文档库 最新最全的文档下载
当前位置:文档库 › 第12 章 电磁感应.

第12 章 电磁感应.

第12 章 电磁感应.
第12 章 电磁感应.

第12章 电磁感应

习 题

8.1 在通有电流I =5A 的长直导线近旁有一导体线段ab ,长l =20cm ,离长直导线距离d =10cm (图

示)。当它沿平行于长直导线的方向以速度v =10m/s 平移时,导线段中的感应电

动势多大?a 、b 哪端的电势高?

8.2 如附图所示,一很长的直导线载有交变电流i =I 0sin ωt,它旁边有一长方形线圈ABCD ,长为l ,宽为(b -a ),线圈和导线在同一平面内。求:

(1)穿过回路ABCD 的磁通量Φ; (2)回路ABCD 中的感应电动势ε。

8.3 在半径为R 的圆柱形体积内,充满磁感应强度为B 的均匀磁场。有一长为

L的金属棒放在磁场中,如图所示。设磁场在增强,并且t B

d d 已知,求棒中的感

应电动势,并指出哪端电势高。

8.4 附图中导体棒ab 与金属轨道ca 和db 接触,整个线框放在B =0.50T 的均匀磁场中,磁场方向与图面垂直。

(1)若导体棒以 4.0m/s 的速度向右运动,求棒内感应电动势的大小和

方向;

(2)若导体棒运动到某一位置时,电路的电阻为0.20Ω,求此时棒所受的力。摩擦力可不计。 (3)比较外力做功的功率和电路中所消耗的热功率。

8.5 (1)如图所示,质量为M 、长度为l 的金属棒ab 从静止开始沿倾斜的绝缘框架下滑,设磁场B竖直向上,求棒内的动生电动势与时间的函数关系,假定摩擦可忽略不计。

(2)如果金属棒ab 是沿光滑的金属框架下滑,结果有何不同?[提示:回路abcd 中将产生感应电流。可设回路的电阻为R ,并作为常量考虑。]

8.6 无限长直导线,通以电流I 。有一与之共面的直角三角形线圈ABC ,已知AC 边长为b ,且与长直导线平行,BC 边长为a ,若线圈以垂直于导线方向的速度v 向右平移,当B 点与长直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和感应电动势的方向。

8.7 如图,有一弯成θ角的金属架COD

放在磁场中,磁感应强度B 的方向垂直于金属架COD 所在平面。一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v 向右滑动, v 与MN 垂直,设t =0时,x =0。求下列两情形,框架内的感应电动势εi 。

(1)磁场分布均匀,且B 不随时间改变。 (2)非均匀的时变磁场t Kx B ωcos =。

8.8 如图,一个恒力F 作用在质量为m 、长为l 的水平滑动导线上,该导线两端与电阻R (导线电阻也计入R )连接。导线从静止开始,在均匀磁场B 中运动,其速度v 的方向与B 和导线皆垂直,假定滑动是无摩擦的且忽略导线与电阻R 形成的环路自感,试求导线的速度与时间的关系式。

8.9 一导线ab 弯成如图的形状

(其中cd 是一半圆,半径r =0.10m ,ac 和db 两段的长度均为l =0.10m )。在均匀磁场(B =0.50T )中绕轴线ab 转动,转速n =60rev ·s -1。设电路的总电阻(包括电表M的内阻)为1000

Ω,求导线中的感应电动势和感

应电流,它们的最大值各是多大? 8.10 一正方形线圈每边长100mm ,在地磁场中转动,每秒转30圈,转轴通过中心并与一边平

行。

(1)转轴与地磁场B的夹角为什么值时,线圈中产生的感应

电动势最大?

(2)设地磁场的B =0.55G ,这时要在线圈中最大产生10mV 的感应电动势,求线圈的匝数N 。 8.11 一正方形线圈(边长为l ),以匀速v 通过一“约束”在正方形区域(边长恰为2l )内的均强磁场。如图所示。线圈的位置由线圈中心所在位置的坐标x 来表示。试在x =-2l 到x =+2l 范围内,将线

圈中的感应电动势ε的量值按ε~x曲线图示出来,作图时把顺时针

指向的感应电动势记作正值,逆时针指向的感应电动势记作负值。

8.12 某型号喷气式飞机,机翼长47m 。如果此飞机在地磁场竖直分量为0.60×10-4T处水平飞行,速度为960km /h ,问两翼尖之间的感应电动势多大?

8.13 为了探测海洋中水的运动,海洋学家有时依靠水流通过地

磁场所产生的动生电动势。假设在某处地磁场的竖直分量为0.70×10-4T,两个电极垂直插入被测的相距200m 的水流中,如果与两极相连的灵敏伏特计指示7.0×10-3V的电势差,问水流速率多大。

8.14 发电机由矩形线环组成,线环平面绕竖直轴旋转。此竖直

轴与大小为2.0×10-2

T的均匀水平磁场垂直。环的尺寸为10.0cm ×20.0cm ,它有120圈。导线的两端接到外电路上,为了在两端之间

产生最大值为12.0V 的感应电动势,线环必须以多大的转速旋转?

