文档库 最新最全的文档下载
当前位置:文档库 › 语音识别论文.

语音识别论文.

语音识别论文.
语音识别论文.

语音信号的分析与处理

摘要:本文针对语音信号时域、频域参数进行了系统详尽的分析,并在MATLAB环境下实现了基于DTW算法的特定人孤立词语音信号的识别。

关键词:语音信号;短时傅里叶;MFCC;动态时间规整

引言

语音信号参数分析是语音信号处理的前提和基础。语音信号处理包括语音通信、语音增强、语音合成、语音识别和说话人识别等方面。只有通过语音信号的分析才能获得语音本质特性的参数,才能利用这些参数进行高效的语音通信,才能建立语音合成的语音库,也才可能建立用于语音识别的模板和知识库。此外,语音合成音质的好坏、语音识别率的高低,都取决于语音信号参数分析的准确性和精度。因此,语音信号参数分析是语音信号处理研究中一项非常有意义的工作[1]。

近年来,语音识别已经成为一个非常活跃的研究领域。在不远的将来,语音识别技术有可能作为一种重要的人机交互手段,辅助甚至取代传统的键盘、鼠标等输入设备,在个人计算机上进行文字录入和操作控制。而在手持式PDA、智能家电、工业现场控制等应用场合,语音识别技术则有更为广阔的发展前景[2]。

在特定人孤立词语音识别中,最为简单有效的方法是采用DTW(Dynamic Time Warping,动态时间规整)算法,该算法基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,是语音识别中出现最早、较为经典的一种算法[3]。

MATLAB是一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面友好的操作环境。本文就是在MA TLAB基础上来进行语音信号参数的分析与语音信号的识别的。

一、语音信号的分析

1参数分析

语音信号是一种典型的非平稳信号。但是,由于语音的形成过程是与发音器官的运动密切相关的,这种物理运动比起声音振动速度来讲要缓慢得多,因此语音信号常常可被假定为短时平稳的,即在10一20ms这样的时间段内,其频谱特性和某些物理特征参量可被近似地看作不变。这样,我们就可以采用平稳过程的分析处理方法来处理,一般而言语音信号处理的方法都是基于这种短时平稳的假设的。根据语音信号所分析参数的不同,语音信号参数分析可以分为时域、频域、倒谱域分析等[4]。本文仅涉及时域及频域参数分析。

2时域分析

进行语音信号最为直观的分析方法就是时域分析。语音信号本身就是时域信号,因而时域分析是最早使用,也是应用最广泛的一种方法,这种方法直接利用语音信号的时域波形。时域分析通常用于最基本的参数分析以及语音的分割、预处理和大分类等。时域分析方法的特点是:第一,表示语音信号比较直观,物理意义明确;第二,实现起来比较简单,运算量少;第三,可以得到语音的一些重要参数;第四,采用示波器等通用设备,使用简单[5]。

2.1短时能量分析

短时能量分析用途:第一,可以区分清音段和浊音段,因为浊音时的短时平均能量值比清音时大得多;第二,可以用来区分声母与韵母的分界、无声与有声的分界、连字的分界等。如对于高信

噪比的语音信号,短时平均能量用来区分有无语音。无语音信号噪声的短时平均能量很小,而有语音信号的能量则显著增大到某一个数值,由此可以区分语音信号的开始点或者终止点。

3频域分析

短时傅立叶分析在运用离散时间傅立叶变换分析语音信号的变化时,会遇到这样的问题,即单一的傅立叶变换并不能反映时间变化的频谱信息,诸如时变共振峰和谐波。具体而言,通常将信号的每一时刻与其相邻时刻信号的傅立叶变换相联系,这样就可以及时跟踪信号的频谱变化。语音信号的短时傅立叶变换见程序所述。

可以验证,在短时傅立叶分析中对于同一种窗函数而言,其通带宽度与窗长成反比。如果希望频率分辨率高,则窗长应尽量取长一些;如果希望时间分辨率高,则窗长尽量取短一些。由此可见,傅立叶分析的时间分辨率和频率分辨率是相互矛盾的,这是短时傅立叶本身所固有的弱点。短时傅立叶分析一般采用汉明窗作为分析窗[6]。

通过基于MATLAB和短时频域分析,能够得出[7]:第一,长窗具有较高的频率分辨率,但具有较低的时间分辨率。从一个周期到另一个周期,共振峰是要发生变化的,这一点即使从语音波形上也能够看出来。然而,如果采用较长的窗,这种变化就模糊了,因为长窗起到了时间上的平均作用。第二,短窗的频率分辨率低,但具有较高的时间分辨率。采用短窗时,能够从短时频谱中提取出共振峰从一个周期到另一个周期所发生的变化。当然,激励源的谐波结构也从短时频谱上消失了。第三,在对语音信号进行短时傅里叶分析时,窗长需要折衷考虑。一方面,短窗具有较好的时间分辨率因而能够提取出语音信号中的短时变化;但另一方面,损失了频率分辨率。第四,汉明窗都具有低通的性质,且在截止频率处比较尖锐,当其通带较窄时(窗越宽,通带越窄),加窗后的频谱更能够较好反映短时语音信号的频谱,窗越宽这种逼近越好。

二、语音信号的处理

1特定人孤立词语音识别系统分析

一个完整特定人孤立词语音识别系统通常包括语音的输入,语音信号的预处理,特征提取,训练与识别等几个环节,基本构成如图1所示:

图1孤立词语音识别系统框图

语音识别的过程可以被看作模式匹配的过程,模式匹配是指根据一定的准则,使未知模式与模型库中的某一个模型获得最佳匹配的过程。模式匹配中需要用到的参考模板通过模板训练获得。在训练阶段,将特征参数进行一定的处理后,为每个词条建立一个模型,保存为模板库。在识别阶段,语音信号经过相同的通道得到语音特征参数,生成测试模板,与参考模板进行匹配,将匹配分数最高的参考模板作为识别结果。同时,还可以在一些先验知识的帮助下,提高识别的准确率。

2语音识别算法———高效的DTW算法

动态时间规整(Dynamic Time Warping,DTW)是把时间规整和距离测度计算结合起来的一种非线性规整技术,解决了测试模板与参考模板语音时间长度不等的问题。

图2匹配路径约束示意图

通常,规整函数被限制在一个平行四边形的网格内,如图2所示。它的一条边斜率为2,另一条边斜率为1/2。规整函数的起点是(1, 1),终点为(N,M)。DTW算法的目的是在此平行四边形内由起点到终点寻找一个规整函数,使其具有最小的代价函数,保证了测试模板与参考模板之间具有最大的声学相似特性[8]。

由于在模板匹配过程中限定了弯折的斜率,因此平行四边形之外的格点对应的帧匹配距离是不需要计算的。另外,因为每一列各格点上的匹配计算只用到了前一列的3个网格,所以没有必要保存所有的帧匹配距离矩阵和累积距离矩阵。充分利用这两个特点可以减少计算量和存储空间的需求,形成一种高效的DTW算法,如图2所示。图2中,把实际的动态弯折分为三段,(1,xa),(xa+1,xb),(xb+1,N),其中:

xa= (2M-N)/3,

xb=2(2N-M)/3

xa和xb都取最相近的整数,由此可得出对M和N长度的限制条件:

2M-N≥3,

2N-M≥2

当不满足以上条件时,认为两者差别太大,则无法进行动态弯折匹配。在x轴上的每一帧不再需要与y轴上的每一帧进行比较,而只是与y轴上[ymin,ymax]间的帧进行比较,ymin和ymax的计算公式为:

ymin=x/2,0≤x≤xb,

2x+(M-2N),xb< x≤N

ymax=2x,0≤x≤xa,

x/2+(M-N/2),xa< x≤N

如果出现xa> xb的情况,则弯折匹配的三段为(1,xb),(xb+1,xa),(xa+1,N)。

对于x轴上每前进一帧,虽然所要比较的y轴上的帧数不同,但弯折特性是一样的,累积距离的更新都是用下式实现的:

D(x,y) = d(x,y)+min[D(x-1,y),D(x-1,y-1),D(x-1,y-2)]

3.MA TLAB仿真验证

3.1语音信号预处理

语音信号的预处理包括预滤波、采样和量化、加窗、预加重、端点检测等过程[9]。所选用的实验语音数据,是在实验室条件下利用PC机录制。采用8 000kHz采样频率、16bit量化、单声道的PCM录音格式。由于语音信号在帧长为10ms~30ms之内是相对平稳的,同时为了便于计算FFT,本系统选取帧长N为256个语音点,帧移M为128点。

汉明窗与矩形窗和汉宁窗相比具有最低旁瓣,可以有效地克服泄漏现象,具有更平滑的低通特性,故本文采用汉名窗对语音信号进行分帧处理,如下式:

ω(n) =0.54-0.46cos(2πn/(N-1)),0≤n≤N-1

预加重用具有6dB/倍频程的提升高频特性的一阶数字滤波器实现:

H(z) =1-0.937 5/z

端点检测采用基于短时能量和短时平均过零率法[10],利用已知为“静态”的最初十帧信号为短时能量设置2个门限ampl和amph,以及过零率阀值zcr。语音起始点从第11帧开始检测,其流程图如图3。语音结束点的检测方法与检测起点相似,但此时从后向前搜索。

图3 语音起点检测流程图

3.2特征参数提取及语音识别

研究表明,倒谱特征参数所含的信息量比其他参数多,能较好地表现语音信号。

本文选取能够反映人对语音的感知特性的Mel频率倒谱系数(MFCC)作为特征参数,阶数为12。经过MFCC特征参数提取后,各帧语音信号就形成了一个个特征矢量。识别时,将待测语音与模板库中的每一个模板进行模式匹配,找到距离最小的模板作为输出结果。

经测试,程序等到了较好的语音识别效果。

三、总结

上述语音识别系统详细地分析了语音信号的时域、频域等特性,并实现了对孤立数字0到9的准确识别,通过本次详细系统的语音识别系统的设计,我对数字信号处理的流程有了深刻的认识,对Matlab软件编程也有了一定的理解,为将来从事这方面的课题打下了坚实的基础。

参考文献:

[1]王炳锡.语音编码[M].西安:西安电子科技大学出版社,2002.

[2]何强,何英.MA TLAB扩展编程[M].北京:清华大学出版社,2002.

[3]王炳锡,屈丹,彭煊.实用语音识别基础[M].北京:国防工业出版社,2005.

[4]易克初,等.语音信号处理[M].北京:国防工业出版社,2006,6.

[5]胡航.语音信号处理[M].哈尔滨:哈尔滨工业大学出版社,2000,5.

[6]胡广书.数字信号处理理论、算法与实现[M].北京:清华大学出版社,1997.

[7]王炳锡,等.实用语音识别基础[M].北京:国防工业出版社,2005.

[8]林波,吕明.基于DTW改进算法的弧立词识别系统的仿真与分析[J].信息技术,2006,30(4):56-59.

[9]韩纪庆,张磊,郑铁然.语音信号处理[M].北京:清华大学出版社,2004

[10]李晋.语音信号端点检测算法研究[D].长沙:湖南师范大学,2006.

程序:

主程序:

yuyinshibie.m

disp('正在计算参考模板的参数...')

for i=1:10

fname=sprintf('%da.wav',i-1);

x=wavread(fname);

[x1 x2]=vad(x);

m=mfcc(x);

m=m(x1-2:x2-4,:);

ref(i).mfcc=m;

end

disp('正在分析语音信号...')

for i=1:10

fname=sprintf('%da.wav',i-1);

[x,fs,bit]=wavread(fname,[2000,2512]); %采样% %sound(x,fs); %播放语音信号

figure(i);

subplot(3,3,1);

plot(x(1:256)); %原始语音信号的时域图形% title('原始信号')

subplot(3,3,2)

[h,w]=freqz(x) %原始语音信号的频率响应图hr=abs(h);

plot(w,hr);

title('频率响应图');

xlabel('Frequency in rad/sample')

ylabel('Magnitude in dB')

subplot(3,3,3)

hphase=angle(h);

hphase=unwrap(hphase); %求系统相频响应

plot(w,hphase);

title('频率响应图');

xlabel('Frequency in rad/sample')

ylabel('Phase in degrees')

y=fft(x,512); %傅立叶变换%

mag=abs(y);

mag1=10*log10(mag);

f=fs*(0:255)/512;

subplot(3,3,4)

plot(f,mag(1:256)); %FFT频谱图%

title('fft变换后信号')

iff=ifft(y,512); %反傅立叶变换%

ifm=abs(iff);

subplot(3,3,5)

plot(f,ifm(1:256))

title('ifft后信号')

% 短时傅里叶变换

Ts=1/fs;

%N=T/Ts;

N=512;

Nw=20; %窗函数长

L=Nw/2; %窗函数每次移动的样点数

Tn=(N-Nw)/L+1; %计算把数据x共分成多少段

nfft=32; %FFT的长度

TF=zeros(Tn,nfft); %将存放三维谱图,先清零

for i=1:Tn

xw=x((i-1)*10+1:i*10+10); %取一段数据

temp=fft(xw,nfft); %FFT变换

temp=fftshift(temp); %频谱以0频为中心

for j=1:nfft;

TF(i,j)=temp(j); %把谱图存放在TF中end

end

subplot(3,3,6)

fnew=((1:nfft)-nfft/2)*fs/nfft;

tnew=(1:Tn)*L*Ts;

[F,T]=meshgrid(fnew,tnew);

mesh(F,T,abs(TF))

title('短时傅立叶变换时频图')

subplot(3,3,7)

contour(F,T,abs(TF))

title('等高线表示')

end

disp('正在计算测试模板的参数...')

for i=1:10

fname=sprintf('%db.wav',i-1);

x=wavread(fname);

