文档库 最新最全的文档下载
当前位置:文档库 › 1_差分信号原理与分析

1_差分信号原理与分析

1_差分信号原理与分析
1_差分信号原理与分析

如果差分信号走线过程中的参考平面改变了,到底会对差分信号的质量产生何种影响?

差分线的设计原则是等长等距不能cross-moat.这都是有原因的.差分信号P\\N的差值就是我们所要传递的信号,同时每一个线上面都有共模信号.后者是造成电磁辐射的主要源头,常常在靠近连接器的地方加共模choke抑制.差分线等长等距的原因是因为p上面信号值减去N上面信号的时候,必须是对应地减去,如果不等长或者不等距,将使得这样的差值发生根本性的破坏.信号完整性检查眼图的时候会发现超标.而楼上大家关心的是能不能crossmoat的问题.这一点我详细说明.

我先说信号参考同一个板层就是习惯上说的layer,如果差分信号在top层走,以layer2作为参考平面.差分信号的两根线下面都有高速返回的镜象电流,紧贴在差分信号的下面.之所以紧贴是因为这样可以使得信号遇到的电感最小.差分信号的上升沿很短,一般在2ns左右.假如这时候差分信号的参考平面有沟道,比如说layer2的电源不止一个,举个例子,差分信号的下面原来参考的是+5V电源层,现在参考+3.3v,这时候就会出问题.因为+5与+3.3的两个模块之间有沟道.镜象电流在沟道处被割断,将寻找低阻抗路径完成返回电流的连续.换句话说路径的改变造成了电流环路面积的增大,这个直接影响就是EMI测试的超标.在EMI中这称为return path uncontinuity.

如果信号穿层从top到bottom.信号的参考平面从layer2到了倒数第二层,倒数第二层如果是GND.差分信号的参考平面绝对不能够改变.比如usb信号在第一层走的时候下面参考的是+5v,那么到了最下面的倒数第2层.必须在倒数第2层割出一块+5的电源在USB差分线的下方.这是原理.在EMI中这还是return path uncontinuity的一种情况.事实上面高速信号(包括差分信号)以某些电势位(比如+1.8v,+3.3v)作为参考平面(就是镜象电流流过的那层)不是一种好的方法,这会造成电源的不干净.比教好的做法是以地(0v电势位)作为参考平面,换层到top时候,把第二层划出一块地.目标就是差分信号的参考平面永远是同一个电势位.任何不同都会造成返回路径不连续从而引起环路面积增大,最后造成EMI超标.

信号的反射和差分本来就是两回事,差分的本来目的确实是为了抑制共模干扰,具体要求和前后级的具体电路和CMRR有关。信号的反射是由于阻抗不匹配,在不同频率处有不同的反射系数和时延,即产生色散,导致原来的波形变形,即信号完整性受到影响(主要对高速信号影响)。

对于RF的角度来说,过孔或者参考/走线平面的变化确实会带来阻抗上的不连续(仅仅从RF角度,对于低速信号,孔的寄生电容,电感相对于电阻完全体现不出来),但只要传输线的电长度不要太大(<1/10 波长),影响也不会太大。差分线都有回流面,此回流面决定此差分线的特征阻抗,而且是不管你创建与否必然存在(如果有的话由于电流的最短路径回流原理及耦合原理,必然会在相邻的地层的相反方向!)。

运放差分放大电路

差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。 从图中可以看到A1、A2两个同相运放电路构成输入级,在与差分放大器A3串联组成三运放差分防大电路。电路中有关电阻保持严格对称,具有以下几个优点: (1)A1和A2提高了差模信号与共模信号之比,即提高了信噪比; (2)在保证有关电阻严格对称的条件下,各电阻阻值的误差对该电路的共模抑制比K CMRR 没有影响; (3)电路对共模信号几乎没有放大作用,共模电压增益接近零。 因为电路中R1=R2、 R3=R4、 R5=R6 ,故可导出两级差模总增益为: 3 5P 1p i2i1o vd R R R 2R R u u u A ???? ??+-=-= 通常,第一级增益要尽量高,第二级增益一般为1~2倍,这里第一级选择100倍,第二级为1倍。则取R3=R4=R5=R6=10K Ω,要求匹配性好,一般用金属膜精密电阻,阻值可在10K Ω~几百K Ω间选择。则 A vd =(R P +2R 1)/R P 先定R P ,通常在1K Ω~10K Ω内,这里取R P =1K Ω,则可由上式求得R 1=99R P /2=49.5K Ω 取标称值51K Ω。通常R S1和R S2不要超过R P /2,这里选R S1= R S2=510,用于保护运放输入级。 A1和A2应选用低温飘、高K CMRR 的运放,性能一致性要好。 三. 实验内容 1. 搭接电路 2. 静态调试