8.15 一种用小线圈测磁场的方法如下:做一个小线圈,匝数为N,面积为S ,将它的两端与一测电量的冲击电流计相连。它和电流计线路的总电阻为R 。先把它放到待测磁场处,并使线圈平面与磁场方向垂直,然后急速地把它移到磁场外面。这时电流计给出通过的电量是q 。试用N ,S ,q ,R 表示待测磁场的大小。

8.16 磁换能器常用来检查微小的振动,例如,在振动杆的一端接一个线圈(N 匝),则线圈随杆在匀

强磁场B中来回进出地振动,如图所示,试证杆端的速率t x

d d 与线圈中感应电动势ε有下列关系:

ε=

)

d

d

(

t

x NBb

8.17 在半径为R的圆筒内,有

方向与轴线平行的均匀磁场B,以

10-2T·s-1的速率减小,a、b、c各点离轴线的距离均为r=5.0cm,试问电子在各点处可获得多大的加速度?加速度的方向如何?如果电子处在圆筒的轴线上,它的加速度又是多大?

8.18 一电子在电子感应加速器中沿半径为1m的轨道做圆周运动,如果电子每转一周动能增加700eV,试计算轨道内磁通量的变化率。

8.19 半径为2.0cm的螺线管,长30cm,上面均匀密绕1200匝线圈,线圈内为空气。

(1)问这螺线管中自感多大?

(2)如果在螺线管中电流以3.0×102A/s改变,在线圈中产生的自感电动势多大?

8.20 一同轴电缆由中心导体圆柱和外层导体圆筒组成,二者半径分别为R1和R2,筒和圆柱之间充以磁介质,磁介质和金属的μr均可取作1,求此电缆通过电流I(由中心圆柱流出,由圆筒流回)时,单位长度内储存的磁能,并通过和自感磁能的公式比较求出单位长度电缆的自感系数。

8.21 一纸筒,长30cm,截面直径为3.0cm,筒上绕有500匝线圈。

(1)求这线圈的自感;

(2)如果在这线圈内放入μr=5000的铁芯,求这时线圈的自感。

8.22 两线圈的自感分别为L1和L2,它们之间的互感为M。

(1)将两线圈顺串联,如图(a)所示,求1和4之间的自感;

(2)将两线圈反串联,如图(b)所示,

求1和3之间的自感。

8.23 附图所示为测量螺线管中磁场的一种装置。把一个很小的测量线圈放在待测处,这线圈与测量电量的冲击电流计G串联。冲击电流计是一种可测量迁移过它的电量的仪器。当用反向开关K使螺线管的电流反向时,测量线圈中就产生感应电动势,从而产生电量Δq的迁移;由G测出Δq就可以算出测量线圈所在处的B。已测量线圈有2000匝,它的直径为2.5cm,它和G串联回路的电阻为1000Ω,在

K反向时测得Δq=2.5×10-7C。求被测处的磁感强度。

8.24 在真空中,若一均匀电场中的电场能量密度与一磁感应强度为0.50T 的均匀磁场中的磁场能量密度相等,该电场的电场强度是多少?

8.25 一螺线管的自感系数为0.010H ,通过它的电流为4A ,试求它储藏的磁场能量。

8.26 如图,将一个圆柱形金属块放在高频感应炉中加热。设感应炉的线圈产生的磁场是均匀的,磁感应强度的方均根值为B,频率为f 。金属柱的直径和高分别为D和h,电导率为σ,金属柱的轴平行于磁场。设涡流产生的磁场可以忽略,试证明金属柱内涡电流产生的热功率为

h D B f P 4

223321σπ=

8.27 一平行板电容器的两板都是半径为5.0cm 的圆导体片,在充电时,其中电场强度的变化率为

12100.1×=dt dE

V /ms 。

(1)求两极板间的位移电流;

(2)求极板边缘的磁感应强度B。

8.28 如图示,电荷+q 以速度v 向0点运动(+q 到0点的距离以x 表示)。在0点处作一半径为a 的圆,圆面与v 垂直,试计算通过此圆面的位移电流。

部分习题答案

8.1 1.1×10-5V, Ua >U b

8.2 (1)t a b I l ωπ

μsin )(ln 200 (2)t

I a b

l ωπμωcos (ln 200? 8.3

a b U U dt dB

L R L >??22)2(2 8.4 (1)-1.0V 图中逆时针方向 (2)1.3N (3)5.0W 5.0W

8.5 (1)(Blg sin θcos θ)t (2)

]

1[cos sin )2cos 2

2(t mR

l B e Bl mgR θθθ

ε??=

8.6 v d a a

d d a a

Ib (ln 20+?

+πμ 8.7 t v Btg 2

θ?

)

cos sin 31

(233t t t t tg Kv ωωωθ?

8.8 )]exp(1[2

22

2t mR l

B l B RF ??