[x1 x2]=vad(x);

m=mfcc(x);

m=m(x1-2:x2-4,:);

test(i).mfcc=m;

end

disp('正在进行模板匹配...')

dist=zeros(10,10);

for i=1:10

for j=1:10

dist(i,j)=dtw(test(i).mfcc,ref(j).mfcc);

end

end

disp('正在计算匹配结果...')

for i=1:10

[d,j]=min(dist(i,:));

fprintf('测试模板%d的识别结果为:%d\n',i-1,j-1); end

各子程序模块:

dtw.m

function dist=dtw(t,r)

n=size(t,1);

m=size(r,1);

%帧匹配距离矩阵

d=zeros(n,m);

for i=1:n

for j=1:m

d(i,j)=sum((t(i,:)-r(j,:)).^2);

end

end

%累积距离矩阵

D=ones(n,m)*realmax;

D(1,1)=d(1,1);

%动态规划

for i=2:n

for j=1:m

D1=D(i-1,j);

if j>1

D2=D(i-1,j-1);

else

D2=realmax;

end

if j>2

D3=D(i-1,j-2);

else

D3=realmax;

end

D(i,j)=d(i,j)+min([D1,D2,D3]);

end

end

dist=D(n,m);

enframe.m

function f=enframe(x,win,inc)

nx=length(x(:));

nwin=length(win);

if (nwin == 1)

len = win;

else

len = nwin;

end

if (nargin < 3)

inc = len;

end

nf = fix((nx-len+inc)/inc);

f=zeros(nf,len);

indf= inc*(0:(nf-1)).';

inds = (1:len);

f(:) = x(indf(:,ones(1,len))+inds(ones(nf,1),:));

if (nwin > 1)

w = win(:)';

f = f .* w(ones(nf,1),:);

end

melbankm.m

function [x,mn,mx]=melbankm(p,n,fs,fl,fh,w)

if nargin < 6

w='tz';

if nargin < 5

fh=0.5;

if nargin < 4

fl=0;

end

end

end

f0=700/fs;

fn2=floor(n/2);

lr=log((f0+fh)/(f0+fl))/(p+1);

% convert to fft bin numbers with 0 for DC term

bl=n*((f0+fl)*exp([0 1 p p+1]*lr)-f0);

b2=ceil(bl(2));

b3=floor(bl(3));

if any(w=='y')

pf=log((f0+(b2:b3)/n)/(f0+fl))/lr;

fp=floor(pf);

r=[ones(1,b2) fp fp+1 p*ones(1,fn2-b3)];

c=[1:b3+1 b2+1:fn2+1];

v=2*[0.5 ones(1,b2-1) 1-pf+fp pf-fp ones(1,fn2-b3-1) 0.5];

mn=1;

mx=fn2+1;

else

b1=floor(bl(1))+1;

b4=min(fn2,ceil(bl(4)))-1;

pf=log((f0+(b1:b4)/n)/(f0+fl))/lr;

fp=floor(pf);

pm=pf-fp;

k2=b2-b1+1;

k3=b3-b1+1;

k4=b4-b1+1;

r=[fp(k2:k4) 1+fp(1:k3)];

c=[k2:k4 1:k3];

v=2*[1-pm(k2:k4) pm(1:k3)];

mn=b1+1;

mx=b4+1;

end

if any(w=='n')

v=1-cos(v*pi/2);

elseif any(w=='m')

v=1-0.92/1.08*cos(v*pi/2);

end

if nargout > 1

x=sparse(r,c,v);

else

x=sparse(r,c+mn-1,v,p,1+fn2);

end

mfcc.m

function ccc=mfcc(x)

%归一化mel滤波器组系数

bank=melbankm(24,256,8000,0,0.5,'m'); bank=full(bank);

bank=bank/max(bank(:));

%DTC系数,12*24

for k=1:12

n=0:23;

dctcoef(k,:)=cos((2*n+1)*k*pi/(2*24)); end

%归一化倒谱提升窗口

w=1+6*sin(pi*[1:12]./12);

w=w/max(w);

%预加重滤波器

xx=double(x);

xx=filter([1 -0.9375],1,xx);

%语音信号分帧

xx=enframe(xx,256,80);

%计算每帧的MFCC参数

for i=1:size(xx,1)

y=xx(i,:);

s=y'.*hamming(256);

t=abs(fft(s));

t=t.^2;

c1=dctcoef*log(bank*t(1:129));

c2=c1.*w';

m(i,:)=c2';

end

%差分参数

dtm=zeros(size(m));

for i=3:size(m,1)-2

dtm(i,:)=-2*m(i-2,:)-m(i-1,:)+m(i+1,:)+2*m(i+2,:); end

dtm=dtm/3;

%合并mfcc参数和一阶差分mfcc参数

ccc=[m dtm];

%去除首尾两帧,因为这两帧的一阶差分参数为0 ccc=ccc(3:size(m,1)-2,:);

vad.m

function [x1,x2]=vad(x)

%幅度归一化到[-1,1]

x=double(x);

x=x/max(abs(x));

%常数设置

FrameLen=240;

FrameInc=80;

amp1=10;

amp2=2;

zcr1=10;

zcr2=5;

maxsilence=3; %3*10ms=30ms

minlen=15; %15*10ms=150ms

status=0;

count=0;

silence=0;

%计算过零率

tmp1=enframe(x(1:length(x)-1),FrameLen,FrameInc); tmp2=enframe(x(2:length(x)),FrameLen,FrameInc); signs=(tmp1.*tmp2)<0;

diffs=(tmp1-tmp2)>0.02;

zcr=sum(signs.*diffs,2);

%计算短时能量

amp=sum(abs(enframe(filter([1 -0.9375],1,x),FrameLen,FrameInc)),2);

%调整能量门限

amp1=min(amp1,max(amp)/4);

amp2=min(amp2,max(amp)/8);

%开始端点检测

x1=0;

x2=0;

for n=1:length(zcr)

goto=0;

switch status

case{0,1} %0=静音,1=可能开始

if amp(n)>amp1 %确信进入语音段

x1=max(n-count-1,1);

status=2;

silence=0;

count=count+1;

elseif amp(n)>amp2 zcr(n)>zcr(2) %可能处于语音段

status=1;

count=count+1;

else %静音状态

status=0;

count=0;

end

case 2, %2=语音段

if amp(n)>amp(2) zcr(n)>zcr(2) %保持在语音段

count=count+1;

else %语音将结束

silence=silence+1;

if silence

count=count+1;

elseif count

status=0;

silence=0;

count=0;

else %语音结束

status=3;

end

end

case 3,

break;

end

end

count=count-silence/2;

x2=x1+count-1;

图:

数字“8”的时频域特性:

分析结果:

浅析语音识别技术的难点及对策

浅析语音识别技术的难点及对策 在人际交往中,言语是最自然并且最直接的方式之一。随着技术的进步,越来越多的人们也期望计算机能够具备与人进行言语沟通的能力,因此,语音识别这一技术也越来越受到关注。尤其,随着深度学习技术应用在语音识别技术中,使得语音识别的性能得到了显著提升,也使得语音识别技术的普及成为了现实。 语音识别技术 自动语音识别技术,简单来说其实就是利用计算机将语音信号自动转换为文本的一项技术。这项技术同时也是机器理解人类言语的第一个也是很重要的一个过程。 语音识别是一门交叉学科,所涉及的领域有信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等,甚至还涉及到人的体态语言(如人民在说话时的表情手势等行为动作可帮助对方理解)。其应用领域也非常广,例如相对于键盘输入方法的语音输入系统、可用于工业控制的语音控制系统及服务领域的智能对话查询系统,在信息高度化的今天,语音识别技术及其应用已成为信息社会不可或缺的重要组成部分。 语音识别技术的发展历史 语音识别技术的研究开始二十世纪50年代。1952年,AT">60年代计算机的应用推动了语音识别技术的发展,提出两大重要研究成果:动态规划(Dynamic Planning,DP)和线性预测分析(Linear Predict,LP),其中后者较好的解决了语音信号产生模型的问题,对语音识别技术的发展产生了深远影响。 70年代,语音识别领域取得突破性进展。线性预测编码技术(Linear Predict Coding,LPC)被Itakura成功应用于语音识别;Sakoe和Chiba将动态规划的思想应用到语音识别并提出动态时间规整算法,有效的解决了语音信号的特征提取和不等长语音匹配问题;同时提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。在同一时期,统计方法开始被用来解决语音识别的关键问题,这为接下来的非特定人大词汇量连续语音识别技术走向成熟奠

人工智能论文 语音识别

信息学院 《人工智能及其应用》课程论文题目:基于神经网络的语音信号识别 作者黄超班级自动08-1BF班 系别信息学院专业自动化 完成时间 2011.6.12

基于神经网络的语音信号识别 摘要 语言是人类之间交流信息的主要手段之一,自电脑发明以来,人们就一直致力于使电 脑能够理解自然语言。语音识别技术是集声学、语音学、语言学、计算机、信息处理和人工 智能等诸领域的一项综合技术,应用需求十分广阔,长期以来一直是人们研究的热点。 神经网络是在现代科学研究成果的基础上提出来的模拟人脑结构机制的一门新兴科 学,它模拟了人类神经元活动的原理,具有自学习、联想、对比、推理和概括能力,为很好 地解决语音识别这样一个复杂的模式分类问题提供了新的途径。 本文针时语音识别的特点.对BP神经网络在语音识别技术中的应用进行了探索性研究, 进而结合人工智能领域较为有效的方法——遗传(GA)算法。针对传统BP算法识别准确率高 但训练速度慢的缺点,对BP网络进行改进,构建了一种基于遗传神经网络的语音识别算法(GABP),并建立相应的语音识别系统。仿真实验表明,该算法有效地缩短了识别时问,提 高了网络训练速度和语音的识别率。 关键词:语音识别,神经网络,遗传算法,遗传神经网络,BP网络 THE RSREARCH OF SPEECH RECOGNITION BASED ON THE NEURAL NETWORK ABSTRACT Language is one of the most important means of exchanging information among the mankind.Since the computer was invented,many scientists have been devoted to enabling the computer to understand the natural language.Speech recognition is a comprehensive technology of such areas as acoustics,phonetics,linguistics,computer science,information processing and artificial intelligence,which can be used widely.The research of speech recognition technology has been focused by the world for a long time.The neural network is a new developing science,which simulates the mechanism of human brain and was putted forward by the developing of modern science.It is not the overall description of human brain,but the abstract,simulation and simplifying of the physical neural networks of human beings. The purpose of the research in this area is exploring the human brain mechanisms in information processing,storing and searching.If people can understand these mechanisms,a new way for the research of artificial intelligence,information processing and etc.

语音识别论文

语音信号的分析与处理 摘要:本文针对语音信号时域、频域参数进行了系统详尽的分析,并在MATLAB环境下实现了基于DTW算法的特定人孤立词语音信号的识别。 关键词:语音信号;短时傅里叶;MFCC;动态时间规整 引言 语音信号参数分析是语音信号处理的前提和基础。语音信号处理包括语音通信、语音增强、语音合成、语音识别和说话人识别等方面。只有通过语音信号的分析才能获得语音本质特性的参数,才能利用这些参数进行高效的语音通信,才能建立语音合成的语音库,也才可能建立用于语音识别的模板和知识库。此外,语音合成音质的好坏、语音识别率的高低,都取决于语音信号参数分析的准确性和精度。因此,语音信号参数分析是语音信号处理研究中一项非常有意义的工作[1]。 近年来,语音识别已经成为一个非常活跃的研究领域。在不远的将来,语音识别技术有可能作为一种重要的人机交互手段,辅助甚至取代传统的键盘、鼠标等输入设备,在个人计算机上进行文字录入和操作控制。而在手持式PDA、智能家电、工业现场控制等应用场合,语音识别技术则有更为广阔的发展前景[2]。 在特定人孤立词语音识别中,最为简单有效的方法是采用DTW(Dynamic Time Warping,动态时间规整)算法,该算法基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,是语音识别中出现最早、较为经典的一种算法[3]。 MATLAB是一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面友好的操作环境。本文就是在MA TLAB基础上来进行语音信号参数的分析与语音信号的识别的。 一、语音信号的分析 1参数分析 语音信号是一种典型的非平稳信号。但是,由于语音的形成过程是与发音器官的运动密切相关的,这种物理运动比起声音振动速度来讲要缓慢得多,因此语音信号常常可被假定为短时平稳的,即在10一20ms这样的时间段内,其频谱特性和某些物理特征参量可被近似地看作不变。这样,我们就可以采用平稳过程的分析处理方法来处理,一般而言语音信号处理的方法都是基于这种短时平稳的假设的。根据语音信号所分析参数的不同,语音信号参数分析可以分为时域、频域、倒谱域分析等[4]。本文仅涉及时域及频域参数分析。 2时域分析 进行语音信号最为直观的分析方法就是时域分析。语音信号本身就是时域信号,因而时域分析是最早使用,也是应用最广泛的一种方法,这种方法直接利用语音信号的时域波形。时域分析通常用于最基本的参数分析以及语音的分割、预处理和大分类等。时域分析方法的特点是:第一,表示语音信号比较直观,物理意义明确;第二,实现起来比较简单,运算量少;第三,可以得到语音的一些重要参数;第四,采用示波器等通用设备,使用简单[5]。 2.1短时能量分析 短时能量分析用途:第一,可以区分清音段和浊音段,因为浊音时的短时平均能量值比清音时大得多;第二,可以用来区分声母与韵母的分界、无声与有声的分界、连字的分界等。如对于高信

