫外薄膜,近红外屏蔽薄膜,热屏蔽薄膜,消反射薄膜,等离子电视消反射/红外屏蔽薄膜,抗污薄膜,防静电薄膜,抗菌薄膜,光催化,光电变色薄膜,绝缘薄膜。 四. 1、 MOF-74是一例经典的金属有机框架材料(Metal-Organic Framework)。以下三个问题均基于此材料。(1)简要介绍此材料的命名历程、基本组成、和结构特点;(2)列举2015-2016年间,在知名化学或材料期刊上有关MOF-74材料功能化研究的实例报道,不少于两例(明确阐明该材料的后处理方式以及在新功能方面所起的关键作用,即MOF-74材料与其新功能之间的必然联系);(3)结合自己所在课题组的研究方向,给出一个能把MOF-74材料结合进去的合理设想。 2、 ZIF-8是一例经典的金属咪唑类分子筛材料(Zeolitic Imidazolate Framework),也属于一类金属有机框架材料(Metal-Organic Framework)。以下三个问题均基于此材料。(1)简要介绍此材料的命名历程、基本组成、和结构特点;(2)列举2015-2016年间,在知名化学或材料期刊上有关ZIF-8材料功能化研究的实例报道,不少于两例(明确阐明该材料的后处理方式以及在新功能方面所起的关键作用,即ZIF-8材料与其新功能之间的必然联系);(3)结合自己所在课题组的研究方向,给出一个能把ZIF-8材料结合进去的合理设想。

材料科学与工程实验室建设规划

成都理工大学材料与化学化工学院实验室“十二·五”建设规划 系、部、室名称:材料科学与工程 编制日期:2010年3月

一、“十一·五”期间学院实验室建设概况 1、实验室设臵情况 经过多年的建设,目前本学科点基本具备课程实验教学条件,初步建立了材料组成与结构表征、材料加工与制备、材料性能测试等三大类11个专业教学实验室,总面积360m2,各实验室功能及承担教学科研工作具体情况见下表1。 表1 专业实验室设臵情况 2、实验仪器设备投入情况 除学院公用大型仪器设备外,材料科学与工程专业实验室现有设备见附表2。总价值

为2137929元。其中2006-2009年投入占70%左右,约150万元。 3、主要成绩 十一五期间,按照材料科学与工程专业内涵及我校材料科学与工程专业办学特色,构建了材料科学与工程专业实验教学体系,规划和建立了材料组成与结构表征、材料加工与制备、材料性能测试等三大类教学实验室,重点建设了材料制备实验室,材料力学性能实验室,材料显微结构实验室。 材料制备实验室主要购臵了用于无机非金属材料烧成的高温电阻电炉、微波烧结炉、气氛炉,热压烧结炉等,用于金属材料熔制的真空熔炼炉、电阻炉,以及用于金属热处理改性的真空热处理炉、渗碳炉等,基本能满足金属材料工程、无机非金属材料工程教学需要。 材料力学性能实验室主要购臵了液压万能试验机、冲击试验机、蠕变试验机、疲劳试验机、各类硬度仪等设备,基本满足结构材料教学需要。 材料显微结构实验室主要购臵了金相显微镜及金相制备相关设备,可以同时满足一个自然班的教学实验,是十一五期间建设较好的一个实验室。 这些实验室共承担结晶学与矿物学、材料科学基础、材料科学研究方法与测试技术、材料设计与制备、金属学、金属热处理原理与工艺、合金熔炼原理、材料物理性能、材料力学性能,课程设计、现代金相实验技术、材料显微组织与结构实验、特色与创新实验等专业基础和专业综合实验教学课程,同时承担每年约150名专业毕业生的毕业设计、毕业实习教学任务、每年50名左右研究生的教学和科研任务。 十一五期间,依托金刚石薄膜实验室、材料科学与技术研究所及现有专业实验室,承担项国家自然科学基金项目3项、国家科技攻关、科技支撑项目和四川省等省部级项目16项,发表论文100余篇,被3大检索收录40余篇。 总之,较好地完成了上一个五年规划中提出的各项实验室建设任务。 4、教学队伍 专业实验室设有管理人员3名(初级2名、中级1名),专职实验教师1名(热分析实验室),所有实验课程教学完全由专业教师执行。 5、存在的问题 尽管通过多年建设,材料科学与工程专业实验教学平台建设取得了明显成效, 但是随着本科教学模式改革的不断深化,工程化教育理念的不断深入,对本科生工程能力、创新能力要求的不断提高,现有实验室很难满足新的培养方案对于学生实验能力培养的要求,存在突出问题主要表现在以下几个方面:

膜结构、膜材料制作加工工艺及其流程

膜材料制作加工工艺及其流程 1、膜材料制作加工流程 1.1、膜结构应根据建造物的性质和等级、使用年限、使用功能、结构跨度、防火要求、地区自然条件及对膜材的耐用年限等要求进行膜材选用。 材料验收→放样→复核→裁剪→排版→搭接→角、顶→边→检验→清洗→包装。 1.2、应根据建筑防火等级和防火要求来选择膜材。 1.3、膜片连接处应保持高度水密性,应进行了抗剥离测试。膜片宜呈瓦状排列,由高处膜片盖住低处膜片。 1.4、膜结构在裁剪中必须考虑预张拉应力的影响,根据膜材的应变关系确定膜片的收缩量,对膜片的尺寸进行调整。 1.5、裁剪缝的应考虑膜材力学性能的正交各向异性,宜使结构主应力方向与织物纤维向

一致。 1.6、膜结构的连接节点包括膜片与膜片连接节点和膜面与支承结构连接节点。根据支承体系的不同,可分为膜面与柔性支承结构节点和膜面与刚性支承结构节点。接照所处部位不同,可分为中间节点和边界节点。 1.7、膜结构的连接构造应考虑结构的形状、荷载、制造、安装等条件,使结构安全、可靠、确保力的传递,并能适应可能的位移和转动。 1.8、膜面与支承结构连接节点必须具有足够的强度和刚度,不得先于连接的构件和膜材而破坏,也不应产生影响受力性能的变形。 1.9、膜片连接处应保持高度水密性,应进行抗剥离测试,并应防止织物磨损、撕裂。连接处的金属构件应有防止腐蚀的措施。连接构件造应充分考虑膜材蠕变的影响。 2、膜片连接的构造原则 2.1、膜片之间可用热融合、缝合或机械连接,如图: (a)热融合 (b)缝合 (c)机械连接 2.2、膜片连接处的膜材强度,应由制作单位工艺保证。当工程需要时,应由试验验证。 2.3、膜片与膜片之间的接缝位置应依据建筑要求、结构要求、经济要求等因素综合确定。 2.4、膜面的拼接纹路应根据膜材主要受力经纬方向合理安排,宜采用纬向拼接、经向拼接和树状拼接三种方法。 2.5、屋面膜片宜反搭接,搭接接缝应考虑防水要求,见图:

铝阳极氧化工艺

铝阳极氧化 工艺 铝阳极氧化工艺 第一部分工艺流程 一、工艺流程及工艺条件 1、铝阳极氧化处理流程如下: 脱脂→水洗×2→(酸蚀→水洗×2)→碱蚀→水洗×2→中和→ →锡盐着色(红底香槟色系)→ →单锡盐着色(古铜色系)→ 水洗×2→氧化→水洗×2→→镍锡盐着色(古铜色系)→→ →硒盐着色(钛金色系)→ →锰盐着色(金黄色系)→ →水洗×2→封闭→水洗→水洗(或热水洗)→晾干 →纯水洗→电泳→纯水洗→纯水洗→滴干→烘烤 二.设备材质: 管道材料:PVC 槽体材料:PVC或PP 第二部份化工工艺 1.槽液组成及化学品简介 第一步:脱脂 选用化学品:Potencer AC 酸性脱脂剂AC是为铝及铝合金设计的专业清洗配方。适用于常温浸