8.9 2.96sin120πtV 2.96×10-3sin120πt A 2.96V 2.96×10-3A 8.10 (1)90° (2)96匝 8.12 0.15V 8.13 0.5cm/s

8.14 39.81/s

8.15

NS qR B =

8.17 在a 、b 、c 三点时电子加速度大小均为4.4×107m ·s -2,方向分别为:向左,向右,向上;轴线上,0

8.18 700Ws -1

8.19 (1)7.58×10-3H (2)2.27V

8.20 ]

ln 4

1[41220R R

I +πμ, ln 41[2120R R +πμ 8.21 (1)7.4×10-4H, (2)3.7H

8.22 (1)L1+L2+2M, (2)L1+L2-2M 8.23 1.3G

8.24 1.5×108Vm -1 8.25 8×10-2J

8.27 (1)6.95×10-2A (2)2.78×10-7T

8.28 2

/3222)(2x a v

a q +

第12章 电磁感应

第12章 电磁感应 1 、如图所示,等边三角形的金属框,边长为l ,放在 均匀磁场中,ab 边平行于磁感强度B ,当金属框绕ab 边以角速度ω 转动时,bc 边上 沿bc 的电动势为 _________________, ca 边上沿ca 的电动势为_________________,金属框内的总 电动势为_______________.(规定电动势沿abca 绕向为正值) 2 、 半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <

第十二章 电磁感应电磁场(一)作业答案

第十二章 电磁感应 电磁场(一) 一.选择题 [ A ]1.(基础训练1)半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60?时,线圈中已通过的电量与线圈面积及转动时间的关系是: (A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比. 【解析】 [ D ]2.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为的正方向,则代表线圈内自感电动势随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【解析】 dt dI L L -=ε,在每一段都是常量。dt dI [ B ]3.(基础训练6)如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B ? 平 行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应 电动势和a 、c 两点间的电势差U a – U c 为 (A) =0,U a – U c =221l B ω (B) =0,U a – U c =22 1l B ω- (C) =2l B ω,U a – U c =2 2 1l B ω (D) =2l B ω,U a – U c =22 1 l B ω- 【解析】金属框架绕ab 转动时,回路中 0d d =Φ t ,所以0=ε。 2012c L a c b c bc b U U U U v B d l lBdl Bl εωω→→→ ??-=-=-=-??=-=- ??? ?? [ C ]5.(自测提高1)在一通有电流I 的无限长直导线所在平面内,有一半经 为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。当直导线的电流被切断后,沿着导线环流过的电量约为: (A))1 1(220r a a R Ir +-πμ (B) a r a R Ir +ln 20πμ (C)aR Ir 220μ (D) rR Ia 220μ 【解析】直导线切断电流的过程中,在导线环中有感应电动势大小:t d d Φ = ε B ? a b c l ω a I r o R q 2 1 φφ-=

第13讲 电磁感应规律及其应用(原卷版)

2020年高考物理二轮精准备考复习讲义 第四部分 电磁感应与电路 第13讲 电磁感应规律及其应用 目录 一、理清单,记住干 (1) 二、研高考,探考情 (2) 三、考情揭秘 (4) 四、定考点,定题型 (5) 超重点突破1楞次定律和法拉第电磁感应定律的应用 (5) 超重点突破2 电磁感应中的图象问题 (7) 超重点突破3 电磁感应中的电路与动力学问题 (8) 超重点突破4 电磁感应中的能量问题 (9) 五、固成果,提能力 (11) 一、理清单,记住干 1.电磁问题方向判断“三定则、一定律”的应用 (1)安培定则:判断运动电荷、电流产生的磁场方向。 (2)左手定则:判断磁场对运动电荷、电流的作用力的方向。 (3)楞次定律:判断闭合电路磁通量发生变化产生的感应电流的磁场方向。 (4)右手定则:判断闭合电路中部分导体切割磁感线产生的感应电流的方向。 2.楞次定律推论的应用技巧 (1)“增反减同”;(2)“来拒去留”;(3)“增缩减扩”。 3.四种求电动势的方法 (1)平均电动势E =n ΔΦΔt 。 (2)垂直切割E =BLv 。 (3)导体棒绕与磁场平行的轴匀速转动E =12 Bl 2ω。 (4)线圈绕与磁场垂直的轴匀速转动e =nBSωsin ωt 。 4.感应电荷量的两种求法 (1)当回路中的磁通量发生变化时,由于感应电场的作用使电荷发生定向移动而形成感应电流。通过的电荷

量表达式为q =I Δt =n ΔΦΔtR 总·Δt =n ΔΦR 总 。 (2)导体切割磁感线运动通过的电荷量q 满足的关系式:-B I l Δt =-Blq =m Δv 。 5.解决电磁感应图象问题的两种常用方法 (1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负以及是否过某些特殊点,以排除错误的选项。 (2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断。 6.三步解决电磁感应中电路问题 (1)确定电源:E =n ΔΦΔt 或E =Blv 。 (2)分析电路结构:分析内、外电路,以及外电路的串并联关系,画出等效电路图。 (3)应用闭合电路欧姆定律及串并联电路的基本规律等列方程求解。 7.电磁感应中力、能量和动量综合问题的分析方法 (1)分析“受力”:分析研究对象的受力情况,特别关注安培力的方向。 (2)分析“能量”:搞清楚有哪些力做功,就可以知道有哪些形式的能量发生了变化,根据动能定理或能量守恒定律等列方程求解。 (3)分析“动量”:在电磁感应中可用动量定理求变力的作用时间、速度、位移和电荷量(一般应用于单杆切割磁感线运动)。 ①求速度或电荷量:-B I l Δt =mv 2-mv 1,q =I Δt 。 ②求时间:F Δt +I A =mv 2-mv 1,I A =-B I l Δt =-Bl ΔΦR 总 。 ③求位移:-B I l Δt =-B 2l 2v Δt R 总=mv 2-mv 1,即-B 2l 2 R 总 x =m (v 2-v 1)。 二、研高考,探考情 【2019·全国卷Ⅰ】(多选)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图a 中虚线MN 所示。一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上。t =0时磁感应强度的方向如图a 所示;磁感应强度B 随时间t 的变化关系如图b 所示。则在t =0到t =t 1的时间间隔内( )

