文档库 最新最全的文档下载
当前位置:文档库 › 有机化学人名反应51-100

有机化学人名反应51-100

有机化学人名反应51-100
有机化学人名反应51-100

51. Kucherov 反应

乙炔在Hg2+盐和稀硫酸存在下直接水合生成乙醛,单取代乙炔可生成甲基酮。

52. Lebedeff 合成法

在高温下(400~500℃)乙醇与特种催化剂硅酸盐、Al2O3、ZnO 混合物作用,脱氢脱水得1,3-丁二烯。丁二烯的产率大约为20%,其他副产物如戊烷、己烷、己烯、己二烯、丁醇、醛、酮都有,所以此反应制备意义不大。

53. Leuckart 反应

在甲酸(甲酰胺、甲酸铵)作还原剂的情况下,加热胺和羰基化合物,就发生胺的烷基化反应。

通过这种反应可使伯胺、仲胺及氨发生烷基化反应,但以叔胺为最妥。因为伯胺、仲胺总是有多烷基化副产物形成。特别是很活泼的甲醛,同时总是生成完全甲基化的胺。高沸点芳香醛和酮产物为40~90%,低分子量脂肪醛和酮不能得到满意大结果。反应中由少量MgSO4 或MgCl2 催化,起还原作用的甲酸经常是过量,每摩尔羰基化合物需

2~4mol 甲酸。

54. Lieben 碘仿试验P289

55. Lossen 降解

氧肟酸或其酰基衍生物,在惰性溶剂或最好在亚硫酰氯、乙酸酐、P2O5 存在下加热分解而得到异氰酸酯。

56. Mannich 反应

这是具有α-活泼氢化合物的胺甲基化反应。一般是甲醛与胺及具有α-活泼氢化合物同时反应,胺甲基取代一个α-活泼氢:反应一般在水、醇或醋酸溶液中进行。

甲醛可以是甲醛溶液、三聚或多聚甲醛,胺一般是仲胺盐酸盐,如二甲胺、六氢吡啶等等盐酸盐,反应中生成单一产物。伯胺或氨副产物多不常使用。此反应合成范围广,不但醛和酮的活泼氢可以进行反应,其他化合物如羧酸、酯、酚或其他杂环化合物(如噻吩、吡咯、吲哚等)的活泼氢也都可以,特别值得注意的是在合成体系及氨基酸方面的应用。

57. Meerwein-Ponndorf-Veriey 还原

醛、酮与醇镁或醇铝反应,醛酮被还原成醇,而醇盐则被氧化成相应的羰基化合物。

反应中,醇盐与加入的醇处于平衡状态,当催化量的醇盐存在时,用醇作还原剂也可发生反应,醇铝溶于有机溶剂,在蒸馏时不被分解。它的螯合倾向较大,所以醇铝特别适合Meerwein-Ponndorf-Veriey 还原。仲醇盐比伯醇盐更好,产生的副反应当可能性更小。上式为平衡反应,要得到好的收率必须不断从平衡中出去由醇铝所生成的羰基化合物。丙酮易挥发,可以蒸出,使平衡破坏,促使反应向右移动,所以用异丙醇作还原剂。如果用乙醇作还原剂,最好用氮气流把生成的乙醛从反应混合物中带走。此反应特点:(1)双键(即使是与羰基共轭的双键)能够保留而不被还原;(2)硝基与卤素不被还原;(3)β-二羰基化合物通常不能进行此反应,因为会生成酸性较强的铝化物沉淀。

58. Meyer 合成法

卤代烷与金属亚硝酸盐反应,合成硝基烷。亚硝酸酯为副产物。用碘代甲烷、乙烷、正丙烷、异丙烷反应很顺利。但用高分子量卤代物容易发生副反应。伯、仲、叔烷基不同,得到不同的主要产物:

(主要产物硝基烷)

59. Meyer-Schuster 重排

在酸性催化剂存在下,乙炔甲醇类重排成α、β-不饱和酮类。芳基取代的乙炔甲醇最

易重排:

60. Michael 加成

在碱性催化剂(哌啶、二乙胺、NaOR 等)存在下,活泼酸性CH2 基与活泼碳碳双键(α、

β-不饱和羰基化合物、酯、腈)发生亲核加成。

活泼CH2 基化合物可用通式来表示。其中A,B 可以是-COOR、-COR、-

CN、-CONH2、―NO2、―SO2R、―CHO 等。亚甲基越容易放出质子,就越容易发生

加成反应。活泼碳碳双键化合物可用通式-RC=CH-来表示。R 为-COOR、-COR、

-CN、-CONH2、―NO2、―SO2R。乙炔类和醌类也可以发生这种反应。反应活性随

双键极性增加而增大,在反应中常发生醇醛缩合和Claisen 缩合,使

反应复杂。若使用

相应的烯胺作为酸性亚甲基部分,反应中由碱性引起的副反应便可预先避免。

61. Nef 合成法

乙炔钠与羰基双键加成,水解即得乙炔醇类:

苯乙酮和苯基乙炔钠在醚溶液中作用能发生相似的反应。

62. Oppenauer 氧化P274

在叔丁醇铝存在下,伯、仲醇用过量的酮或醌类使之氧化成相应的醛或酮。

常用的酮为丙酮、2-丁酮、环己酮。在特殊情况下可同时加入适量的苯、甲苯或1,4-二氧六环作为稀释剂,以减少生成物发生缩合反应的机会。本法也适用于氧化不饱和甾族醇类及由不饱和醇制备不饱和酮。

63. Pechmann 反应

在浓硫酸、AlCl3、P2O5 等脱水剂存在下,酚类与β-酮酸酯类进行缩合反应,产生香豆素类。改变酚为酮酯的结构可以合成具有各种取代基地香豆素类。取代基可以在苯环上、杂环