基于语音识别的智能小车设计-毕设论文

基于语音识别的智能小车 摘要 随着计算机技术、模式识别和信号处理技术及声学技术等的发展,使得能满足各种需要的语音识别系统的实现成为可能。近二三十年来,语音识别在计算机、信息处理、通信与电子系统、自动控制等领域中有着越来越广泛的应用。本设计是语音识别在控制领域的一个很好实现,它将原本需要手工操作的工作用语音来方便地完成。 语音识别按说话人的讲话方式可分为孤立词(Isolated Word)识别、连接词(Connected Word)识别和连续语音(Continuous Speech)识别。从识别对象的类型来看,语音识别可以分为特定人(Speaker Dependent)语音识别和非特定人(Speaker Independent)语音识别。本设计采用的识别类型是特定人孤立词语音识别。 本系统分上位机和下位机两大方面。上位机利用PC上MATLAB强大的数学计算能力,进行语音输入、端点监测、特征参数提取、匹配、串口控制等工作,根据识别到的不同语音通过PC串口向下位机发送不同的指令。下位机是单片机控制的一个小车,单片机收到上位机传来的指令后,根据不同的指令控制小车完成不同的动作。 该设计对语音识别的现有算法进行了验证和实现,并对端点检测和匹配算法进行了些许改进。本设计达到了预期目标,实现了所期望的功能效果。 关键词:MATLAB,语音识别,端点检测,LPC,单片机,电机控制

SMART CAR GASED SPEECH RECOGNITION ABSTRACT With the development of computer technology,pattern recognition,signal processing technology and acoustic technology etc, the speech recognition system that can meet the various needs of people is more possible to achieve.The past three decades, the voice recognition in the field of computer, information processing, communications and electronic systems, automatic control has increasingly wide range of applications. Speech recognition by the speaker's speech can be divided into isolated word (Isolated Word) identification, conjunctions (Connected Word) and continuous speech recognition (Continuous Speech) identification. Identifying the type of object from the point of view, the voice recognition can be divided into a specific person (Speaker Dependent) speech recognition and non-specific (Speaker Independent) speech recognition. This design uses the identification type is a specific person isolated word speech recognition. This design is of a good implementation of speech recognition in the control field, it does the work that would otherwise require manual operation by the voice of people easily.This system includes two major aspects:the host system and the slave system. The host system use the MATLAB on the computer which has powerful mathematical computing ability to do the work of voice input, endpoint monitoring, feature extraction, matching, identification and serial control,then it send different commands through the PC serial port to slave system according different recognised voice. The slave system is a car controlled by a single-chip micro-controller.It controls the car do different actions according different instructions received.

语音识别(人机交互小论文)

计算机科学与信息工程学院《人机交互》课程 小论文 2014年6月

语音识别 1、语音识别的背景与意义 语音识别是解决机器“听懂”人类语言的一项技术。作为智能计算机研究的主导方向和人机语音通信的关键技术,语音识别技术一直受到各国科学界的广泛关注。 随着现代科学的发展,人们在与机器的信息交流中,需要一种更加方便、自然的方式,而语言是人类最重要、最有效、最常用和最方便的通信形式。这就很容易让人想到能否用自然语言代替传统的人机交流方式(如键盘、鼠标等)。人机自然语音对话就意味着机器应具有听觉,能“听懂”人类的口头语言,这就是语音识别(Speech Recognition)的功能。语音识别是语音信号处理的重要研究方向之一,它是一门涉及面很广的交叉学科,与计算机、通信、语音语言学、数理统计、信号处理、神经生理学、神经心理学、模式识别、声学和人工智能等学科都有密切的联系。它还涉及到生理学、心理学以及人的体态语言。 2、语音识别系统 语音识别本质上是一种模式识别的过程,未知语音的模式与已知语音的参考模式逐一进行比较,最佳匹配的参考模式被作为识别结果。图1是基于模式匹配原理的自动语音识别系统原理框图。 (1)预处理模块:对输入的原始语音信号进行处理,滤除掉其中的不重要的信息以及背景噪声,并进行语音信号的端点检测、语音分帧以及预加重等处理。 (2)特征提取模块:负责计算语音的声学参数,并进行特征的计算,以便提取出反映信号特征的关键特征参数用于后续处理。现在较常用的特征参数有线性预测(LPC)参数、线谱对(LSP)参数、LPCC、MFCC、ASCC、感觉加权的线性预测(PLP)参数、动态差分参数和高阶信号谱类特征等[1]。其中,Mel频率倒谱系数(MFCC)参数因其良好的抗噪性和鲁棒性而应用广泛。 (3)训练阶段:用户输入若干次训练语音,经过预处理和特征提取后得到特征矢量参数,建立或修改训练语音的参考模式库。

基于单片机的语音识别系统 毕业设计

基于单片机的语音识别系统毕业设计 目录 摘要..................................... 错误!未定义书签。Abstract ................................. 错误!未定义书签。目录..................................................... I 前言.. (1) 1 方案介绍及设计简介 (2) 1.1小车的控制要求及设计方案 (2) 1.1.1小车的控制要求 (2) 1.1.2方案设计与论证 (2) 1.2SPCE061A 简介 (3) 1.2.1SPCE061A单片机概述 (5) 1.2.2SPCE061A的介绍 (7) 1.2.3SPCE061A的结构 (7) 1.3SPCE061A 单片机强大的语音功能 (7) 1.3.1语音识别的原理 (8) 1.3.2系统的结构框图 (9) 1.4语音控制小车设计要求 (10) 1.4.1功能要求 (10) 1.4.2语音控制小车的主要功能 (10) 1.4.3参数说明 (10) 1.4.4注意事项 (10) 2电路设计及程序设计 (11) 2.1电路设计基础知识 (11) 2.2电路方框图及说明 (13) 2.3各部分电路设计 (13) 2.3.1电机的选择 (14)

2.3.2继电器驱动电路的设计 (14) 2.3.3行驶状态控制电路设计 (15) 2.3.4麦克录音输入及AGC电路 (16) 2.3.5语音播报电路 (18) 3软件设计 (19) 3.1软件流程图及设计思路说明 (19) 3.1.1程序设计 (20) 3.2模块设计 (20) 3.2.1中断流程图部分 (20) 3.2.2语音识别部分 (22) 4连接和操作说明 (25) 4.1硬件模块连接图 (25) 4.1.1功能说明 (25) 4.1.2代码下载 (26) 4.1.3训练小车 (27) 4.1.4声控小车 (28) 4.1.5重新训练 (28) 总结 (30) 致谢 (31) 参考文献 (32) 附件1 系统程序说明 (33)

语音识别开题报告

青岛大学 毕业论文(设计)开题报告 题目:孤立词语音识别的并行编程实现 学院:自动化工程学院电子工程系 专业:通信工程 姓名:李洪超 指导教师:庄晓东 2010年3月22日