电磁感应++习题解答

第八章电磁感应电磁场 8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则() (A)线圈中无感应电流 (B)线圈中感应电流为顺时针方向 (C)线圈中感应电流为逆时针方向 (D)线圈中感应电流方向无法确定 分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B). 8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则() (A)铜环中有感应电流,木环中无感应电流 (B)铜环中有感应电流,木环中有感应电流 (C)铜环中感应电动势大,木环中感应电动势小 (D)铜环中感应电动势小,木环中感应电动势大 分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A). 8 -3有两个线圈,线圈1 对线圈2 的互感系数为M21,而线圈2 对线圈1的互感系数为

M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε< (D )2112M M = ,1221εε< 分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;t i M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场 (B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理 分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ). 8 -5 下列概念正确的是( ) (A ) 感应电场是保守场 (B ) 感应电场的电场线是一组闭合曲线 (C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).

第十二章电磁感应 电磁场

第十二章 电磁感应 电磁场和电磁波 12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且 t i t i d d d d 2 1<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε< (D )2112M M = ,1221εε< 分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 1 2121=;t i M εd d 21212=.因 而正确答案为(D ). 12-5 下列概念正确的是( ) (A ) 感应电场是保守场 (B ) 感应电场的电场线是一组闭合曲线 (C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ). 12-7 载流长直导线中的电流以 t I d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势. 分析 本题仍可用法拉第电磁感应定律t Φ d d - =ξ ,来求解.由于回路处在非均匀磁场中,磁通量就需用??= S S B Φd 来计算. 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量

大物B课后题08-第八章 电磁感应 电磁场

习题 8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。 解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为 02m i d B dS ldx x μφπ=?= 通过矩形面积CDEF 的总磁通量为 0000ln ln sin 222b m a i il I l b b ldx t x a a μμμφωπππ===? 由法拉第电磁感应定律有 00ln cos 2m d I l b t dt a φμωεωπ=- =- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt ,球小 线圈中感应的电动势。 解 无限长直螺线管内部的磁场为 0B nI μ= 通过N 匝圆形小线圈的磁通量为 2 0m NBS N nI r φμπ== 由法拉第电磁感应定律有 20m d dI N n r dt dt φεμπ=- =- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。 解 通过小线圈的磁通量为 0m BS niS φμ== 由法拉第电磁感应定律有 000cos m d di nS nSi t dt dt φεμμωω=- =-=- 8-9 如图所示,矩形线圈ABCD 放在1 6.010B T -=?的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=?,长为0.20m 的AB 边可左右滑动。若令AB 边以速率 15.0v m s -=?向右运动,试求线圈中感应电动势的大小及感应电流的方向。 解 利用动生电动势公式

第九讲电磁感应

第九讲电磁感应 例1.如图所示,阻值为R,质量为m,边长为l的正方形金属框位于光滑水平面上。金属框的ab 边与磁场边缘平行,并以一定的初速度进入矩形磁场区域,运动方向与磁场边缘垂直。磁场方向垂 直水平面向下,在金属框运动方向上的长度为L ( L>l)。已知金属框的ab边进入磁场后,框在进、 出磁场阶段中的运动速度与ab边在磁场中的位置坐标之间关系为v = v0-cx( x

大学物理期末复习第八章电磁感应及电磁场

第八章 电磁感应与电磁场 §8-1电磁感应定律 一、电磁感应现象 电磁感应现象可通过两类实验来说明: 1.实验 1)磁场不变而线圈运动 2)磁场随时变化线圈不动 2.感应电动势 由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何(如:线圈运动,变;或不变线圈运动),回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。 3.电动势的数学定义式 定义:把单位正电荷绕闭合回路一周时非静电力做的功定义为该回路的电动势,即 () ??=l K l d K :非静电力 ε (8-1) 说明:(1)由于非静电力只存在电源内部,电源电动势又可表示为 表明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正 极时,非静电力所做的功。 (2)闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:() ??=l K l d K :非静电力 ε (3)电动势是标量,和电势一样,将它规定一个方向,把从负极经 电源内部到正极的方向规定为电动势的方向。 二、电磁感应定律 1、定律表述

在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。数学表达式: 在SI 制中,1=k ,(S t V Wb :;:;:εΦ),有 dt d i Φ- =ε (8-2) 上式中“-”号说明方向。 2、i ε方向的确定 为确定i ε,首先在回路上取一个绕行方向。规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。在此基础上求出通过回路上所围面积的磁通量,根据dt d i Φ -=ε计算i ε。 三、楞次定律 此外,感应电动势的方向也可用楞次定律来判断。 楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。 说明:(1)实际上,法拉第电磁感应定律中的“-”号是楞次定律的数学表 述。 (2)楞次定律是能量守恒定律的反映。 例8-1:设有矩形回路放在匀强磁场中,如图所示,AB 边也可以左右滑动,设 以匀速度向右运动,求回路中感应电动势。 解:取回路顺时针绕行,l AB =,x AD =, 则通过线圈磁通量为 由法拉第电磁感应定律有: “-”说明:i ε与l 绕行方向相反,即逆时针方向。由楞次定律也能得知,i ε沿逆时针方向。 讨论:(1)如果回路为N 匝,则?=ΦN (?为单匝线圈磁通量) (2)设回路电阻为R (视为常数),感应电流 dt d R R I i i Φ-==1ε 在1t —2t 内通过回路任一横截面的电量为 可知q 与(12ΦΦ-)成正比,与时间间隔无关。 例8-1中,只有一个边切割磁力线,回路中电动势即为上述产生的电动势。