渍脱脂。对铝材的侵蚀很小,但能有效清除表面的各种油污,及去除 自然氧化膜,且不会如碱蚀产生大量气体和黑污。对水质要求低,水 洗容易。低泡沫、避免脱脂槽泡沫过多而溢流。 使用条件: AC 浓度: 4~7%(体积比) 时间: 2~10 分钟(视油污及处理流程而定) 温度:20~30℃ 开槽方法:先加入槽体积一半的水,然后加入计算量的AC,搅拌5min 左右,再补加水至规定体积。 第二、三步:自来水水洗 第四步:酸蚀 选用化学品:Potencer C-11 Potencer C-11是精心研发使用于铝材酸蚀砂面作业中。能快速 整平、消除铝材表面的模具痕,获得美观的磨砂外观,并可大量降低 铝材损耗。 使用条件: 开槽浓度:Potencer C-11 80~160克/升; 温度:常温~50℃。 时间: 3~ 6分钟。 须使用过滤设施。 开槽方法:先加入槽体积一半的水,然后在搅拌下慢慢加入计算量的C-11,再补加水至规定体积。控制温度在规定范围,放一根废铝材反 应30min左右,取出,即可试生产。 第五、六步:自来水水洗 (第四、五、六步在有的厂家没有应用) 第七步:碱蚀 选用化学品:Potencer ADD及氢氧化钠

课程设计模板(材料合成与制备方法课程设计)

专 业 课 程 设 计 题 目: 年产1200万支四磨汤口服液生产工艺设计 院 部: 化 学 化 工 学 院 专业: 材料化学 班级: 1101 学号: 学生姓名: 导师姓名: 李 谷 才 完成日期: 2014年6月21日

课程设计任务书 院部:化学化工学院专业:材料化学班级:1101 姓名: 指导教师: 教研室主任:黄先威 院教学院长: 2014年6月21日

目录 1 引言 (1) 2年产1200万支四磨汤口服液生产工艺设计 (2) 2.1 四磨汤的制备方法 (2) 2.1.1 处方设计 (2) 2.1.2 四磨汤制备方法 (2) 2.2 四磨汤生产工艺设计 (2) 2.2.1 原料预处理 (2) 2.2.2 浸出 (4) 2.2.3浸出液的净化 (4) 2.2.4浓缩配液 (4) 2.2.5分装灭菌 (4) 2.2.6包装 (5) 2.3 物料衡算及设备选择 (6) 2.3.1 原材料预算 (6) 2.3.2生产设备 (6) 2.4生产过程要求与措施 (8) 2.5排污方面 (8) 2.6酒精回收 (9) 2.7劳动组织、岗位定员、工时定额与产品生产周期 (9) 2.7.1劳动组织 (9) 2.7.2 岗位定员 (10) 2.7.3工时定额 (10) 3 总结 (11) 参考文献 (11)

1引言 四磨汤由木香,槟榔,枳壳,乌药四味药组成[1],药物纽成虽简单,但临床应用较多且取得了不错的疗效。后世医家对其临床应用有很多研究和阐述。近几年来的大量资料报道表明,该方在临床上的应用范围日益广泛,充分体现了祖国医学的博大精深[2,3]。四磨汤原出自于宋代严用和著《济生方》,由人参、乌药、槟榔、沉香组成。其功用为破滞降逆,补气扶正。方中沉香降气平喘,槟榔行气破滞,乌药调肝顺气,人参补气扶正。用法采取浓磨温服,则力专效速,故方以四磨汤命名[4]。现在临床上所用四磨汤口服液主要组成一般为木香,槟榔,枳壳,乌药[5]。《成方便读》日:“若纯实无虚者,即可去参加枳壳。”《本草纲目》云:“木香乃三焦气分之药,能升降诸气。”故现在一般所用四磨汤偏于行气降逆,破滞消满。该方药物组成虽简单,但在临床上的应用已涉及到内外妇儿各科且取得了较好的疗效。本品为棕黄色至棕色的澄清液体;气芳香,味甜、微苦,具有顺气降逆,消积止痛。用于婴幼儿乳食内滞证,症见腹胀、腹痛、啼哭不安、厌食纳差、腹泻或便秘;中老年气滞、食积证、症见脘腹胀满、腹痛、便秘以及腹部手术后促进肠胃等功能[6]。 基于四磨汤在医疗上的良好功效,故对其生产工艺进行研究设计,以期能够获取更为方便有效的生产方式。设计内容主要分为三部分,第一部分主要是四磨汤生产的工艺流程;第二部分主要为生产过程的物料衡算和设备选择;第三部分为生产过程的一些标准及人事安排等。