上,也可同时在二者之上。酚间位有给电子基团能加速缩合,相反,吸电子基团则减缓

反应进行。

64. Perkin 脂环化合物合成法

在乙醇钠存在下,含有活泼亚甲基化合物与二卤代物反应,生成环状羧酸酯,再经水解、

加热、脱羧即得环烷烃及其衍生物。

除三元环外,也可制得四、五、六、七元环,产率高低取决于环的大小。

65. Perkin 反应

芳香醛和酸酐,在此酸的碱性盐存在下,发生醇醛缩合反应,生成α、β-不饱和羧酸。

除简单芳香醛外,某些取代芳香杂环醛也可用作羰基组分。甚至二芳

基、芳基烷基酮与强活性亚甲基化合物也能够反应。脂肪醛反应产率很低。酸酐的α-碳原子上有两个氢原子方可作为亚甲基组分。高分子量比低分子量酸酐好。

66. Prileschajew 反应

烯烃与有机过氧酸作用,发生双键的过氧化作用。最常用的氧化剂为过氧苯甲酸,过氧

苯乙酸。通常反应在丙酮、乙醚。氯仿中进行。反应条件温和,对于制备很有用。

反应活性:R2C=CR2>RHC=CR2>R2C=CH2≈RCH=CHR>RCH=CH2>H2C=CH2.羧基和羰

基起相反作用。反应如在水溶液中进行,环氧化物将进一步水解成1,2-二醇类。

67. Prins 反应

在酸催化下,甲醛与烯烃加成,生成m-二噁烷类和1,3-二醇类。反应中也可生成不饱和醇。稀硫酸是最好的催化剂。磷酸、BF3 也可用。叔基取代烯烃和不对称烯烃,如丙烯或1-丁烯最容易反应,m-二噁烷通过酸解可以转变成1,3-二醇类,再经脱水即可形成共轭二烯类。

68. Reformatsky 合成法P322

69. Reimer-Tiemann 合成法

在碱性水溶液中,苯酚与氯仿作用,产生邻、对位取代醛类。两种产

物的比例取决于取

代基和溶剂,如果在吡啶中进行,仅产生邻位醛,产率20~30%,很少超过50%。酚本

68. Reformatsky 合成法P322

69. Reimer-Tiemann 合成法

在碱性水溶液中,苯酚与氯仿作用,产生邻、对位取代醛类。两种产物的比例取决于取

代基和溶剂,如果在吡啶中进行,仅产生邻位醛,产率20~30%,很少超过50%。酚本身可得到60%水杨醛。苯环上有吸电子取代基,如-SO3H、-CN、-COOH、-NO2 能使苯环钝化,产率大约降为25%。只有含有游离酚式羟基的化合物,才能转变成醛。溴仿、碘仿及三氯乙酸同氯仿一样,容易进行反应。此法产率虽低,但操作简单,仍为合成酚醛的重要方法。

70. Riley 氧化法

活泼甲基或亚甲基化合物用二氧化硒氧化,甲基或亚甲基被氧化成羰基。羧酸为进一步

氧化副产物。溶剂为乙醇、冰醋酸、乙酸酐、苯、二甲苯等,活泼甲基、亚甲基化合物

除一般醛、酮(R(H)COCH3)外,酯环酮、杂环重键结构及稠环体系也可以。

本氧化剂具有选择性,广泛用于有机合成和有机物结构研究方面。

71. Rosenmund 还原

纯的芳香或脂肪类酰氯在Pa-BaSO4 催化剂存在下,常压氢化得到相

应醛类。本法主要缺点是生成的醛类易进一步被还原成醇或烃类。

为了防止这个副反应的发生,在反应体系中可加入适量“抑制剂”,硫脲、异氰酸苯酯、

喹啉-硫等最为适用。它既能防止副反应发生,又使酰氯的氢化不受到阻抑。本法广泛

用于制备醛类,收率可达50~80%,有时达90%以上,但还原二酰氯制二元醛结果不好。

在还原的化合物中,如有双键结构、硝基、卤素及酯基存在时不发生

影响。但若有羟基

存在,应预先酰化加以保护。

72. Rosenmund-Braun 芳腈合成法

芳香族溴化物和CuCN 在高温下反应,溴原子被氰基取代,生成芳腈类化合物。用稍过

量的氰化物可获得极高产率的芳腈。加入少量的苄腈或CuSO4 能增进反应速度,对苯二

酚能抑制反应。

73. Sandmeyer 反应芳香族重氮盐在亚铜盐催化剂存在下,重氮基(-N2X)被-Br、-Cl、-CN 等置换,生成芳香族取代物。反应副产物为二苯基衍生物。由于铜阳离子只起给予或接受电子的作用,所以当用容易氧化或还原的取代基时便不需要使用亚铜盐作催化剂。如用碘化物阴离子时,碘离子本身即成为催化剂。此反应产率高,范围广。其重要性在于可以通过硝基使不能直接引入或不能引入预期位置的取代基到苯环上。

74. Saytzeff 消除反应

就仲烷基和叔烷基而言,消除反应可能按两种方向进行,导致双键位置不同的烯烃。双

键上具有最多数目烷基的烯烃称为Saytzeff 烯烃。在Saytzeff 消除时,也有Hofmann 消

除产物。一般来说,单分子消除反应主要产生Saytzeff 产物,如仲卤代烷和叔卤代烷甲苯磺酸酯作溶剂脱卤化氢,以及仲醇和叔醇的脱水反应。在双分子消除反应中,反应取向主要取决于α位和β-位上取代基地性质以及脱去基团X 的性质。一般规则是:容