一、文献综述 语音识别是解决机器“听懂”人类语言的一项技术。作为智能计算机研究的主导方向和人机语音通信的关键技术,语音识别技术一直受到各国科学界的广泛关注。如今,随着语音识别技术研究的突破,其对计算机发展和社会生活的重要性日益凸现出来。以语音识别技术开发出的产品应用领域非常广泛,如声控电话交换、信息网络查询、家庭服务、宾馆服务、医疗服务、银行服务、工业控制、语音通信系统等,几乎深入到社会的每个行业和每个方面。 广泛意义上的语音识别按照任务的不同可以分为4个方向:说话人识别、关键词检出、语言辨识和语音识别[1]。说话人识别技术是以话音对说话人进行区别,从而进行身份鉴别和认证的技术。关键词检出技术应用于一些具有特定要求的场合,只关注那些包含特定词的句子。语言辨识技术是通过分析处理一个语音片断以判别其所属语言种类的技术,本质上也是语音识别技术的一个方面。语音识别就是通常人们所说的以说话的内容作为识别对象的技术,它是4个方面中最重要和研究最广泛的一个方向,也是本文讨论的主要内容。 1.1 语音识别技术现状 1.1.1 语音识别获得应用 伴随着语音识别技术的不断发展,诞生了全球首套多语种交谈式语音识别系统E-talk。这是全球惟一拥有中英混合语言的识别系统,能听能讲普通话、广东话和英语,还可以高度适应不同的口音,因而可以广泛适用于不同文化背景的使用者,尤其是中国地区语言差别较大的广大用户。由于E-talk可以大大提高工作效率,降低运营成本,并为用户提供更便捷的增值服务,我们相信它必将成为电信、证券、金融、旅游等重视客户服务的行业争相引用的电子商务应用系统,并成为电子商务发展的新趋势,为整个信息产业带来无限商机。 目前,飞利浦推出的语音识别自然会话平台SpeechPearl和SpeechMania已成功地应用于国内呼叫中心,SpeechPearl中的每个识别引擎可提供高达20万字的超大容量词库,尤其在具有大词汇量、识别准确性和灵活性等要求的各种电信增值服务中有着广泛的应用。 1.1.2 语音合成信息服务被用户接受 语音合成技术把可视的文本信息转化为可听的声音信息,其应用的经济效益和社会效益前景良好。尤其对汉语语音合成技术的应用而言,全球有十几亿人使用中文,其市场需求、应用前景和经济效益等可见一斑。

基于单片机的智能语音识别系统设计毕业设计论文

基于单片机的智能语音识别系统设计 (硬件部分) 系别: 专业班: 姓名: 学号: 指导教师:

基于单片机的智能语音识别系统设计 (硬件部分) The Design of Intelligent Speech Recognition System Based on Single-chip Computer (HardWare)

摘要 本文设计一个让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术的语音识别系统。本语音识别系统以LD3320语音识别芯片为核心部件,主控MCU选用STC10L08XE。主控MCU通过控制LD3320内部寄存器以及SPI flash实现语音识别和对话。通过麦克风将声音信息输入LD3320进行频谱分析,分析后将提取到的语音特征和关键词语列表中的关键词语进行对比匹配,找出得分最高的关键词语作为识别结果输出给MCU,MCU针对不同的语音输入情况通过继电器对语音命令所对应的电器实现控制。同时也可以通过对寄存器中语音片段的调用,实现人机对话。 设计中,电源模块采用3.3V供电,主要控制及识别部分采用LM1117-3.3稳压芯片,语音播放及继电器部分采用7812为其提供稳定的电流电压。寄存器采用一片华邦SPI flash芯片W25Q40AVSNIG,大小为512Kbyte。系统声音接收模块采用的传感器为一小型麦克风——驻极体话筒,在它接收到声音信号后会产生微弱的电压信号并送给MCU。另外系统还采用单片机产生不同的频率信号驱动蜂鸣器来完成声音提示,此方案能完成声音提示功能,给人以提示的可懂性不高,但在一定程度上能满足要求,而且易于实现,成本也不高。 关键词:语音识别 LD3320 STC10L08XE单片机频谱分析

数字信号处理作业之语音识别小论文

绪论 语言是人类交流信息的基本手段,在人们日益扩大的交流中占据着重要地位。在如今高度发达的信息社会中用数字化的方法进行语音的传送、储存识别、合成、增强等是整个数字化通信网中最重要、最基本的组成部分之一随着信息科学技术的飞速发展,语音信号处理的研究也日益显示出它的要性,并取得了重大进展。大体上说,语音信号处理技术可以分为以下四个面:即语音编码,语音合成、说话人识别和语音识别等。语音压缩编码是压语音信号便于传输通信和保密;语音合成系统是模仿和代替人口的发音功能语音识别系统则是模仿或代替人耳的听觉功能,说话人识别系统属于生物识技术的一种,是一项根据语音波形中反映说话人生理和行为特征的语音参数识别说话人身份的技术。与语音识别不同的是,说话人识别利用的是语音信中的说话人信息,而不考虑语音中的字词意思,它强调一说话人的个性;而音识别的目的是识别出语音信号中的言语内容,并不考虑说话人是谁,它强共性。随着现代数字通讯、多媒体系统、信息高速公路等技术的应用和发展己经越来越深入地影响并改变着我们每个人地生活和工作方式,这同时也对音信号处理的研究工作提出了更高的要求,它在各方面的进展也令人瞩目。 1.语音识别概述 语音识别是试图使机器能“听懂”人类语音的技术。语音识别的作用是将语音转换成等价的书面信息,也就是让计算机听懂人说话。作为一门交叉学科,语音识别又是以语音为研究对象,是语音信号处理的一个重要研究方向,是模式识别的一个分支,涉及到计算机、信号处理、生理学、语言学、神经心理学、人工智能等诸多领域,甚至还涉及到人的体态语言(如人在说话时的表情、手势等行为动作可帮助对方理解),其最终目标是实现人与机器进行自然语言通信 1.1国外研究历史及现状 语音识别的研究工作可以追溯到20世纪50年代。1952年AT&T贝尔实验室的Audry系统,是第一个可以识别十个英文数字的语音识别系统。20世纪60年代末、70年代初出现了语音识别方面的几种基本思想,其中的重要成果是提出了

语音识别机器人的设计—毕业论文

毕业论文(设计) 题目语音识别机器人的设计 系部电子信息工程 专业电子信息工程年级 06级学生姓名 学号 指导教师 语音识别机器人的设计

【摘要】语音识别可划分为训练和识别两个过程。在第一阶段,语音识别系统对人类的语言进行学习,把学习内容组成语音库存储起来,在第二阶段就可以把当前输入的语音在语音库中查找相应的词义或语义。凌阳16位SPCE061A单片机内嵌32K字闪存,2K字SRAM,内置10位ADC、DAC,有多达14个的中断源。它的CPU内核采用16位具有DSP功能的微处理器芯片, 而且CPU可最高工作在49MHz的主频下,能够非常容易地、快速地处理复杂的数字信号,因此与其他类型的单片机相比,在数字语音处理方面SPCE061A更具有优势。基于SPCE061A设计了一个具有语音识别功能的机器人。经过训练,训练人可使用各种命令让机器人完成许多有趣的动作,使得人机交互更具智能化。 【关键词】SPCE061A单片机语音识别机器人