铝材阳极氧化工艺流程

铝材阳极氧化工艺流程: 机械抛光——除油——水洗——化学抛光——水洗——阳极氧化——水洗——封闭—机械光亮 化学抛光商品:铝材碱性抛光液 阳极氧化商品:铝材阳极氧化液 封闭商品:铝材着色封闭液 铝材阳极氧化和染色工艺 ???? 经过染色法处理的铝制品,颜色美观、鲜艳、抗腐蚀性、耐磨性及绝缘性高于一般的铝制品。将铝的工件悬于适当的电解质溶液内,以此作阳极进行电解。在电解过程中,水中的氢氧根离子在阳极放出电子成为水和新生态的氧,它使铝氧化成较厚的氧化铝膜,因为这个过程是金属制品作阳极被氧化的,所以叫做阳极氧化。铝制品经阳极氧化后,再经着色、封闭、处理即成染色品。 一、染色工艺 1.预处理:铝制件在多次机械加工过程中,沾有较多的油脂、少量磨料、灰尘及有缺陷的氧化膜等,这些物质导电性差,不能进行阳极氧化,故需预先处理。方法是用四氯化碳、三氯乙烯、汽油或甲苯作清洗剂,将铝件浸入,用毛刷刷洗,然后风干,再浸入水中,多次清洗。油去尽后,立即用热水冲洗。如果表面生成一层黑色的膜,还要放在32%的硝酸溶液浸泡20秒钟,以便除去黑膜,最后用冷水冲洗干净。浸入蒸馏水中,备作制氧化膜用。 2.阳极氧化: ⑴硫酸电解液的配制:由硫酸18-20公斤和去离子水80-82公斤混合而成,此时溶液比重约为1.125-1.140。有时为了获得防护性能好的氧极氧化膜,通常往硫酸电解液中添加少量草酸。 ⑵氧化工艺:将线路仪表安装好,将要染色铝件作阳极并全部浸入电解液中,然后接通电源,按下列工艺条件控制。 电解液温度控制在12-25℃,阳极电流密度1-2安/分米2,槽中电压13-23伏之间。时间30-40分钟左右。 按上述工艺操作完毕,随时将铝件从电解液中取出,把所沾的酸液用清水冲洗干净,低凹部分更应注意,否则会有白斑出现。酸液清洗干净后,浸入清洁水中备用。 3.染色:铝件经过阳极氧化后,表面形成了能吸附,以共价键或氢键等键型键合而成有色络合物,出现色泽。

材料制备与合成

《材料制备与合成[料]》课程简介 课程编号:02034916 课程名称:材料制备与合成/Preparation and Synthesis of Materials 学分: 2.5 学时:40 (课内实验(践):0 上机:0 课外实践:0 ) 适用专业:材料科学与工程 建议修读学期:6 开课单位:材料科学与工程学院材料物理与化学系 课程负责人:方道来 先修课程:材料化学基础、物理化学、材料科学基础、金属材料学 考核方式与成绩评定标准:期末开卷考试成绩(占80%)与平时考核成绩(占20%)相结合。 教材与主要参考书目: 教材:《材料合成与制备》. 乔英杰主编.国防工业出版社,2010年. 主要参考书目:1. 《新型功能材料制备工艺》, 李垚主编. 化学工业出版社,2011年. 2. 《新型功能复合材料制备新技术》.童忠良主编. 化学工业出版社,2010年. 3. 《无机合成与制备化学》. 徐如人编著. 高等教育出版社, 2009年. 4. 《材料合成与制备方法》. 曹茂盛主编. 哈尔滨工业大学出版社,2008年. 内容概述: 本课程是材料科学与工程专业本科生最重要的专业选修课之一。其主要内容包括:溶胶-凝胶合成法、水热与溶剂热合成法、化学气相沉积法、定向凝固技术、低热固相合成法、热压烧结技术、自蔓延高温合成法和等离子体烧结技术等。其目的是使学生掌握材料制备与合成的基本原理与方法,熟悉材料制备的新技术、新工艺和新设备,理解材料的合成、结构与性能、材料应用之间的相互关系,为将来研发新材料以及材料制备新工艺奠定坚实的理论基础。 The course of preparation and synthesis of materials is one of the most important specialized elective courses for the undergraduate students majoring in materials science and engineering. It includes the following parts: sol-gel method, hydrothermal/solvothermal reaction method, CVD method, directional solidification technique, low-heating solid-state reaction method, hot-pressing sintering technique, self-propagating high-temperature synthesis, and SPS technique. Its purpose is to enable students to master the basic principles and methods of preparation and synthesis of materials, and grasp the new techniques, new processes and new equipments, and further understand the relationship among the synthesis, structure, properties and the applications of materials. The course can lay a firm theoretical foundation for the research and development of new materials and new processes in the future for students.