易消去的基团有利于Saytzeff 倾向。

75. Schiemann 反应

Schiemann 反应是芳环上导入氟原子的反应。反应分两步进行,首先,芳香伯胺制成氟

硼酸重氮盐,然后将其干燥后在适当条件下加热分解,生成芳香族氟化物。氟硼酸重氮盐极

为安定,在大量制备时无危险。它大都具有一定的分解温度,分解速度很容易控制。氟

化物收率一般为65%,有时达80~90%。

76. Schmidt 反应

在苯中,含羰基的化合物能被叠氮酸降解。一元羧基降解为胺,在两个羧基之间具有一

个以上亚甲基的二元酸得到二元胺,醛类产生腈和胺的甲酰基衍生物,酮产生酰胺。

77. Schotten-Baumann 反应

在碱性化合物存在下,酰氯类使醇、酚等活泼氢化合物的酰化作用称为Schotten-

Baumann 反应。芳香酰氯一般不如脂肪酰氯活泼,不易发生反应,对于易水解的酰氯类

不适用于此法。上述反应中,生成的苯甲酸酯(分子量较高者)一般稍溶于水,结晶良

好,具有固定熔点,所以Schotten-Baumann 反应常用来分离、鉴定醇和酚。

78. Skraup 反应

在浓硫酸和氧化剂(硝基苯、As2O5、Fe2O3、苦味酸等)的存在下,苯胺和甘油反应合

成喹啉。式中丙烯醛是甘油由硫酸脱水而形成的,所用苯胺只要邻位无取代基者均可进行此反应。苯胺和甲基乙烯基酮缩合,生成4-甲基

喹啉。此反应对于制备取代喹啉类应用范围极其广泛。

79. Sommelet 反应

卤代烷和六次甲基四胺作用,生成的季胺盐不需分离,再用60%稀醇液水解,生成醛类。

80. Stephen 合成法

将干燥的HCl 气体通入腈类及无水SnCl2 的干醚饱和溶液中,氰基还

原得到醛。反应结果好坏取决于腈的结构,邻甲苯腈和邻硝基苯甲腈得到相应醛的收率都很低。

81. Stobbe 缩合反应

在醇钠作用下,丁二酸酯与醛酮缩合,得到烷叉丁二酸酯。丙酮和丁二酸酯缩合,产生

异丙叉丁二酸单酯:亚甲基组分为丁二酸二甲(乙,t-丁)酯及其芳基、烷基、烷叉基衍生物。羰基组分除醛、酮氰酮外,在某些情况下,α、β-不饱和醛和酮、酮酯及二苯基乙二酮也可应用。

82. Stvecker 氨基酸合成法

在氨存在下,无水HCN 与醛的羰基加成,生成的α-氨基腈再经水解,产生α-氨基

酸,产率75%。为方便起见也可用NaCN 代替HCN,此法的缺点是氰化物剧毒,而且

许多醛类难以得到。

83. Thorpe 反应

在乙醇钠催化下,腈与活泼亚甲基化合物加成,生成亚胺化合物。如果一个分子内具有

二个所需的官能团则发生环化反应。

84. Tollens 缩合

在Na2CO3 或Ca(OH)2 催化剂存在下,甲醛与含有α-H 的醛和酮反应,生成多元醇类。

此反应实际上是醇醛缩合与交叉Cannizzaro 反应的合并,利用此反应可制备多元醇类。

85. Ulmann 反应

芳基卤代物在高温下(100~360℃)用铜粉处理,发生二芳基缩合反应。反应活性:

ArI>ArBr>ArCl 。碘化物特别适合。应用此法可制备对称和不对称二芳基类。

为调节反应,可用硝基苯、甲苯、苯或DMF 作溶剂。

86. Ultee 羟腈合成法

在微量KCN 存在下,低温(0℃)时,醛、酮与无水HCN 作用,产生羟腈化合物。

87. Urech 羟腈合成法

金属氰化物在乙酸存在下,生成的氰化氢与醛、酮的羰基起加成反应生成羟腈。丙酮的羟腈

产物可得78%。利用此反应可制得氨基酸、羟基酸。

88. Vilsmeier 反应

芳香化合物、杂环化合物及活性烯烃化合物用取代甲酰胺和磷酰氯处理,发生甲酰化作

用得到醛类。常用的甲酰化试剂为N-甲基甲酰替苯胺。但DMF 和甲酰哌啶也可应用。

在某些情况下,可用光气来代替磷酰氯,如烷基苯胺用N-甲基甲酰替苯胺和磷酰氯等

克分子混合物处理,形成烷基氨基苯甲醛。该合成法应用范围较广,使用插烯的酰胺也

可进行甲酰化,生成不饱和醛。常用溶剂为苯、氯苯和邻二氯苯,也可使用过量的DMF。

89. Volhard-Erdmann 噻吩类合成法

丁二酸二钠盐衍生物在硫化磷的作用下,环化成噻吩类:此法可用来合成芳烷基噻吩,并可控制取代位置,产率25~30%。

90. Wagner-Meerwein 重排

此重排好像是片那酮重排的逆转。醇、卤代烷等进行消除反应时,位于季碳原子α-位

的取代基(如羟基、卤素等)发生消除,同时烷基进行重排,生成Saytzeff 烯烃。如仲醇的脱水反应

91. Willaruson 合成法P236~237

92. Willgerodt-Kindler 反应

在高压下,烷基芳基酮被多硫化铵溶液氧化成碳原子数相同的ω-芳基烷基羧酸。

式中甲基被氧化成羧基,羰基被还原成次甲基。Rindler 进行改良,不用加压,用硫磺和仲胺(一般是吗啉)

代替多硫化物溶液,此法甚为重要,特别是用于从芳基甲基酮制备芳基乙酸,因为所用

原料很容易由傅氏酰基化制得。

93. Wittig 反应P478~481

94. Wold-Ziegler 反应

在CCl4 中,不饱和化合物与N-溴代丁二酰亚胺一起加热,发生烯丙基溴代,而不发生双键加成:

N-溴代丁二酰亚胺是烯丙基型溴代的特种试剂。一般来说,亚甲基比甲基反应更快。

本法适用于含有孤立的或共轭双键的单烯烃类、脂肪和脂环烯烃类、异戊二烯衍生物,

甾族化合物等。另外羰基化合物、芳环侧链及杂环化合物都可以烯丙基溴代。

95. Wolff-Kishner-黄鸣龙还原法P291

96. Wurtz 合成法P185

97. Wurtz-Fittig 反应P185

98. Ziegler 环酮合成法

二腈类在高度稀释下,用N- 甲基苯胺钠作缩合剂,发生环化形成大环环酮:

常用溶剂为乙醚、正丙醚、异丙醚。产率高低取决于环的大小:五、六、七元环可得100%,

八元环产率较高,九、十元环产率很低,最后到十八元环时产率又较高。

99. Zincke 反应

卤代酚用亚硝酸或亚硝酸盐与乙酸处理,酚羟基地邻位或对位溴原子(或碘原子)被硝

基取代,发生硝化反应:

氟和氯不能被取代:假如邻位和对位都有溴原子,则得到的是邻位和对位-硝基溴酚异构体。

100. Zincke-Suhl 重排

在AlCl3 存在下,四氯化碳与对甲酚加成,生成4-甲基-4-三氯甲基环己二烯-2,5-酮:若用CS2 作溶剂,使用过量的AlCl3,产率为60%。

有机化学人名反应大全

一、Arbuzov 反应 亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷: 卤代烷反应时,其活性次序为:R′I >R′Br >R′Cl。除了卤代烷外,烯 丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以 进行反应。当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最 少的基团。 本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三 氯化磷反应制得: 如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO) 3 P 的烷基相同 (即 R' = R),则Arbuzov 反应如下: 这是制备烷基膦酸酯的常用方法。 除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR') 2和次亚膦酸酯 R 2 POR' 也能发 生该类反应,例如:

反应机理 2 进行的分子内重排反应: 一般认为是按 S N 反应实例 二、Arndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 反应实例 三、Baeyer----Villiger反应 反应机理 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应

具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保 持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。 反应实例 酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧 乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸 是最好的氧化剂。这类氧化剂的特点是反应速率快,反应温度一般在10~

有机化学人名反应机理

1.Arbuzov 反应 卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。 本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得: 一般认为是按 S N2 进行的分子内重排反应: 2.Arndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 3.Baeyer----Villiger 反应

过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 4.Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

最新大学有机化学人名反应总结

有机化学 1 一、烯烃 2 1、卤化氢加成 3 (1) 4 CH CH 2 R HX CH 3 R X 5 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 6 【机理】 7 CH 2 C H 3CH + CH 3 C H 3X + CH 3 C H 3 +H + CH 2 +C 3X + C H 3X 主 次 8 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 9 【注】碳正离子的重排 10 (2) 11 CH CH 2 R CH 2CH 2 R Br HBr ROOR 12 【特点】反马氏规则 13 【机理】 自由基机理(略) 14

【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 15 【本质】不对称烯烃加成时生成稳定的自由基中间体。 16 【例】 17 CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 18 2、硼氢化—氧化 19 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH - 20 【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并21 且不重排。 22 【机理】 23

2 C H3 3 H3 2 3 H3 2 CH CH2 C H3 H BH2 CH CH=CH (CH3CH2CH2)3 - H3CH2CH2C 22 CH3 CH2 B O CH 2 CH2CH3 H3CH2CH2C 2 CH2CH3 +O H- O H B-OC H2CH2CH3 CH2CH2CH3 H3CH2CH2 B O C H2CH2CH3 CH2CH2CH3 H2CH2CH3 HOO- B(OCH2CH2CH3)3 B(OCH2CH2CH3)3+3NaOH3NaOH3HOC H2CH2CH33+Na3BO3 2 24 【例】 25 CH3 1)BH 3 2)H 2 O 2 /OH- CH3 H H OH 26 3、X 2 加成 27 C C Br/CCl C C Br Br 28 【机理】 29

基础有机化学人名反应

基础有机化学人名反应 第四章 狄尔斯–阿尔德反应(Diels–Alder reaction)(140) 1921年,狄尔斯和其研究生巴克(Back)研究偶氮二羧酸二乙酯(半个世纪后因光延反应而在有机合成中大放光芒的试剂)与胺发生的酯变胺的反应,当他们用2-萘胺做反应的时候,根据元素分析,得到的产物是一个加成物而不是期待的取代物。狄尔斯敏锐地意识到这个反应与十几年前阿尔布莱希特做过的古怪反应的共同之处。这使他开始以为产物是类似阿尔布莱希特提出的双键加成产物。狄尔斯很自然地仿造阿尔布莱希特用环戊二烯替代萘胺与偶氮二羧酸乙酯作用,结果又得到第三种加成物。通过计量加氢实验,狄尔斯发现加成物中只含有一个双键。如果产物的结构是如阿尔布莱希特提出的,那么势必要有两个双键才对。这个现象深深地吸引了狄尔斯,他与另一个研究生阿尔德一起提出了正确的双烯加成物的结构。1928年他们将结果发表。这标志着狄尔斯-阿德尔反应的正式发现。他们也因此获得1950年的诺贝尔化学奖。 含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双烯体)发生1,4-加成,生成六员环状化合物: 这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状化合物的一个非常重要的方法。

带有吸电子取代基的亲双烯体和带有给电子取代基的双烯体对反应有利。常用的亲双烯体有: 下列基团也能作为亲双烯体发生反应: 常用的双烯体有: a.反应机理 这是一个协同反应,反应时,双烯体和亲双烯体彼此靠近,互相作用,形成一个环状过渡态,然后逐渐转化为产物分子:

反应是按顺式加成方式进行的,反应物原来的构型关系仍保留在环加成产物中。例如: 正常的Diels-Alder反应主要是由双烯体的HOMO(最高已占轨道)与亲双烯体的LUMO(最低未占轨道)发生作用。反应过程中,电子从双烯体的 HOMO“流入”亲双烯体的LUMO。也有由双烯体的LUMO与亲双烯体的HOMO作用发生反应的。 b.反应实例

大学有机化学人名反应总结

有机化学 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3+ CH 3 C H 3X + CH 3 C H 3 +H + CH 2 +C 3X + C H 3X 主 次 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】 CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH - 【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】

2 C H3 3 H3 2 3 H3 2 CH CH2 C H3 2 CH CH=CH (CH3CH2CH2)3 - H3CH2CH2C 22 CH3 CH2 B O CH2CH2CH3 3 CH2CH2C 2 CH2CH3 +O H- O H B-OCH2CH2CH3 CH2CH2CH3 H3CH2CH2 B OCH2CH2CH3 CH2CH2CH3 2 CH2CH3 HOO- B(OCH2CH2CH3)3 B(OCH2CH2CH3)3+3NaOH3NaOH3HOCH2CH2CH33+Na3BO3 2 【例】 CH3 1)BH 3 2)H 2 O 2 /OH- CH3 H H OH 3、X2加成 C C Br 2 /CCl 4 C C Br Br 【机理】 C C C C Br Br C Br +C C Br O H2+ -H+ C C Br O H

有机人名反应及其机理(整理缩小版)

本文整理出常见的有机人名反应80多个,共计约100页,大部分内容在竞赛考察范围之内。全国初赛有机难度虽然有所降低,但有能力冲刺决赛的选手对于有机反应必须熟练掌握,熟记反应实例与机理。熟记有机人名反应不仅是化学竞赛的要求,也是考研的重要内容,更是对化学先驱们的尊重与缅怀。 索引: Arbuzov反应 Arndt-Eister反应 Baeyer-Villiger 氧化 Beckmann 重排 Birch 还原 Bischler-Napieralski 合成法 Bouveault-Blanc还原 Bucherer 反应 Cannizzaro 反应 Chichibabin 反应 Claisen 酯缩合反应 Claisen-Schmidt 反应 Clemmensen 还原 Combes 合成法 Cope 重排 Cope 消除反应 Curtius 反应 Dakin 反应 Darzens 反应 Demjanov 重排 Dieckmann 缩合反应 Elbs 反应 Eschweiler-Clarke 反应 Favorskii 反应 Favorskii 重排 Friedel-Crafts烷基化反应 Friedel-Crafts酰基化反应 Fries 重排 Gabriel 合成法 Gattermann 反应 Gattermann-Koch 反应 Gomberg-Bachmann 反应 Hantzsch 合成法 Haworth 反应 Hell-V olhard-Zelinski 反应 Hinsberg 反应 Hofmann 烷基化 Hofmann 消除反应 Hofmann 重排(降解)

Houben-Hoesch 反应Hunsdiecker 反应 Kiliani 氰化增碳法Knoevenagel 反应 Knorr 反应 Koble 反应 Koble-Schmitt 反应Leuckart 反应 Lossen反应 Mannich 反应 Meerwein-Ponndorf 反应Meerwein-Ponndorf 反应Michael 加成反应Norrish I和II 型裂解反应Oppenauer 氧化 Paal-Knorr 反应 Pictet-Spengler 合成法Pschorr 反应Reformatsky 反应 Reimer-Tiemann 反应Reppe 合成法 Robinson 缩环反应Rosenmund 还原 Ruff 递降反应Sandmeyer 反应Schiemann 反应 Schmidt反应 Skraup 合成法Sommelet-Hauser 反应Stephen 还原 Stevens 重排 Strecker 氨基酸合成法Tiffeneau-Demjanov 重排Ullmann反应 Vilsmeier 反应 Wagner-Meerwein 重排Wacker 反应 Williamson 合成法 Wittig 反应 Wittig-Horner 反应 Wohl 递降反应 Wolff-Kishner-黄鸣龙反应Yurév 反应 Zeisel 甲氧基测定法

高等有机化学人名反应

The palladium-catalyzed C-C coupling between aryl halides or vinyl halides and activated alkenes in the presence of a base is referred as the "Heck p y Reaction". Recent developments in the catalysts and reaction conditions have resulted in a much broader range of donors and acceptors being amenable to the Heck Reaction. g y One of the benefits of the Heck Reaction is its outstanding trans selectivity.

Mechanism of the Heak Reaction

Recent Literature ●Trifunctional N,N,O-terdentate amido/pyridyl carboxylate Pd(II) complexes were highly active and stable phosphine-free catalysts for Heck and room-temperature Suzuki reactions with high turnover numbers. M. L. Kantam, P. Srinivas, J. Yadav, P. R. Likhar, S. Bhargava,J. Org. Chem.,2009,74, 4882-4885. ●New N-Heterocyclic Carbene Palladium Complex/Ionic Liquid Matrix Immobilized on Silica: Application as Recoverable Catalyst for the Heck Reaction pp y B. Karimi, D. Enders,Org. Lett.,2006,8, 1237-1240. ●Pd(quinoline-8-carboxylate) 2as a Low-Priced, Phosphine-Free Catalyst for Heck and Suzuki Reactions X. Cui, J. Li, Z.-P. Zhang, Y. Fu, L. Liu, Q.-X. Guo,J. Org. Chem.,2007,72, 9342-9345.