(完整word版)SerDes知识详解

SerDes知识详解 一、SerDes的作用 1.1并行总线接口 在SerDes流行之前,芯片之间的互联通过系统同步或者源同步的并行接口传输数据,图1.1演示了系统和源同步并行接口。 随着接口频率的提高,在系统同步接口方式中,有几个因素限制了有效数据窗口宽度的继续增加。 ?时钟到达两个芯片的传播延时不相等(clock skew) ?并行数据各个bit的传播延时不相等(data skew) ?时钟的传播延时和数据的传播延时不一致(skew between data and clock) 虽然可以通过在目的芯片(chip #2)内用PLL补偿时钟延时差(clock skew),但是PVT变化时,时钟延时的变化量和数据延时的变化量是不一样的。这又进一步恶化了数据窗口。 源同步接口方式中,发送侧Tx把时钟伴随数据一起发送出去, 限制了clock skew对有效数据窗口的危害。通常在发送侧芯片内部,源同步接口把时钟信号和数据信号作一样的处理,

也就是让它和数据信号经过相同的路径,保持相同的延时。这样PVT变化时,时钟和数据会朝着同一个方向增大或者减小相同的量,对skew最有利。 我们来做一些合理的典型假设,假设一个32bit数据的并行总线, a)发送端的数据skew = 50 ps ---很高的要求 b)pcb走线引入的skew = 50ps ---很高的要求 c)时钟的周期抖动jitter = +/-50 ps ---很高的要求 d)接收端触发器采样窗口= 250 ps ---Xilinx V7高端器件的IO触发器 可以大致估计出并行接口的最高时钟= 1/(50+50+100+250) = 2.2GHz (DDR)或者1.1GHz (SDR)。 利用源同步接口,数据的有效窗口可以提高很多。通常频率都在1GHz以下。在实际应用中可以见到如SPI4.2接口的时钟可以高达DDR 700MHz x 16bits位宽。DDR Memory接口也算一种源同步接口,如DDR3在FPGA中可以做到大约800MHz的时钟。 要提高接口的传输带宽有两种方式,一种是提高时钟频率,一种是加大数据位宽。那么是不是可以无限制的增加数据的位宽呢?这就要牵涉到另外一个非常重要的问题-----同步开关噪声(SSN)。 这里不讨论SSN的原理,直接给出SSN的公式:SSN = L *N* di/dt。 L是芯片封装电感,N是数据宽度,di/dt是电流变化的斜率。 随着频率的提高,数据位款的增加,SSN成为提高传输带宽的主要瓶颈。图1.2是一个DDR3串扰的例子。图中低电平的理论值在0V,由于SSN的影响,低电平表现为震荡,震荡噪声的最大值达610mV,因此噪声余量只有1.5V/2-610mV=140mV。

运放差分放大电路原理

Differens Amplifier 差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都 能见到其踪迹。 nz R4 R2 R T V I R1//R2 = R3//R4 For mini mum offset error due to input bias current TL/H/7057-3

从图中可以看到 A1、A2两个同相运放电路构成输入级, 在与差分放大器 A3串联组成三运放差分 防大电路。电路中有关电阻保持严格对称 ,具有以下几个优点: (1) A1和A2提高了差模信号与共模信号之比 ,即提高了信噪 比; (2) 在保证有关电阻严格对称的条件下 ,各电阻阻 值的误差对该电路的共模抑制比 K CMRR 没有 影响; (3) 电路对共模信号几乎没有放大作用 ,共模电压增益接近零。 因为电路中 R1=R2、R3=R4、R5=R6,故可导岀两级差模总增益为: 通常,第一级增益要尽量高,第二级增益一般为 1~2倍,这里第一级选择 100倍,第二级为1 倍。则取 R3=R4=R5=R6=10Q ,要求匹配性好,一般用金属膜精密电阻,阻值可在 10KQ ?几百K Q 间选择。贝9 Ad =(R p +2Ri)/R P 先定 通常在1KQ ?10KQ 内,这里取 R== 1KQ ,则可由上式求得 R 1=99R/2=49.5K Q 取标称值51KQ 。通常R S 1和R S 2不要超过F P /2,这里选Rs 1= R S 2= 510,用于保护运放输入级。 A1和A2应选用低温飘、高 K CMR 的运放,性能一致性要好。 三. 实验内容 1. 搭接电路 2. 静态调试 vd U o U il U i2 R p 2R I R 5 R P R 3 A1