设计材料与工艺试题(含答案)

思考题: 1.什么是材料的感觉物性? 指通过人的感知系统对材料作出的综合印象,包括人的感觉系统因生理刺激对材料做出的反映,或由人的知觉系统从材料表面得出的信息。 2.材料的质感及其构成。 是指物体表面的构成材料和构成形式作用于人的视觉和触觉而产生的心理反映,即表面质地的粗细程度在视觉和触觉上的直观感受。 包括:形态、色彩、质地和肌理等 肌理:材料本身的肌体形态和表面纹理。是质感的形式要素,反映材料表面的形态特征,使材料质感体现更具体形象。 质地:是质感的内容要素。是物面的理化特征。 构成:质感的表情、质感的物理构成、 3.材料按照其化学组成可以分为金属材料、非金属材料、复合材料 和天然材料四类。 4.材料基本性能包括工艺性能和使用性能。 5.材料的工艺性能包括切削加工工艺性能、铸造工艺性能、锻造工艺性能、焊接工艺性能、热处理工艺性能等。 6.工业产品造型材料应具备的特殊性能包括感觉物性、加工成型性、表面工艺性和环境耐候性。 7. 材料的使用性能有哪些?其主要的参数指标分别是什么? 主要包含:材料的力学性能和材料的物理化学性能 力学性能包括:1.强度-抵抗塑性变形和破坏的能力。2.弹性-产生弹性变形的能

力。3.塑性-产生永久变形而不破坏的能力。4.硬度-抵抗其他物体压入的能力。5冲击韧性6疲劳强度7蠕变8松弛 8.钢铁材料按照其化学组成可以分为钢材、纯铁和铸铁三大类;其中钢材按照化学组成可以分为碳素钢和合金钢两大类; 9. 铸铁材料按照石墨的形态可以分为可锻铸铁、灰口铸铁和球墨铸铁三种。 10.变形铝合金材料主要包括锻铝、硬铝、超硬铝和防锈铝合金。 11. 金属制品的常用铸造工艺包括砂型铸造、熔模铸造和金属型铸造等。 12. 金属材料的表面处理技术包括表面改质处理、表面精整加工和表面被覆处理。 13. 金属件的连接工艺可以分为机械性连接、金属性连接和化学性连接三种类型。(“。”表示对,“?”表示错) 14. T8A表示含碳量约为0.8%的高级优质碳素结构钢。(错)(碳素工具钢) 15.冷加工黄铜俗称“七三黄铜”,热加工黄铜俗称“六四黄铜”。(对) 16.金属材料的热处理工艺中,淬火的目的是提高材料的硬度和耐磨性。(对) 17.铝及铝合金通过化学氧化生成Al2O3氧化膜的工艺俗称“发蓝”。(?)(磷酸盐) 18.从材料性能考虑,要设计具有切削硬质材料功能的产品部件,以下钢铁材料 中最为适宜的是T12A ,要加工制作弹簧零件,最适宜选用60Mn 。 A. 60M n B. T12A C. T8A D.