有机化学人名反应(人卫版附)

1、Cannizzaro 反应 凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇: 脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。 醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。 2、Claisen 酯缩合反应 含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到β-酮酸酯。如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。

乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的。但由于最后产物乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动。所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不断地反应,结果反应还是可以顺利完成。 3、Claisen 重排 烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。 当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。 交叉反应实验证明:Claisen重排是分子内的重排。采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。 Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。

有机化学人名反应

有机人名反应及机理索引: Arbuzov反应 Arndt-Eister反应 Baeyer-Villiger 氧化 Beckmann 重排 Birch 还原 Bischler-Napieralski 合成法 Bouveault-Blanc还原 Bucherer 反应 Cannizzaro 反应 Chichibabin 反应 Claisen 酯缩合反应 Claisen-Schmidt 反应 Clemmensen 还原 Combes 合成法 Cope 重排 Cope 消除反应 Curtius 反应 Dakin 反应 Darzens 反应 Demjanov 重排 Dieckmann 缩合反应 Elbs 反应 Eschweiler-Clarke 反应 Favorskii 反应 Favorskii 重排 Friedel-Crafts烷基化反应 Friedel-Crafts酰基化反应 Fries 重排 Gabriel 合成法 Gattermann 反应 Gattermann-Koch 反应 Gomberg-Bachmann 反应 Hantzsch 合成法 Haworth 反应 Hell-V olhard-Zelinski 反应 Hinsberg 反应 Hofmann 烷基化 Hofmann 消除反应 Hofmann 重排(降解) Houben-Hoesch 反应 Hunsdiecker 反应 Kiliani 氰化增碳法 Knoevenagel 反应 Knorr 反应 Koble 反应 Koble-Schmitt 反应 Leuckart 反应 Lossen反应 Mannich 反应 Meerwein-Ponndorf 反应

大学有机化学人名反应机理汇总

3.Baeyer----Villiger 反应拜耳-维立格氧化重排反应 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 4.Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变。 7.Cannizzaro 反应 凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇: 脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。 醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。 9.Claisen 酯缩合反应

含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到β-酮酸酯。如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。 乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的 pK a~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的。但由于最后产物乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动。所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不断地反应,结果反应还是可以顺利完成。 10.Claisen 重排 烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。 当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。

有机化学人名反应

Acetoacetic Ester Condensation Acetoacetic Ester Synthesis Acyloin Condensation Alder-Ene Reaction Aldol Addition Aldol Condensation Appel Reaction Arbuzov Reaction Arndt-Eistert Synthesis Azide-Alkyne 1,3-Dipolar Cycloaddition Azo Coupling b Baeyer-Villiger Oxidation Baker-Venkataraman Rearrangement Balz-Schiemann Reaction Bamford-Stevens Reaction Barton Decarboxylation Barton-McCombie Reaction (Barton Desoxygenation) Baylis-Hillman Reaction Beckmann Rearrangement Benzilic Acid Rearrangement Benzoin Condensation Bergman Cyclization Bestmann-Ohira Reagent Biginelli Reaction Birch Reduction Bischler-Napieralski Reaction Blaise Reaction Blanc Reaction Bohlmann-Rahtz Pyridine Synthesis Boronic Acid Mannich Reaction Bouveault-Blanc Reduction Brook Rearrangement Brown Hydroboration Bucherer-Bergs Reaction Buchwald-Hartwig Cross Coupling Reaction c Cadiot-Chodkiewicz Coupling Cannizzaro Oxidation Reduction CBS Reduction Chan-Lam Coupling Claisen Condensation Claisen Rearrangement Clemmensen Reduction

基础有机化学人名反应

基础有机化学人名反应 第四章狄尔斯–阿尔德反应(Diels –Alder reaction )(140) 1921 年,狄尔斯和其研究生巴克(Back)研究偶氮二羧酸二乙酯(半个世纪后因光延反应而在有机合成中大放光芒的试剂)与胺发生的酯变胺的反应,当他们用2- 萘胺做反应的时候,根据元素分析,得到的产物是一个加成物而不是期待的取代物。狄尔斯敏锐地意识到这个反应与十几年前阿尔布莱希特做过的古怪反应的共同之处。这使他开始以为产物是类似阿尔布莱希特提出的双键加成产物。狄尔斯很自然地仿造阿尔布莱希特用环戊二烯替代萘胺与偶氮二羧酸乙酯作用,结果又得到第三种加成物。通过计量加氢实验,狄尔斯发现加成物中只含有一个双键。如果产物的结构是如阿尔布莱希特提出的,那么势必要有两个双键才对。这个现象深深地吸引了狄尔斯,他与另一个研究生阿尔德一起提出了正确的双烯加成物的结构。1928 年他们将结果发表。这标志着狄尔斯 - 阿德尔反应的正式发现。他们也因此获得1950 年的诺贝尔化学奖 含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双烯 体)发生1,4- 加成,生成六员环状化合物: 这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状化合物的一个非常重要的方法。

带有吸电子取代基的亲双烯体和带有给电子取代基的双烯体对反应有利 常用的亲双烯体有: 下列基团也能作为亲双烯体发生反应: 常用的双烯体有: a. 反应机理 这是一个协同反应,反应时,双烯体和亲双烯体彼此靠近,互相作用,形 成一个环状过渡态,然后逐渐转化为产物分子:

反应是按顺式加成方式进行的,反应物原来的构型关系仍保留在环加成产 物中。例如: 正常的Diels-Alder 反应主要是由双烯体的HOMO最(高已占轨道)与亲双烯体的LUMO最(低未占轨道)发生作用。反应过程中,电子从双烯体的HOM“O流入”亲双烯体的LUMO。也有由双烯体的LUMO与亲双烯体的HOMO作用发生反应的。 b. 反应实例