高频电路原理与分析试题库

1、图1所示为一超外差式七管收音机电路,试简述其工作原理。(15分) 图1 解:如图所示,由B1及C1-A 组成的天线调谐回路感应出广播电台的调幅信号,选出我们所需的电台信号f1进入V1基极。本振信号调谐在高出f1一个中频(465k Hz )的f2进入V1发射极,由V1三极管进行变频(或称混频),在V1集电极回路通过B3选取出f2与f1的差频(465kHz 中频)信号。中频信号经V2和V3二级中频放大,进入V4检波管,检出音频信号经V5低频放大和由V6、V7组成变压器耦合功率放大器进行功率放大,推动扬声器发声。图中D1、D2组成1.3V±0.1V 稳压,提供变频、一中放、二中放、低放的基极电压,稳定各级工作电流,保证整机灵敏度。V4发射一基极结用作检波。R1、R4、R6、R 10分别为V1、V2、V3、V5的工作点调整电阻,R11为V6、V7功放级的工作点调整电阻,R8为中放的AGC 电阻,B3、B4、B5为中周(内置谐振电容),既是放大器的交流负载又是中频选频器,该机的灵敏度、选择性等指标靠中频放大器保证。B6、B7为音频变压器,起交流负载及阻抗匹配的作用。(“X”为各级IC 工作电流测试点). 15’ 2、 画出无线通信收发信机的原理框图,并说出各部分的功用。 答: 上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。发射部分由话筒、音频放大器、调制器、变频

器、功率放大器和发射天线组成。接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。 低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过上变频,达到所需的发射频率,经小信号放大、高频功率放大后,由天线发射出去。 由天线接收来的信号,经放大后,再经过混频器,变成一固定中频已调波,经放大与滤波的检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。 3、对于收音机的中频放大器,其中心频率f0=465 kHz .B0.707=8kHz ,回路电容C=200 PF ,试计算回路电感和 QL 值。若电感线圈的 QO=100,问在回路上应并联多大的电阻才能满足要求。 答:回路电感为0.586mH,有载品质因数为58.125,这时需要并联236.66k Ω的电阻。 4、 图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260 pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和Ct 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。 解: 022 612 0622 11244651020010100.5864465200f L f C mH πππ-===????=≈??2由()03 03 4651058.125810 L L 0.707f Q f Q B =?===?0.707由B 得: 9 003120000 0000010010171.222465102001024652158.125 1171.22237.6610058.125 L L L L L L L Q R k C C C Q Q R g g g R Q Q R R R k Q Q Q ΩωππωωΩ∑ -===≈??????=== ++=-==?≈--因为:所以:( ),t C C C ∑ =+??=?????== 33根据已知条件,可以得出:回路总电容为因此可以得到以下方程组16051053510

PCB三种特殊布线分享及检查方法详解

PCB三种特殊布线分享及检查方法详解 手术很重要,术后恢复也必不可少!各种PCB布线完成之后,就ok了吗?很显然,不是!PCB布线后检查工作也很必须,那么如何对PCB设计中布线进行检查,为后来的PCB设计、电路设计铺好路呢?本文会从PCB设计中的各种特性来教你如何完成PCB布线后的检查工作,做好最后的把关工作! 在讲解PCB布线完成后的检查工作之前,先为大家介绍三种PCB的特殊走线技巧。将从直角走线,差分走线,蛇形线三个方面来阐述PCB LAYOUT的走线: 一、直角走线(三个方面) 直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的EMI,到10GHz以上的RF设计领域,这些小小的直角都可能成为高速问题的重点对象。 二、差分走线(等长、等距、参考平面) 何为差分信号(DifferenTIal Signal)?通俗地说就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态0还是1。而承载差分信号的那一对走线就称为差分走线。差分信号和普通的单端信号走线相比,最明显的优势体现在以下三方面: 1、抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可被完全抵消。 2、能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。 3、时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS(low voltage differenTIal signaling)就是指这种小振幅差分信号技术。