第12章 电磁感应 电磁场

第十二章 电磁感应 电磁场 问题 12-1 如图,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,试确定在下列情况下,ABCD 上的感应电动势的方向:(1)矩形线圈在纸面内向右移动;(2)矩形线圈绕AD 轴旋转;(3)矩形线圈以直导线为轴旋转. 解 导线在右边区域激发的磁场方向垂直于纸面向 里,并且由2I B r μ0=π可知,离导线越远的区域磁感强度越小,即磁感线密度越小.当线圈运动时通过线圈的磁通量会发生变化,从而产生感应电动势.感应电动势的方向由楞次定律确定. (1)线圈向右移动,通过矩形线圈的磁通量减少,由楞次定律可知,线圈中感应电动势的方向为顺时针方向. (2)线圈绕AD 轴旋转,当从0到90时,通过线圈的磁通量减小,感应电动势的方向为顺时针方向.从90到180时,通过线圈的磁通量增大,感应电动势的方向为逆时针. 从180到270时,通过线圈的磁通量减少,感应电动势的方向为顺时针.从270到360时,通过线圈的磁通量增大,感应电动势的方向为逆时针方向. (2)由于直导线在空间激发的磁场具有轴对称性,所以当矩形线圈以直导线为轴旋转时,通过线圈的磁通量并没有发生变化,所以,感应电动势为零. 12-2 当我们把条形磁铁沿铜质圆环的轴线插入铜环中时,铜环内有感应电流和感应电场吗? 如用塑料圆环替代铜质圆环,环中仍有感应电流和感应电场吗? 解 当把条形磁铁沿铜质圆环的轴线插入铜环过程中,穿过铜环的磁通量增加,铜环中有感应电流和感应电场产生;当用塑料圆环替代铜质圆环,由于塑料圆环中的没有可以移动的自由电荷,所以环中无感应电流和感应电场产生. 12-3 如图所示铜棒在均匀磁场中作下列各种运动,试问在哪种运动中的铜棒上会有感应电动势?其方向怎样?设磁感强度的方向铅直向下.(1)铜棒向右平移[图(a)];(2)铜棒绕通过其中心的轴在垂直于B 的平面内转动[图(b)];(3)铜棒绕通过中心的轴在竖直平面内转动[图(c)]. C I

第一讲电磁感应中的电路与电荷量问答

第一讲电磁感应中的电路与电荷量问题 电磁感应往往与电路问题联系在一起,解决电磁感应中的电路问题只需要三步: 第一步:确定电源。切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,则该导体或回路就相 当于电源,利用求感应电动势的大小,利用右手定则或楞次定律判断电流方向。如果在一个电路中切割磁感线的有几个部分但又相互联系,可等效成电源的串、并联。 第二步:分析电路结构(内、外电路及外电路的串并联关系),画等效电路图。 第三步:利用电路规律求解。主要应用欧姆定律及串并联电路的基本性质等列方程求解。 感应电动势大小的计算——法拉第电磁感应定律的应用。 1、折线或曲线导体在匀强磁场中垂直磁场切割磁感线平动,产生的感应电动势:E=BLvsinθ; 2、直导体在匀强磁场中绕固定轴垂直磁场转动时的感应电动势:; 3、圆盘在匀强磁场中转动时产生的感应电动势:; 4、线圈在磁场中转动时产生的感应电动势:(θ为S与B之间的夹角)。 2、电磁感应现象中的力学问题 (1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是: ①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向; ②求回路中电流强度; ③分析研究导体受力情况(包含安培力,用左手定则确定其方向); ④列动力学方程或平衡方程求解。 (2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。

3、电磁感应中能量转化问题 导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是: ①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向; ②画出等效电路,求出回路中电阻消耗电功率表达式; ③分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。 4、电磁感应中图像问题 电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。 另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。 题型一等效电源、电路问题 例1:把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水平固定在竖直向下,磁感应强度为B的匀强磁场中,如图所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触。当金属棒以恒定速度v向右移动经 过环心O时,求: (1)流过棒的电流的大小、方向及棒两端的电压U MN。 (2)在圆环和金属棒上消耗的总热功率。

第八章电磁感应 电磁场习题解答

第八章电磁感应 电磁场习题解答 8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为 58.010sin100(Wb)t π-Φ=?,求在21.010s t -=? 时,线圈中的感应电动势. 分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成d d d d N t t εΦψ =-=- ,其中N ψ=Φ称为磁链. 解 线圈中总的感应电动势 d 2.51cos(100)d N t t επΦ =-= 当2 1.010s t -=? 时, 2.51V ε=. 8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以 dI dt 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势. 分析 本题仍可用法拉第电磁感应定律d d t εΦ =- 来求解.由于回路处在非均匀磁场中,磁通量就需用Φ=S d ?? B S 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和). 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则d d S d x =,所以,总磁通量可通过线积分求得(若取面元d d dy S x =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式d d M l E M t =-求解.