The Design of the Speech Recognition Robot 【Abstract】The speech recognition is divided into two stages, namely, training and recognition. At the first stage, the speech recognition system learns about the language and stores what it a speech database. Then at the next stage, the meaning of each inputted speech can immediately be found in the speech database.Sunplus 16-bit SPCE061ASCM is embedded with 32K word Flash and 2K word SRAM, with built-in 10-bit ADC and DAC as well as more than 14 interrupt sources. The core of its CPU is a 16-bit microprocessor chip which of DSP. Besides, the CPU can work with a frequency up to 49 MHz, and process complex digital signals easily and quickly. Therefore, compared with other types of SCM, SPCE061A speech processing. Based on SPCE061A, a speech recognition robot designed. After training, the robot can complete many interesting actions according to the orders, which makes the -computer interaction more intelligent. 【Key words】SPCE061A SCM Speech Recognition Robot 目录

(完整版)基于单片机的语音识别系统好毕业设计论文

基于单片机的语音识别系统

摘要 近几年来,智能化和自动化技术在玩具制造领域中越来越被关注。本文介绍一种智能化小车控制系统的设计——语音控制小车。语音控制小车是基于SPCE061A的代表性兴趣产品,它配合61板推出,综合应用了SPCE061A的众多资源,小车采用语音识别技术,可通过语音命令对其行驶状态进行控制。首先介绍了SPCE061A的主要性能及其引脚的功能;接着完成了电源电路、复位电路、键盘电路、音频输入电路,音频输出电路和无线控制电路等硬件功能模块的设计。软件设计模块能实现智能小车的前进、后退、转向、停止、避障、表演动作以及循线等功能。测试表明,在环境背景噪音不太大,控制者的发音清晰的前提下,语音控制小车的语音识别系统能对特定的语音指令做出智能反应,做出预想中的有限的动作 关键词:spec061a 语音识别驱动电路声控小车智能反应

Abstract In recent years, Intelligent and automation technology in the toy manufacture paid more and more attention.Introduce an intelligent vehicle control system design. SPCE061A program the system to single-chip, based on implementation of the car's voice control, This paper introduces the and implementation. The SPCE061A's main characters and pin function are introduced firstly. Completed the power circuit, reset circuit, keyboard circuitry, audio input circuits, audio output circuit and control circuit of wireless of function modules. Software design module can achieve smart car forward, backward, turn, stop, obstacle avoidance, performing actions, as well as on-line functions. Test showed that the background noise in the environment is not too great, control persons under the premise of clear pronunciation, voice control car speech recognition systems for specific voice commands to make intelligent reaction, limited to the desired action. Keywords: spec061a 、voice recogniton、Driving circuit、Voice control dolly、intelirent response

【完整版】基于Matlab的语音识别系统的设计本科毕业论文设计

摘要 语音识别主要是让机器听懂人说的话,即在各种情况下,准确地识别出语音的内容,从而根据其信息执行人的各种意图。语音识别技术既是国际竞争的一项重要技术,也是每一个国家经济发展不可缺少的重要技术支撑。本文基于语音信号产生的数学模型,从时域、频域出发对语音信号进行分析,论述了语音识别的基本理论。在此基础上讨论了语音识别的五种算法:动态时间伸缩算法(Dynamic Time Warping,DTW)、基于规则的人工智能方法、人工神经网络(Artificial Neural Network,ANN)方法、隐马尔可夫(Hidden Markov Model,HMM)方法、HMM和ANN的混合模型。重点是从理论上研究隐马尔可夫(HMM)模型算法,对经典的HMM模型算法进行改进。 语音识别算法有多种实现方案,本文采取的方法是利用Matlab强大的数学运算能力,实现孤立语音信号的识别。Matlab 是一款功能强大的数学软件,它附带大量的信号处理工具箱为信号分析研究,特别是文中主要探讨的声波分析研究带来极大便利。本文应用隐马尔科夫模型(HMM) 为识别算法,采用MFCC(MEL频率倒谱系数)为主要语音特征参数,建立了一个汉语数字语音识别系统,其中包括语音信号的预处理、特征参数的提取、识别模板的训练、识别匹配算法;同时,提出利用Matlab图形用户界面开发环境设计语音识别系统界面,设计简单,使用方便,系统界面友好。经过统计,识别效果明显达到了预期目标。 关键词:语音识别算法;HMM模型;Matlab;GUI ABSTRACT Speech Recognition is designed to allow machines to understand what people say,and accurately identify the contents of voice to execute the intent of people.Speech recognition technology is not only an important internationally competed technology,but also an indispensable foundational technology for the national economic development.Based on the mathematical model from the speech signal,this paper analyze audio signal from the time

语音识别技术论文

摘要:语音识别技术是一门涉及面很广的交叉学科。随着新理论的提出和应用,语音识别技术取得了很大的进步,许多产品已经得以实际的应用,但在其进一步的发展进程中,还有许多棘手的问题有待解决。 关键词:语音识别;动态时间规整算法;人工神经元网络 1 背景介绍 语言是人类特有的功能,是人们思维最重要的寄托体,是人类交流最主要的途径。语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段。语言和语音与人类 社会科学文化发展紧密相连。 语音识别技术是让机器接收,识别和理解语音信号,并将其转换成相应的数字信号的 技术。它是一门交叉学科,涉及到语音语言学、数理统计、计算机、信号处理等一系列学科。 2 发展历史 1952年贝尔实验室的Davis等人研制成功了能识别十个英文数字发音的Audry系统,标志着语音识别技术研究工作开始。20世纪60年代计提出了动态规划(Dynamic programming)和线性预测分析技术(Liner Predictive)等重要成果。20世纪70年代,语音识别领域取得了突破。实现了基于线性预测倒谱和DTW技术的特定人孤立语音识别 系统。20世纪80年代语音识别研究进一步走向深入, 基于特定人孤立语音技术的系统研 制成功, 隐马尔可夫模型和人工神经元网络(Artificial Neural Network)在语音识别中的成 功应用。进入20世纪90年代后语音识别系统开始从实验室走向实用。我国对语音识别的研究开始于20世纪80年代,近年来发展迅速,并取得了一系列的成果。 3 具体应用 随着计算机技术、模式识别等技术的发展,适应不同场合的语音识别系统相继被开发 出来,语音识别及处理技术已经越来越突现出其强大的技术优势。近三十年来,语音识别 在计算机、信息处理、通信与电子系统、自动控制等领域的应用越来越广泛。 在许多政府部门、商业机构,语音识别技术的应用,可免除大量操作人员的重复劳动,既经济又方便。如:语音邮件、IP电话和IP传真、电子商务、自动语音应答系统、自动 语音信箱、基于IP的语音、数据、视频的CTI系统、综合语音、数据服务系统、自然语音识别系统、专家咨询信息服务系统、寻呼服务、故障服务、秘书服务、多媒体综合信息服务、专业特别服务号(168自动信息服务系统,112、114、119等信息查询系统)等。许多特定环境下,如工业控制方面,在一些工作环境恶劣、对人身有伤害的地方(如地下、深水及辐射、高温等)或手工难以操作的地方,均可通过语音发出相应的控制命令,让设备完成各种工作。