有限差分法

利用有限差分法分析电磁场边界问题 在一个电磁系统中,电场和磁场的计算对于完成该系统的有效设计师极端重要的。例如,在系统中,用一种绝缘材料是导体相互隔离是,就要保证电场强度低于绝缘介质的击穿强度。在磁力开关中,所要求的磁场强弱,应能产生足够大的力来驱动开关。在发射系统中进行天线的有效设计时,关于天线周围介质中电磁场分布的知识显然有实质性的意义。 为了分析电磁场,我们可以从问题所涉及的数学公式入手。依据电磁系统的特性,拉普拉斯方程和泊松方程只能适合于描述静态和准静态(低频)运行条件下的情况。但是,在高频应用中,则必须在时域或频域中求解波动方程,以做到准确地预测电场和磁场,在任何情况下,满足边界条件的一个或多个偏微分方程的解,因此,计算电池系统内部和周围的电场和磁场都是必要的。 对电磁场理论而言,计算电磁场可以为其研究提供进行复杂的数值及解析运算的方法,手段和计算结果;而电磁场理论则为计算电磁场问题提供了电磁规律,数学方程,进而验证计算结果。常用的计算电磁场边值问题的方法主要有两大类,其每一类又包含若干种方法,第一类是解析法;第二类是数值法。对于那些具有最简单的边界条件和几何形状规则的(如矩形、圆形等)问题,可用分离变量法和镜像法求电磁场边值问题的解析解(精确解),但是在许多实际问题中往往由于边界条件过于复杂而无法求得解析解。在这种情况下,一般借助于数值法求解电磁场的数值解。 有限差分法,微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网络来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 差分运算的基本概念: 有限差分法是指用差分来近似取代微分,从而将微分方程离散成为差分方程组。于是求解边值问题即转换成为求解矩阵方程[5]。 对单元函数 ()x f而言,取变量x的一个增量x?=h,则函数()x f的增量可以表示为 ()x f? = ()h x f+-()x f 称为函数()x f 的差分或一阶差分。函数增量还经常表示为 ()x f? = ? ? ? ? ? + 2 h x f - ? ? ? ? ? - 2 h x f

运放差分放大电路原理知识介绍

运放差分放大电路原理 知识介绍 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量 0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 2 1 v v v = -=, 放大器双端输出电压 o v ??I v I v I v C2C1)2 1(2 1v A v A v A v v =--=- 差分放大电路的电压放大倍数为 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。

缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b)所示。在两管发射极接入稳流电阻 R。使其即有高的 e 差模放大 倍数,又保持了对共模信号或零漂强抑制能力的优点。 在实际电路中,一般都采用正负两个电源供电,如图所示(c)所示。 差分放大电路 一. 实验目的: 1.掌握差分放大电路的基本概念; 2.了解零漂差生的原理与抑制零漂的方法; 3.掌握差分放大电路的基本测试方法。 二. 实验原理: 1.由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。 从图中可以看到A1、A2两个同相运放电路构成输入级,在与差分放大器A3串联组成三运放差分防大电路。电路中有关电阻保持严格对称,具有以下几个优点:

高频电路原理与分析

. 高频电路原理与分析 期末复习资料 陈皓编 10级通信工程 2012年12月 1.

单调谐放大电路中,以LC并联谐振回路为负载,若谐振频率f0=10.7MH Z,C Σ = 50pF,BW0.7=150kH Z,求回路的电感L和Q e。如将通频带展宽为300kH Z,应在回路两端并接一个多大的电阻? 解:(1)求L和Q e (H)= 4.43μH (2)电阻并联前回路的总电导为 47.1(μS) 电阻并联后的总电导为 94.2(μS) 因 故并接的电阻为 2.图示为波段内调谐用的并联振荡回路,可变电容C的变化范围为12~260 pF,Ct为微调电容,要求此回路的调谐范围为535~1605 kHz,求回路电感L 和C t的值,并要求C的最大和最小值与波段的最低和最高频率对应。 12 min , 22(1210) 3 3 根据已知条件,可以得出: 回路总电容为因此可以得到以下方程组 160510 t t C C C LC L C ππ ∑ - =+ ? ?== ? ?+ ? ?