阳极氧化工艺流程

铝及铝合金阳极氧化着色工艺流程及原辅材料 铝及铝合金阳极氧化着色工艺规程 1、工艺流程(线路图) 基材→装挂→脱脂→碱蚀→中和→阳极氧化→电解着色→封孔→电泳涂漆→固化→卸料包装→入库 2、装挂: 2.1装挂前的准备。 2.1.1检查导电梁、导电杆等导电部位能否充分导电、并定期打磨、清洗或修理。 2.1.2准备好导电用的铝片和铝丝。 2.1.3检查气动工具及相关设备是否正常。 2.1.4核对流转单或生产任务单的型号、长度、支数、颜色、膜厚等要求是否与订单及实物相符。 2.1.5根据型材规格(外接圆尺寸、外表面积等)确定装挂的支数和间距、色料间距控制在型材水平宽度的1.2倍左右,白料间距控制在型材宽度的1倍左右。 2.1.6选择合适的挂具,确保正、副挂具的挂钩数与型材的装挂支数一致。 2.2 装挂: 2.2.1装挂时应先挂最上面一支,再固定最下面一支,然后将其余型材均匀排布在中间、并旋紧所有铝螺丝。 2.2.2装挂前在型材与铝螺丝间夹放铝片,以防型材与挂具间的导电不良而影响氧化、着色或电泳。 2.2.3装挂时,严禁将型材全部装挂在挂具的下部或上部。 2.2.4装挂的型材必须保持一定的倾斜度(>5°)以利于电泳或着色时排气,减少斑点(气泡)。 2.2.5装挂时必须考虑型材装饰面和沟槽的朝向、防止色差、汽泡、麻点产生在装饰面上。 2.2.6易弯曲、变形的长型材,在型材的中间部位增加一支挂具或采用铝丝吊挂以防型材间碰擦或触碰槽内极板,而擦伤或烧伤型材表面。. 2.2.7选用副杆挂具时,优先选用插杆,采用铝丝绑扎时,一定要间隔均匀,露头应小于25mm。 2.2.8截面大小、形状悬殊的型材严禁装挂在同一排上。 2.2.9装挂或搬运型材,必须戴好干净手套,轻拿轻放、爱护、防护好型材表面,严禁野蛮操作。 2.2.10装挂或搬运型材时必须加强自检和互检,不合格的型材严禁装挂,表面沾有油污或铝屑(毛刺)的型材必须采取适当的措施处理干净。 2.2.11剔除不合格型材后,必须按订单支数及时补足。 2.2.12装挂区的型材不宜存放太久,以防废气腐蚀型材表面。 2.2.13认真填写《装挂记录》和《氧化工艺流程卡》上装挂部分的记录,准确计算填写每挂氧化面积,随时核对订单,确保型号、支数、颜色不出差错。

阳极氧化工艺流程完整版

阳极氧化工艺流程 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

铝及铝合金阳极氧化着色工艺流程及原辅材料 铝及铝合金阳极氧化着色工艺规程 1、工艺流程(线路图) 基材→装挂→脱脂→碱蚀→中和→阳极氧化→电解着色→封孔→电泳涂 漆→固化→卸料包装→入库 2、装挂: 装挂前的准备。 2.1.1检查导电梁、导电杆等导电部位能否充分导电、并定期打磨、清洗或修理。 准备好导电用的铝片和铝丝。 检查气动工具及相关设备是否正常。 核对流转单或生产任务单的型号、长度、支数、颜色、膜厚等要求是否与订单及实物相符。 根据型材规格(外接圆尺寸、外表面积等)确定装挂的支数和间距、色料间距控制在型材水平宽度的倍左右,白料间距控制在型材宽度的1倍左右。 选择合适的挂具,确保正、副挂具的挂钩数与型材的装挂支数一致。 装挂: 装挂时应先挂最上面一支,再固定最下面一支,然后将其余型材均匀排布在中间、并旋紧所有铝螺丝。 装挂前在型材与铝螺丝间夹放铝片,以防型材与挂具间的导电不良而影响氧化、着色或电泳。 装挂时,严禁将型材全部装挂在挂具的下部或上部。 装挂的型材必须保持一定的倾斜度(>5°)以利于电泳或着色时排气,减少斑点(气泡)。 装挂时必须考虑型材装饰面和沟槽的朝向、防止色差、汽泡、麻点产生在装饰面上。