有机化学人名反应

取代反应: 1,加特曼反应:加特曼(Gattermann L)发现:用催化量的金属铜代替氯化亚铜或溴化亚铜作催化剂,也可使重氮盐与盐酸或氢溴酸反应制得芳香氯化物或溴化物。这样进行的反应叫做加特曼反应。 2,加特曼-科赫反应:苯、一氧化碳和氯化氢反应生成苯甲醛,此反应称为加特曼-科赫反应。 3,傅-克反应:芳香化合物芳环上的氢被烷基取代的反应称为傅-克烷基化反应;芳香化合物芳环上的氢被酰基取代的反应称为傅-克酰基化反应;统称傅-克反应。4,布赫尔反应:萘酚在亚硫酸氢钠存在下与氨作用,转变成相应萘胺的反应称为布赫尔反应。 5,齐齐巴宾反应:吡啶与氨基钠反应,生成α-氨基吡啶,如果α位已被占据,则得γ-氨基吡啶,但产率很低。这个反应称为齐齐巴宾(Chichibabin)反应。 6,刚穆伯—巴赫曼反应:芳香重氮盐中的芳基在碱性条件下与其它芳香族化合物偶联成联苯或联苯衍生物的反应称为刚穆伯(Gomberg)—巴赫曼(Bachmann)反应。 7,柯尔伯—施密特反应:干燥的酚钠或酚钾与二氧化碳在加温加压下生成羟基苯甲酸的反应称为柯尔伯—施密特(Kolbe-Schmitt)反应。

8,威廉森合成法:在无水条件下,醇钠和卤代烷作用生成醚的反应称为威廉森(Williamson A W)合成法。 9,席曼反应:芳香重氮盐和氟硼酸反应,生成溶解度较小的氟硼酸盐,后者加热分解产生氟苯,这称为席曼(Schiemann)反应。 10,桑德迈耳反应:1884年,桑德迈耳(Sandmeyer T)发现:在氯化亚铜或溴化亚铜的催化下,重氮盐在氢卤酸溶液中加热,重氮基可分别被氯或溴原子取代,生成芳香氯化物或溴化物。这一反应称为桑德迈耳反应。 11,普塑尔反应:一些重氮盐在碱性条件下或稀酸的条件下可以发生分子内的偶联反应。这个反应是普塑尔(Pschorr R)在寻找合成菲环的新方法中首先发现的,故称为普塑尔反应。 12,瑞穆尔—悌曼反应:酚与氯仿在碱性溶液中加热生成邻位及对位羟基醛的反应称为瑞穆尔—悌曼(Reimer —Tiemann)反应。 13,赫尔—乌尔哈—泽林斯基反应:在催化量的三氯化磷、三溴化磷等作用下,卤素取代羧酸α氢的反应称为赫尔—乌尔哈—泽林斯基(Hell C-V olhard J-Zelinski N D)反应。

最新有机化学人名反应机理完整版

最新有机化学人名反应机理完整版 1.Arbuzov 反应 卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。 本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得: 一般认为是按 S N2 进行的分子内重排反应: 2.Arndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

3.Baeyer----Villiger 反应 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 4.Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

经典编辑有机人名反应

有机化学人名反应 1.拜耳维利格Baeyer----Villiger 反应(p317) 反应机理(不要求) 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例 2.康尼查罗Cannizzaro 反应(p321) 凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇: 脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。

具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应得到季戊四醇: 反应机理 醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。 反应实例 3.克莱森许密特Claisen—Schmidt 反应(交叉羟醛缩合)(p314) 一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到不饱和醛或酮:

有机化学十五个人名反应

十五个人名反应 1.通过Witting 反应合成吖丙啶-1,2-二羧基纤维素 O R 1 R 2 R 3 N CO 2Et R 4 R 1 R 2 R 3 N CO 2Et R 4 R 5 H R 2.N-乙烯基甲酰胺和甲基乙烯基酮在碱性催化剂条件下发生Michael 加成反应 H 2C CH N H HC O +H 2C C H COCH 3 H 2C C H N HC 2CH 2COCH 3 O 3.Diels-Alder 反应 + O O O °O O O

4.烯丙基苯醚的Claisen 重排反应 O H 2C C H CH 2 190~200 C °OH H 2C C H CH 2 邻烯丙基苯酚 5.Fries 重排反应 OH C 2H 5COCl O C O C 2H 5 CS 2 OH C O C 2H 5+ OH C O C 2H 5 6.Beckmann 重排 Ph C O Ph C N H 2 O Ph Ph OH H 2SO 4 ,100 C °O C HN Ph Ph 苯甲酰苯胺

7.Fisher 重排反应 N H 3C NO HCl 的乙醇溶 液 氨水23 N H 3C H NO 8.Clemmensen 还原反应 OH C(CH 2)5CH 3 O Zn-Hg, HCl OH CH 2(CH 2)5CH 3 9.Wolff-Kishner-黄鸣龙还原反应 CH 3CONH CCH 2CH 2COOH O H 2NNH 22O , KOH 140~160 C CH 3CONH CH 2CH 2CH 2COOH

有机化学人名反应 整理 还原反应

二、还原: 1..Barton-McCombie去氧反应:从相关的硫羰基体中间用n-Bu3SnH,AIBN试剂经过自由基开裂发生醇的去氧作用 2.Birch 还原:苯环由Na单质合液胺条件下形成环内二烯烃(带供电子基团的苯环:双键连接取代基;带吸电子基团的苯环,取代基在烯丙位。) 3.Brown硼氢化:烯烃和硼烷加成产生的有机硼烷经过碱性H2O2氧化得到醇 4.Cannizzaro歧化:碱在芳香醛,甲醛或者其他无α-氢的脂肪氢之间发生氧化还原反应给出醇和酸 5.Clemmensen还原:用锌汞齐和氯化氢将醛酮还原为亚甲基化合物 6.Corey-Bakshi-Shibata(CBS)还原:酮在手性恶唑硼烷催化下的立体选择性还原 7.Gribble吲哚还原:用NaBH4直接还原会导致N-烷基化,NaBH3CN在冰醋酸当中还原吲哚双键可以解决 8.Gribble二芳基酮还原:用NaBH4在三氟乙酸中还原二芳基酮和二芳基甲醇为二芳基甲烷,也可以应用于二杂芳环酮和醇的还原 9.Luche还原:烯酮在NaBH4-CeCl3下发生1,2-还原形成烯丙位取代烯醇 10.McFadyen-Stevens还原:酰基苯磺酰肼用碱处理成醛 11.Meerwein-Ponndorf-V erley还原:用Al(OPr’)3/Pr’OH体系将酮还原为醇 12.Midland还原:用B-3-α-蒎烯-9-BBN对酮进行不对称还原 13.Noyori不对称氢化:羰基在Ru(II)BINAP络合物催化下发生不对称氢化还原 14.Rosenmund还原:用BaSO4/毒化Pd催化剂将酰氯氢化成醛,如催化剂未被毒化,会氢化为醇 15.Wolff-Kishner-黄鸣龙还原:用碱性肼将羰基还原为亚甲基