题2图 3.在三级相同的单调谐放大器中,中心频率为465kH Z ,每个回路的Q e =40,试 问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少? 解:(1 )总的通频带为 121212121232 260109 121082601091210260108 10198 1 253510260190.3175-12 6 1605 535 ()()10103149423435 t t t t C C C C pF L mH π-----?+==?+=?-??-= ?==??+?=≈

运放差分放大电路原理知识介绍

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 21 v v v =-=, =-=C2 1C v v I 2 1 v A v 放大器双端输出电压 o v = I v I v I v C2C1)2 1(2 1v A v A v A v v =--=- 差分放大电路的电压放大倍数为 be c I I I O v d r R A v v A v v A V v β-==== 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。 c d CMR v v A A K = 缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b )所示。在两管发射极接入稳流电阻e R 。使其即有高的差模

典型差分放大电路

典型差分放大电路 1、典型差分放大电路的静态分析 (1)电路组成 (2)静态工作点的计算 静态时:v s1=v s2=0, 电路完全对称,所以有 I B Rs1+U BE +2I E Re=V EE 又∵ I E =(1+β)I B ∴ I B1=I B2=I B = 通常Rs<<(1+β)Re ,U BE =0.7V (硅管): I B1=I B2=I B = 因: I C1=I C2=I C =βI B 故: U CE1=U CE2=V CC -I C Rc 静态工作电流取决于V EE 和Re 。同时,在输入信号为零时,输出信号电压也为零(u o= Vc1-VC2=0),即该差放电路有零输入——零输出。 2、差分放大电路的动态分析 (1)差模信号输入时的动态分析 ()e s BE EE R 12R U V β++-

如果两个输入端的信号大小相等、极性相反,即 v s1=- v s2= 或 v s1- v s2= u id u id 称为差模输入信号。 在输入为差模方式时,若一个三极管的集电极电流增大时,则另一个三极管的集电极电流一定减小。在电路理想对称的条件下,有:i c1=- i c2。 Re 上的电流为: i E =i E1+i E2=(I E1+ i e1)+(I E2+ i e2 ) 电路对称时,有I E1= I E2= I E 、i e1=- i e2,使流过Re 上的电流i E =2I E 不变,则发射极的电位也保持不变。差模信号的交流通路如图: 差模信号下不同工作方式的讨论: ① 双端输入—双端输出放大倍数: 当输入信号从两个三极管的基极间加入、输出电压从两个三极管的集电极之间输出时,称之为双端输入—双端输出,其差模电压增益与单管放大电路的电压增益相同,无负载的情况下: be s c s1o1s2s1o2o1id o ud r R R 22u u A +-==--== βv v v v v v

高频电路原理与分析

高频电路原理与分析期末复习资料 陈皓编 10级通信工程 2012年12月

1.单调谐放大电路中,以LC 并联谐振回路为负载,若谐振频率f 0 =10.7MH Z , C Σ= 50pF ,BW 0.7=150kH Z ,求回路的电感L 和Q e 。如将通频带展宽为300kH Z ,应在回路两端并接一个多大的电阻? 解:(1)求L 和Q e (H )= 4.43μH (2)电阻并联前回路的总电导为 47.1(μS) 电阻并联后的总电导为 94.2(μS) 因 故并接的电阻为 2.图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260 pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和C t 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。 题2图 12min 12max ,22(1210) 22(26010)3 3根据已知条件,可以得出: 回路总电容为因此可以得到以下方程组16051053510t t t C C C LC L C LC L C ππππ∑ --=+? ?== ??+?? ??== ??+?

3.在三级相同的单调谐放大器中,中心频率为465kH Z ,每个回路的Q e =40,试 问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少? 解:(1)总的通频带为 4650.51 5.928()40 e z e Q kH =≈?= (2)每个回路允许最大的Q e 为 4650.5123.710 e e Q =≈?= 4.图示为一电容抽头的并联振荡回路。谐振频率f 0 =1MHz ,C 1 =400 pf ,C 2= 100 pF 121212121232 260109 121082601091210260108 10198 1 253510260190.3175-12 6 1605 535 ()()10103149423435 t t t t C C C C pF L mH π-----?+==?+=?-??-= ?==??+?=≈

差分放大电路

方案三差分放大电路 【项目目标】 知识目标 掌握场效应管的类型、场效应的电压控制作用及共源极放大电路的分析与应用。 能力目标 具有识别场效应管的能力,具有共源极放大的分析能力。