易弯曲、变形的长型材,在型材的中间部位增加一支挂具或采用铝丝吊挂以防型材间碰擦或触碰槽内极板,而擦伤或烧伤型材表面。 选用副杆挂具时,优先选用插杆,采用铝丝绑扎时,一定要间隔均匀,露头应小于25mm。 截面大小、形状悬殊的型材严禁装挂在同一排上。 装挂或搬运型材,必须戴好干净手套,轻拿轻放、爱护、防护好型材表面,严禁野蛮操作。 装挂或搬运型材时必须加强自检和互检,不合格的型材严禁装挂,表面沾有油污或铝屑(毛刺)的型材必须采取适当的措施处理干净。 剔除不合格型材后,必须按订单支数及时补足。 装挂区的型材不宜存放太久,以防废气腐蚀型材表面。 认真填写《装挂记录》和《氧化工艺流程卡》上装挂部分的记录,准确计算填写每挂氧化面积,随时核对订单,确保型号、支数、颜色不出差错。 认真做好交接班手续和工作区的环境卫生。 3、氧化台生产前的准备工作: 检查各工艺槽的液面高度,根据化验报告单调整各槽液浓度,确保槽液始终符合工艺要求,并经常清除槽液中的污物。 检查行车、冷冻机、整流器、循环酸泵、水泵、转移车、固化炉等设备是否正常,如有异常应及时排除,严禁带病运行。 检查纯水洗槽和自来水洗槽的PH(或电导率)和洁净度、不符合工艺要求的应及时更换或补水溢流。 打开碱蚀、热纯水槽、封孔槽的蒸汽或冷却水,打开氧化槽、着色槽、电泳槽的循环冷却系统,确保槽液均匀、温度达到工艺要求。 检查罗茨风机和抽、排风机,并在生产前开启。 认真核对《氧化工艺流程卡》,明确生产要求,准备好比色用色板。 4、氧化台操作的通用要求: 每次吊料不准超过两挂,并且两挂之间必须保持一定的间距,以防型材之间的碰擦伤。 型材吊进、吊出槽液时必须斜进、斜出,倾斜度应控制在30°左右。

材料合成与制备—韩惠敏版

1、共沉淀法 沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合液中加人适当的沉淀剂制备前驱体沉淀物,再将沉淀物进行干燥或锻烧,从而制得相应的粉体颗粒。 共沉淀法是指在溶液中含有两种或多种阳离子,它们以均相存在于溶液中,加入沉淀剂,经沉淀反应后,可得到各种成分的均一的沉淀,它是制备含有两种或两种以上金属元素的复合氧化物超细粉体的重要方法。 2、水热合成法 水热与溶剂热合成:在一定温度(100~1000℃)和压力(1~100MPa)条件下,利用溶液中物质化学反应所进行的合成。 水热合成:在水体系中进行。即在一定温度(100~1000℃)和压力(1~100MPa)条件下,利用水溶液中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反 应处于分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。又 由于水热反应的均相成核及非均相成核机理与固相反应的扩散机制不同, 因而可以创造出其它方法无法制备的新化合物和新材料。它的优点:所的 产物纯度高,分散性好、粒度易控制。 3、化学气相沉积(CVD) 气相沉积:利用气态或蒸气态的物质在气相或气固界面上反应生成固态沉积物的一类技术化学气相沉积:热CVD,等离子体CVD,激光CVD 一种或数种反应气体在热、激光、等离子体等作用下发生化学反应析出超微粉的方法,称作化学气相沉积法(是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程)。 4、Ostwald Ripening Ostwald ripening是一种材料生长的机理,简单点说就是材料从分子阶段开始,首先形成一定尺寸的晶核,然后所有的分子都依附于晶核生长,这个阶段不会再形成新的晶核了,只是晶核生长的越来越大。最经典的一种,就是“从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶”。 5、Oriented attachment ripening 多个取向不一致的单晶纳米颗粒,通过粒子的旋转,使得晶格取向一致,然后通过定向附着生长(oreinted attachment)使这些小单晶生长成为一个大单晶。(Banfiled又提出了一种新的晶体生长机制也能形成单晶结构,oriented ttachment, 多个取向不一致的单晶纳米颗,通过粒子的旋转,使得晶格取向一致,向后通过定向附着生长(oreinted attachment)使这些小单晶生长成为一个大单晶,当然定向附着的过程出难免会出现一些位错和缺陷,这种生长机理形成的单晶的特点同Ostwald ripening不同,OR形成的单晶大多是规则的,给材料本身晶体结构相关,而OA形成的单晶结构在形貌上则没有限制,任何形状和结构的单晶材料都能通过此机理形成) 6、介电常数 介电常数 :描述分子被电场极化的能力,也可以认为是样品阻止微波能通过能力的量度(或介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一

相关文档
相关文档 最新文档