解1 穿过面元dS 的磁通量为 0012d d d d d d 2() 2Φ=d x d x x d x μμππI I ???- +B S =B S +B S = 因此穿过线圈的磁通量为 220003 d d d 2() 224 Φ=Φ=d d d d d d d x x ln x d x μμμπππI I I -=+?? ? 再由法拉第电磁感应定律,有 0d 3dI =d 24d d ln t t μεπ??- =??? ?Φ 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为 03 24 Φ= dI ln μπ 线圈与两长直导线间的互感为 0324 Φ=d M ln I μπ= 当电流以 d d I t 变化时,线圈中的互感电动势为 0d 3d 24d I M ln t μεπ??=-=??? ? 8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高? 分析 本题及后面几题中的电动势均为动生电动势,除仍可由d d t ε=- Φ 求解外(必须设法

修改第十二章 电磁感应电磁场(一) 作业及参考答案 2014

一。选择题 [ ]1.(基础训练1)半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60?时,线圈中已通过的电量与线圈面积及转动时间的关系是: (A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比. 【分析】 [ ]2.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为 的正方向,则代表线圈内自感电动势 随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【分析】 [ ]3. (基础训练5)在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B 的大 小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在导线AB 中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等. (D) AB 导线中的电动势小于导线中的电动势 【分析】 [ ]4.(自测提高4)有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为: (A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2. (D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. 【分析】

第十二章电磁感应电磁场

第12章电磁感应 内容:1 . 法拉第电磁感应定律 2 . 动生电动势和感生电动势 3 . 互感 4 . 自感 5 . RL电路的暂态过程 6 . 自感磁能磁场的能量密度 7 . 位移电流电磁场基本方程的积分形式 重点:法垃第电磁感应定律 难点:感生电动势和感生电场

12.1 法拉第电磁感应定律 12.1.1 电磁感应现象 G v 演示动画:现象1演示动画:现象2 G k (1)线圈固定,磁场变化

当穿过闭合导体回路的磁通量发生变化时,不管这种变化是什么原因引起的,在导体回路中就会产生感应电流。这就是电磁感应现象。 G B ω 演示动画:现象3 (2)磁场不变,线圈运动 演示程序:在磁场中旋转的线圈? ?? ?? ? ?? ? G S B

思考:仅一段导体在磁场中运动,导体内有无感 生电流?有无感应电动势? 有感生电动势存在,而无感生电流。 12.1.2 法拉第电磁感应定律 在电磁感应现象中,导体回路出现感应电流,这表明回路中有电动势存在。 因回路中磁通量的变化而产生的这种电动势叫感应电动势 (1)法拉第电磁感应定律 通过回路所包围面积的磁通量发生变化时,回路中产生的感应电动势 的大小与磁通量对时间的变化率成正比。

t Φk m d d -=ε单位: 1V=1Wb/s 国际单位制中k =1 负号表示感应电动势总是反抗磁通的变化 磁链数:m N ΦΨ=若有N 匝线圈,每匝磁通量相同,它们彼此串联,总电动势等于各匝线圈所产生的电动势之和。令每匝的磁通量为Φm t N t m d d d d Φψε-=- =(2)感应电动势方向 由于电动势和磁通量都是标量,它们的“正负”相对于某一指定的方向才有意义。 t d d m Φ- =ε

第18讲电磁感应中能量

第1讲 电磁感应中的能量 题一:如图所示,MN 、PQ 为两根足够长的水平放置的平行金属导轨,间距L =1 m ;整个空间内以OO '为边界,左侧有垂直导轨平面向上的匀强磁场,磁感应强度大小11T B =,右侧有方向相同、磁感应强度大小22T B =的匀强磁场。两根完全相同的导体棒c 、b 质量均为0.1kg m =,与导轨间的动摩擦因数均为0.2μ=,两导体棒在导轨间的电阻均为R =1 Ω。开始时,c 、b 棒均静止在导轨上,现用平行于导轨的恒力F =0.8 N 向右拉b 棒。假设c 棒始终在OO '左侧,b 棒始终在OO '右侧,除导体棒外其余电阻不计,滑动摩擦力和最大静摩擦力大小相等,2 10m/s g =。 (1)c 棒刚开始滑动时,求b 棒的速度大小; (2)当b 棒的加速度大小22 1.5m/s a =时,求c 棒的加速度大小; (3)已知经过足够长的时间后,b 棒开始做匀加速运动,求该匀加速运动的加速度大小,并计算此时c 棒的热功率。 题二:如图所示,两根足够长且平行的光滑金属导轨所在平面与水平面成53α=?角,导轨间接一阻值为3 Ω的电阻R ,导轨电阻忽略不计。在两平行虚线间有一与导轨所在平面垂直的匀强磁场,磁场区域的宽度为0.5m d =。导体棒a 的质量为10.1kg m =、电阻为16R =Ω;导体棒b 的质量为20.2kg m =、电阻为23R =Ω,它们分别垂直导轨放置并始终与导轨接触良好。现从图中的M 、N 处同时将a 、b 由静止释放,运动过程中它们都能匀速穿过磁场区域,且当a 刚出磁场时b 正好进入磁场。(sin530.8?=,cos530.6?=,g 取10 m/s 2,a 、b 电流间的相互作用不计),求: (1)在b 穿越磁场的过程中a 、b 两导体棒上产生的热量之比; (2)在a 、b 两导体棒穿过磁场区域的整个过程中,装置上产生的热量; (3)M 、N 两点之间的距离。 题三:如图所示,固定的竖直光滑U 形金属导轨,间距为L ,上端接有阻值为R 的电阻,处在方向水平且垂直于导轨平面、磁感应强度为B 的匀强磁场中,质量为m 、电阻为r 的导体棒与劲度系数为k 的固定轻弹簧相连放在导轨上,导轨的电阻忽略不计。初始时刻,弹簧处于伸长状态,其伸长量为1mg x k =,此时导体棒具有竖直向上的初速度v 0。在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触。则下列说法正确的是( )