六年级信息技术《语音识别》教学设计

月日第周星期总第课时 第26课语音识别 【教材分析】 本课是人工智能模块的最后一课。本课是一个实践活动,应用计算思维,结合xDing软件AI模块来解决生活中的问题。 首先提出问题——如何实现语音控制。xDing软件中AI选项中有“智能语音输入”模块。通过该模块可以向开源机器人“小丁”发出语音指令。 然后解决问题——“小丁”怎样才能“听懂”语音指令?教材中指引学生用“如果”条件语句进行指令判断,然后根据语音指令写出不同执行方式。 最后总结验证——运行程序,并通过话筒发出指令,观察舵机运行状况。根据舵机转动情况调整程序让“小丁”能“听懂”更多语音指令。 【学情分析】 六年级学生经过本单元前3课的学习已经对人工智能的定义、发展、分类有了初步的了解。对于xDing软件中AI模块中的控件的应用也有了使用经验。 【教学目标与要求】 1.通过数字化学习方式了解现实生活中语音识别的意义。 2.通过硬件搭建和xDing软件编程制作语音控制的门,培养学生计算思维。 3.尝试利用编程和语音识别技术实现更细致的舵机控制,培养创新意识。 【教学重点与难点】 重点: 1.掌握使舵机摇臂模拟开关门的算法。 2.学会使用xDing软件实现语音控制舵机开关门的编程操作。 难点:体验用计算思维解决生活中的实际问题的方法,尝试利用语音识别技术进行控制舵机的编程。 【教学方法与手段】 方法:通过提问激发学生的学习动机,教学过程中采用了任务驱动法进行教学,将自主探究和小组合作学习相结合,重点培养学生对应用xDing软件实现人工智能的兴趣,提高学生编程热情。 手段:多媒体教学课件、教师演示与学生操作相结合。

【课时安排】 安排1课时。 【教学过程】 一、导入 1. 播放语音识别相关视频,让学生欣赏。 2. 讨论所看到的画面介绍了什么知识? 3. 现实生活中语音识别有哪些实际应用?未来语音识别可能会帮助人们做什么? 4. 小问号看了以后也想要设计一个“听话”的门。小博士说xDing软件中的人工智能模块可以帮助他实现。同学们觉得应该利用哪些控件帮助小问号实现梦想? 板书:语音识别 【设计意图】观看视频了解人工智能正在步入人们的生活之中。特别是语音识别技术越来越成熟,被广泛应用在翻译、门禁等领域。 二、新授 1. 硬件搭建。 (1)舵机接上白色摇臂代表门的开关状态。 舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统,在很多玩具中都有使用。 (2)将白色摇臂按照垂直于舵机最长边的方向固定好(这里代表舵机0度)。 (3)用数据线连接开源机器人“小丁”和舵机。 舵机连接线“棕”“红”“橘”,与开源机器人舵机接口1“黑”“红”“黄”相对应。 (4)用USB数据线将开源机器人与电脑连接起来并安装固件。 【设计意图】硬件有固定的连接方法,这里必须通过课件或者教师演示把固定接法讲述清楚,特别是接口号和后面编程时选择的号码要一一对应。 2.编写程序。 (1)设置初始角度。 我们先把门先关上,找找看哪个控件可以帮我们设置好关门的初始状态?

人工智能 语音识别 论文

基于神经网络的语音信号识别 摘要 语言是人类之间交流信息的主要手段之一,自电脑发明以来,人们就一直致力于使电脑能够理解自然语言。语音识别技术是集声学、语音学、语言学、计算机、信息处理和人工智能等诸领域的一项综合技术,应用需求十分广阔,长期以来一直是人们研究的热点。神经网络是在现代科学研究成果的基础上提出来的模拟人脑结构机制的一门新兴科学,它模拟了人类神经元活动的原理,具有自学习、联想、对比、推理和概括能力,为很好地解决语音识别这样一个复杂的模式分类问题提供了新的途径。本文针时语音识别的特点.BP 神经网络在语音识别技术中的应用进行了探索性研究,对进而结合人工智能领域较为有效的方法——遗传(GA)算法。针对传统BP 算法识别准确率高但训练速度慢的缺点,对BP 网络进行改进,构建了一种基于遗传神经网络的语音识别算法(GABP),并建立相应的语音识别系统。仿真实验表明,该算法有效地缩短了识别时问,提高了网络训练速度和语音的识别率。关键词:语音识别,神经网络,遗传算法,遗传神经网络,BP 网络RECOGNITIO THE RSREARCH OF SPEECH RECOGNITION BASED ON THE NEURAL NETWORK ABSTRACT Language is one of the most important means of exchanging information among the mankind.Since the computer was invented,many scientists have been devoted to enabling the computer to understand the natural language.Speech recognition is a comprehensive technology of such areas as acoustics,phonetics,linguistics,computer science,information processing and artificial intelligence,which can be used widely.The research of speech recognition technology has been focused by the world for a long time.The neural network is a new developing science,which simulates the mechanism of human brain and was putted forward by the developing of modern science.is not the overall description of human brain,the abstract,It but simulation and simplifying of the physical neural networks of human beings. The purpose of the research in this area is exploring the human brain mechanisms in information processing,storing and searching.If people can understand these mechanisms,a new way for the research of artificial intelligence,information processing and etc. can be opened up. Artificial neural network is a system which using a physically feasible system to imitate the structure and function of nerve cells in human brain,which has the ability of self—learning,contrasting,reasoning and summarizing .It have offered a new way in solving such complicated pattern classification problems as speech recognition.This paper mainly studies the application of the BP neural network in the research of speech recognition. BP neural network can get higher identification precision, but its training speed is very low, a new recognizing algorithm based on BP algorithm by combining with good effect method in ANN which named genetic algorithm (GA) was proposed and used to improve the BP neural network. Experiments results show that the training speed can be accelerated by the method and the recognition performance is also promoted.words: Key words speech recognition, neural network, genetic algorithm, genetic neural network, BP network 1.绪论1.1 1.1 课题背景1.1.1 语音识别概述随着计算机技术的发展,人与机器之间的交流也越来越广泛和深入,计算机己经渗透到人们生活的各个方面。在现代社会中,人们逐渐习惯借助计算机来完成各项事务。在这种情况下,如何让计算机智能化地与人进行通信,使人机交互更加自然方便成为现代计算机科学的重要研究课题之一。语音识别(Speech Recognition)主要是指让机器听懂人说的话,即在各种情况下,准确地识别出语音的内容,从而根据其信息,执行人的各种意图。语音识别是一门涉及面很广的交叉学科,它是目前发展最为迅速的信息研究诸领域中的一个。语音识别的最大优势在于使得人机用户界面更加自然和容易使用。随着计算机技术、模式识别和信号处理技

相关文档