有机化学人名反应

有机化学中的十个人名反应 白鹏 (西北师范大学,化学化工学院,兰州730070) 摘要:在有机化学中,有机人名反应占具着重要的地位。本文主要从背景、机理和应用三个方面分别浅析了Birch还原反应、Beckmann重排反应、Dakin反应、Friedel-Crafts烷基化反应、Fries重排反应、Hinsberg反应、Leuckart反应、Lossen反应、Steven s 重排反应和Wagner-Meerwein重排反应等十个有机化学中的比较重要的人名反应。 关键词:反应背景、反应机理、应用、Birch还原、Beckmann重排、Dakin反应、Friedel-Crafts烷基化反应、Fries重排、Hinsberg反应、Leuckart反应、Lossen反应、Steven s 重排和Wagner-Meerwein重排。 Birch还原反应、Beckmann重排反应、Dakin反应、Friedel-Crafts烷基化反应、Fries重排反应、Hinsberg 反应、Leuckart反应、Lossen反应、Steven s 重排反应和Wagner-Meerwein重排反应基于不同的机理,有着特殊的反应步骤和应用,这些反应在一定程度上为有机化学研究者提供了合成有机物的新思路和简捷路径,因而受到人们的重视。 一Birch还原 1、反应背景 2、反应机理

3、应用 二、Beckmann重排 1、反应背景 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:

2、反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:

有机化学人名反应-0.

1.(拜耳)Baeyer----Villiger 反应 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 1)这个反应的氧化剂一般下是用过酸,如过氧乙酸,过氧苯甲酸,间氯过氧苯甲酸或者三氟过氧乙酸。其中三氟过氧乙酸是最好的氧化剂。(其他氧化剂也可以,参考文献) (2)这类氧化剂的特点是反应速率快,反应温度一般在10~40℃,产率高。 具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 2. (贝克曼) Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:

在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变。 3.((意)坎尼扎罗)Cannizzaro 反应 凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇: 脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。 醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。

有机化学人名反应51-100

51. Kucherov 反应 乙炔在Hg2+盐和稀硫酸存在下直接水合生成乙醛,单取代乙炔可生成甲基酮。 52. Lebedeff 合成法 在高温下(400~500℃)乙醇与特种催化剂硅酸盐、Al2O3、ZnO 混合物作用,脱氢脱水得1,3-丁二烯。丁二烯的产率大约为20%,其他副产物如戊烷、己烷、己烯、己二烯、丁醇、醛、酮都有,所以此反应制备意义不大。 53. Leuckart 反应 在甲酸(甲酰胺、甲酸铵)作还原剂的情况下,加热胺和羰基化合物,就发生胺的烷基化反应。 通过这种反应可使伯胺、仲胺及氨发生烷基化反应,但以叔胺为最妥。因为伯胺、仲胺总是有多烷基化副产物形成。特别是很活泼的甲醛,同时总是生成完全甲基化的胺。高沸点芳香醛和酮产物为40~90%,低分子量脂肪醛和酮不能得到满意大结果。反应中由少量MgSO4 或MgCl2 催化,起还原作用的甲酸经常是过量,每摩尔羰基化合物需 2~4mol 甲酸。

54. Lieben 碘仿试验P289 55. Lossen 降解 氧肟酸或其酰基衍生物,在惰性溶剂或最好在亚硫酰氯、乙酸酐、P2O5 存在下加热分解而得到异氰酸酯。 56. Mannich 反应 这是具有α-活泼氢化合物的胺甲基化反应。一般是甲醛与胺及具有α-活泼氢化合物同时反应,胺甲基取代一个α-活泼氢:反应一般在水、醇或醋酸溶液中进行。 甲醛可以是甲醛溶液、三聚或多聚甲醛,胺一般是仲胺盐酸盐,如二甲胺、六氢吡啶等等盐酸盐,反应中生成单一产物。伯胺或氨副产物多不常使用。此反应合成范围广,不但醛和酮的活泼氢可以进行反应,其他化合物如羧酸、酯、酚或其他杂环化合物(如噻吩、吡咯、吲哚等)的活泼氢也都可以,特别值得注意的是在合成体系及氨基酸方面的应用。 57. Meerwein-Ponndorf-Veriey 还原 醛、酮与醇镁或醇铝反应,醛酮被还原成醇,而醇盐则被氧化成相应的羰基化合物。

有机化学人名反应机理

1.Arbuzov反应 卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。除了卤代烷外,烯丙型或炔丙型卤化物、α-卤代醚、α- 或β-卤代酸酯、对甲苯磺酸酯等也可以进行反应。当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。 本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得: 一般认为是按S N2 进行的分子内重排反应: 2.Arndt-Eister反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 3.Baeyer----Villiger反应 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应

具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 4.Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变。 5.Bouveault---Blanc还原 脂肪族羧酸酯可用金属钠和醇还原得一级醇。α,β-不饱和羧酸酯还原得相应的饱和醇。芳香酸酯也可进行本反应,但收率较低。本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响。

相关文档