第八章电磁感应电磁场习题解答-感生电场习题

第八章电磁感应电磁场习题解答 8 —6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为 G =8.0 10^5sin100二t(Wb),求在t =1.0 10 2 s时,线圈中的感应电动势. 分析由于线圈有N匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数 d①dΨ 和,在此情况下,法拉第电磁感应定律通常写成;=-N d d,其中弓-NG称为dt dt 磁链. 解线圈中总的感应电动势 dΦ ;-- N 2.51cos(100二t) dt 当t =1.0 102s 时,;:-2.51V . 8 —7有两根相距为d的无限长平行直导线,它们通以大小相等流向相反的电流,且电流 均以W 的变化率增长?若有一边长为d的正方形线圈与两导线处于同一平面内,如图所dt 示.求线圈中的感应电动势. 题8-7 ≡ d① 分析本题仍可用法拉第电磁感应定律来求解.由于回路处在非均匀磁场中,磁 dt 通量就需用①= B d S来计算(其中B为两无限长直电流单独存在时产生的磁感强度B1 S 与B 2之和). 为了积分的需要,建立如图所示的坐标系.由于B仅与X有关,即B=B(X),故取一个平 行于长直导线的宽为d X、长为d的面元d S,如图中阴影部分所示,贝U dS =ddx ,所以,总磁通量可通过线积分求得(若取面元dS =dxdy ,则上述积分实际上为二重积分).本题 在工程技术中又称为互感现象,也可用公式E^- -M ~~求解. dt tlx

解 1 穿过面元 d S 的磁通量为 再由法拉第电磁感应定律,有 dΦP od I 3 [di ;= —In dt ]2兀4_dt 解2当两长直导线有电流I通过时,穿过线圈的磁通量为 线圈与两长直导线间的互感为 ① M= —: I ?d3 = In 2 二4 当电流以d~变化时,线圈中的互感电动势为 dt IKfl di j 0d 3 ;--M —0 In dt 2 二4 8 - 10如图(a)所示,把一半径为R的半圆形导线OP置于磁感强度为B的均匀磁场中, 当导线以速率V水平向右平动时,求导线中感应电动势E的大小,哪一端电势较高? ^S-IO 圈 分析本题及后面几题中的电动势均为动生电动势,除仍可由 构造一个闭合回路),还可直接用公式;=I(V B) d 1求 解. dΦ = B d S = B1d S + B2J√? d S = 0ddx 2兀(x + d) %: ddx 2二X 因此穿过线圈的磁通量为 dx 一严。Id 2二(X d)d dx 2二X ?;:=-dφ求解外(必须设法 dt 2 二

第十二章电磁感应电磁场

第十二章电磁感应电磁场 题12.1:如图所示,在磁感强度T 106.74-?=B 的均匀磁场中,放置一个线圈。此线圈由两 个半径均为3.7 cm 且相互垂直的半圆构成,磁感强度的方向与两半圆平面的夹角分别为ο62和 ο28。若在s 105.43-?的时间内磁场突然减至零,试问在此线圈内的感应电动势为多少? 题12.1分析:由各种原因在回路中所引起的感应电动势,均可由法拉第电磁感应定律求解, 即??-=- = S d d d d d S B t t Φε但在求解时应注意下列几个问题: 1.回路必须是闭合的,所求得的电动势为回路的总电动势。 2.Φ应该是回路在任意时刻或任意位置处的磁通量。它由??=S d S B Φ计算。对于均匀磁 场则有θcos d S BS Φ=?=?S B ,其中⊥=S S θcos 为闭会回路在垂直于磁场的平面内的投影面 积。对于本题,2211cos cos θθBS BS Φ+=中1θ和2θ为两半圆形平面法线n e 与B 之间的夹角。 3.感应电动势的方向可由t Φ d d - 来判定,教材中已给出判定方法。为方便起见,所取回路的正向(顺时针或逆时针)应与穿过回路的B 的方向满足右螺旋关系,此时Φ恒为正值,这对符号确定较为有利。 题12.1解:迎着B 的方向,取逆时针为线圈回路的正向。由法拉第电磁感应定律 V 1091.4)cos cos (cos cos d d cos cos d d d d 4221122112211-?=+??-=+-=+-=- =θθθθθθεS S t B S S t B BS BS t t Φ)()(