将J8、J9与 J6、J7之间分别加一毫安表,J10、J11连接与J12 改变电位器RP6.将测量的结果记录如下: A1间的电流 A2间的电流 知识点导入 镜像电流源的基本特性。 知识点讲解 基本镜像电流源电路如图所示。 T 1、T 2参数完全相同(即β1=β2,I CEO1=I CEO2)。 原理:因为V BE1=V BE2,所以I C1=I C2 β C1 C1B C1REF 2 2I I I I I +=+= I REF ——基准电流:C2REF C1/21I I I =+=β 推出,当β>>2 时,I C2= I C1≈ I REF ()6060B1 Rp R U U Rp R V BE CC ++--=+-= ≈6 CC Rp R V + 优点: (1)I C2≈I REF ,即I C2不仅由I REF 确定,且总与I REF 相等。 (2)T 1对T 2具有温度补偿作用,I C2温度稳定性能好(设温度增大,使I C2增大,则I C1增大,而I REF 一定,因此I B 减少,所以I C2减少)。 缺点: (1)I REF (即I C2)受电源变化的影响大,故要求电源十分稳定。 (2)适用于较大工作电流(mA 数量级)的场合。若要I C2下降,则R 就必须增大,这在集成电路中因制作大阻值电阻需要占用较大的硅片面积。 (3)交流等效电阻R o 不够大,恒流特性不理想。 (4)I C2与I REF 的镜像精度决定于β。当β较小时,I C2与I REF 的差别不能忽略。 巩固训练:将电路图中的值按照电位的阻值代入进行计算?看测量结果与理论之间的误差? 电路测试2 将J8、J9与 J6、J7之间分别加一毫安表,改变电位器RP6.将测量的结果A1间的电流 图3.1.4 基本镜像电流源电路

详解差模电压和共模电压-简单易懂

差模电压与共模电压 我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。 就像平面坐标需要用 x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个 v 是由 x,y 两个数构成的“向量”…… 而共模、差模正是“输入信号”整体的属性,差分输入可以表示为 vi = (vi+, vi-) 也可以表示为 vi = (vic, vid) c 表示共模, d 表示差模。两种描述是完全等价的。只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。 运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比 CMRR)条件下允许的共模信号的范围。 显然,不存在“某一端”上的共模电压的问题。但“某一端”也一样存在输入电压范围问题。而且这个范围等于共模输入电压范围。 道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。 对其它放大器,共模输入电压跟单端输入电压范围就有区别了。例如对于仪放,差分输入不是 0,实际工作时的共模输入电压范围就要小于单端输入电压范围了。

可以通俗的理解为: 两只船静止在水面上,分别站着两个人,A和B。 A和B相互拉着手。当船上下波动时,A才能感觉到B变化的拉力。这两个船之间的高度差就是差模信号。 当水位上升或者下降时,A并不能感觉到这个拉力。 这两个船离水底的绝对高度就是共模信号。 于是,我们说A和B只对差模信号响应,而对共模信号不响应。当然,也有一定的共模范围了,太低会沉到水底,这样船都无法再波动了。太高,会使会水溢出而形成水流导致船没法在水面上停留 理论上,A和B应该只是对差模有响应 但实际上,由于船上下颠簸,A和B都晕了,明明只有共模,却产生了幻觉:似乎对方相对自己在动。这就说明,A和B内力较弱,共模抑制比不行啊。 当然,差模电压也不可以太大,否则会导致把A和B拉开。 主要是 “共模是两输入端的算术平均值,差模是直接的同相端与反相端的差值”。 共模电压应当是从源端看进来时,加到放大电路输入端的共同值,差模则是加到放大电路两个输入端的差值。 共模电压有直流的,也有交流的。直流的称为直流共模抑制(比),交流的称为交流共模抑制(比),统称共模抑制(比)。一般

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插

运放差分放大电路原理知识介绍精编

运放差分放大电路原理 知识介绍精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即 C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 2 1 v v v = -=,

= -=C21C v v I 2 1 v A v 放大器双端输出电压 o v I v I v I v C2C1)2 1(2 1v A v A v A v v =--=- 差分放大电路的电压放大倍数为 be c I I I O v d r R A v v A v v A V v β-==== 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。 c d CMR v v A A K = 缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b )所示。在两管发射极接入稳流电阻e R 。使其即有高的差模放大 倍数,又保持了对共模信号或零漂强抑制能力的优点。 在实际电路中,一般都采用正负两个电源供电,如图所示(c )所示。

高速电路 接口电平最佳详解.