0>ε,说明感应电动势方向与回路正向一致 题12.2:一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为 t Φ)s 100sin()Wb 100.8(15--?=π,求在s 100.12-?=t 时,线圈中的感应电动势。 题12.2解:线圈中总的感应电动势 t t Φ N )s 100cos()V 51.2(d d 1-=-=πε 当 s 100.12-?=t 时, ε= 2.51 V 。 题12.3:如图所示,用一根硬导线弯成半径为r 的一个半圆。使这根半圆形导线在磁感强度 为 B 的匀强磁场中以频率f 旋转,整个电路的电阻为R ,求感应电流的表达式和最大值。 题12.3解:由于磁场是均匀的,故任意时刻穿过回路的磁通量为 θcos )(0BS Φt Φ+= 其中Φ0等于常量,S 为半圆面积, )2(00ft t Φπ?ωθ+=+= )2cos(2 1 )(020?ππ++=ft B r Φt Φ 根据法拉第电磁感应定律,有)2sin(d d 022?ππε+=-=ft fB r t Φ 因此回路中的感应电流为 )2sin()(022?ππε += =ft R fB r R t I 则感应电流的最大值为 R fB r I 22m π= 题12.4:有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流 均以 t I d d 的变化率增长。若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示。

(北京专用)2020版高考物理总复习第十二章第2讲法拉第电磁感应定律自感精练(含解析)

第2讲法拉第电磁感应定律自感 A组基础巩固 1.如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为E1;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2。则通过电阻R的电流方向及E1与E2之比E1∶E2分别为( ) A.c→a,2∶1 B.a→c,2∶1 C.a→c,1∶2 D.c→a,1∶2 答案 C 杆MN向右匀速滑动,由右手定则判知,通过R的电流方向为a→c;又因为E=BLv,所以 E1∶E2=1∶2,故选项C正确。 2.(2017昌平二模)图甲为手机及无线充电板。图乙为充电原理示意图。充电板接交流电源,对充电板供电,充电板内的送电线圈可产生交变磁场,从而使手机内的受电线圈产生交变电流,再经整流电路转变成直流电后对手机电池充电。为方便研究,现将问题做如下简化:设受电线圈的匝数为n,面积为S,若在t1到t2时间内,磁场垂直于受电线圈平面向上穿过线圈,其磁感应强度由B1均匀增加到B2。下列说法正确的是( ) A.c点的电势高于d点的电势 B.受电线圈中感应电流方向由d到c C.c、d之间的电势差为2-1 2-1

D.c、d之间的电势差为2-1 2-1 答案 C 受电线圈内原磁场增强,由楞次定律知,感应电流产生的磁场与原磁场反向,再由安培定则可得,俯视时电流方向为顺时针,即由c到d,受电线圈作为电源,d为正极,d点电势比c点的高,A、B错误; ,C正确,D错误。 由法拉第电磁感应定律得,c、d间电势差E==2-1 2-1 3.(2017东城二模)如图所示,在光滑水平桌面上有一边长为L、总电阻为R的正方形导线框abcd,在导线框右侧有一边长为2L、磁感应强度为B、方向竖直向下的正方形匀强磁场区域。磁场的左边界与导线框的ab边平行。在导线框以速度v匀速向右穿过磁场区域的全过程中( ) A.感应电动势的大小为2 B.感应电流的方向始终沿abcda方向 C.导线框受到的安培力先向左后向右 D.导线框克服安培力做功22 答案 D 导线框进入、穿出磁场的过程中感应电动势的大小E=BLv。由右手定则可知进入磁场的过程中,感应电流的方向为abcda方向;出磁场的过程中,感应电流的方向为adcba方向,由左手定则可知,进、出磁场的过程安培力始终向左。F安=BIL=22,则W克安=F安·2L=22,D正确。 4.(2018东城一模)如图所示,将两端刮掉绝缘漆的导线绕在一把锉刀上,一端接上电池(电池另一极与锉刀接触),手执导线的另一端,在锉刀上来回划动,由于锉刀表面凹凸不平,就会产生电火花。下列说法正确的是( )

第十二章 电磁感应电磁场(一)作业答案

一.选择题 [ A ]1.(基础训练1)半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60?时,线圈中已通过的电量与线圈面积及转动时间的关系是: (A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比. 【解析 】 [ D ]2.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为的正方向,则代表线圈内自感电动势随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【解析】 dt dI L L -=ε,在每一段都是常量。dt dI [ B ]3.(基础训练6)如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平 行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应 电动势和a 、c 两点间的电势差U a – U c 为 (A) =0,U a – U c =221l B ω (B) =0,U a – U c =22 1l B ω- (C) =2l B ω,U a – U c =2 2 1l B ω (D) =2l B ω,U a – U c =22 1 l B ω- 【解析】金属框架绕ab 转动时,回路中 0d d =Φ t ,所以0=ε。 2012c L a c b c bc b U U U U v B d l lBdl Bl εωω→→→ ??-=-=-=-??=-=- ??? ?? [ C ]5.(自测提高1)在一通有电流I 的无限长直导线所在平面内,有一半经 为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。当直导线的电流被切断后,沿着导线环流过的电量约为: (A))1 1(220r a a R Ir +-πμ (B) a r a R Ir +ln 20πμ (C)aR Ir 220μ (D) rR Ia 220μ 【解析】直导线切断电流的过程中,在导线环中有感应电动势大小:t d d Φ = ε a I R q 2 1 φφ-=

相关文档
相关文档 最新文档