高速电路 (由于高速电路有很多参考资料,本文并不侧重全面讲述原理、各种匹配和计算方法,而是侧重评析一些高速电路的优缺点,并对常用电路进行推荐使用。) 一、高速信号简介: 常见的高速信号有几种:ECL电平、LVDS电平、CML电平 其中ECL电平根据供电的不同还分为: ECL――负电源供电(一般为-5.2v) PECL――正5V供电 LVPECL――正3v3供电,还有一种2.5V供电 一般情况下,常见的高速信号都是差分信号,因为差分信号的抗干扰能力比较强,并且自身产生的干扰比较小,能够传输比较高的速率。 二、几种常见的高速信号: 1、PECL电平 从发展的历史来说,ECL信号最开始是采用-5.2V供电的(为何采用负电源供电下面会详细说明),但是负电源供电始终存在不便,后来随着工艺水平的提升,逐渐被PECL 电平(5V供电)所替代,后来随着主流芯片的低电源供电逐渐普及,LVPECL也就顺理成章地替代了PECL电平。

PECL信号的输出门特点: A、输出门阻抗很小,一般只有4~5欧姆左右: a、输出的驱动能力很强;直流电流能达到14mA; b、同时由于输出门阻抗很小,与PCB板上的特征阻抗Z0(一般差分100欧姆),相差 甚远当终端不是完全匹配的时候,信号传到终端后必然有一定的反射波,而反射波传会到源端后,也不能在源端被完全匹配,这样必然发送二次反射。正因为存在这样的二次反射,导致了PECL信号不能传输特别高的信号。一般155M、622M的信号还都在使用PECL/LVPECL信号,到了2.5G以上的信号就不用这种信号了。 c、 B、PECL信号的回流是依靠高电平平面(即VCC)回流的,而不是低电平平面回流。所以, 为了尽可能的避免信号被干扰,要求电源平面干扰比较小。也就是说,如果电源平面干扰很大,很可能会干扰PECL信号的信号质量。 a、这就是ECL信号出现之初为何选用负电源供电的根本原因。一般情况下,我们认为 GND平面是比较干净的平面。因为我们可以通过良好的接地来实现GND的平整(即干扰很小)。 b、从这个角度来说,PECL信号和LVPECL信号都是容易受到电源(VCC)干扰的,所以 必须注意保证电源平面的噪声不能太大。 C、对于输出门来说,P/N二个管脚不管输出是高还是低,输出的电流总和是一定的(即恒 流输出)。恒流输出的特性应该说是所有的差分高速信号的共同特点(LVDS/CML电平也是如此)。这样的输出对电源的干扰很小,因为不存在电流的忽大忽小的变化,这样对电源的干扰自然就比较小。而普通的数字电路,如TTL/CMOS电路,很大的一个弊病就是干扰比较大,这个干扰大的根源之一就是对电源电流的需求忽大忽小,从而导致供电平面的凹陷。 D、PECL的直流电流能达到14mA,而交流电流的幅度大约为8mA(800mV/100ohm),也就 是说PECL的输出门无论是输出高电平还是低电平,都有直流电流流过,换一句话说PECL 的输出门(三极管)始终工作在放大区,没有进入饱和区和截至区,这样门的切换速度就可以做得比较快,也就是输出的频率能达到比较高的原因之一。 下面是PECL电平的输入门结构: 其中分为二种:一种是有输入直流偏置的,一种是没有输入直流偏置,需要外接直流偏置的。 一般情况下,ECL/PECL/LVPECL信号的匹配电阻(差分100欧姆)都是需要外加的,芯片内部不集成这个电阻。 大家可以看到,VCC-1.3V为输入门的中间电平(即输入信号的共模电压),对于LVPECL 来说大约为2V,对于PECL来说为3.7V。 也就是说,我们要判断一个PECL/LVPECL电平输入能否被正常接收,不仅要看交流幅度能否满足输入管脚灵敏度的要求,而且要判断直流幅度是否在正常范围之内(即在VCC-1.3V 左右,不能偏得太大,否则输入门将不能正常接收)。在这一点上与LVDS有很大的差别,务必引起注意。

差分放大器的工作原理

差分放大器的工作原理 差分放大器也叫差动放大器是一种将两个输入端电压的差以一固定增益放大的电子放大器,有时简称为“差放”。差分放大器通常被用作功率放大器(简称“功放”)和发射极耦合逻辑电路 (ECL, Emitter Coupled Logic) 的输入级。 如果Q1 Q2的特性很相似,则V a,V b将同样变化。例如,V a变化+1V,V b也变化+1V,因为输出电压VOUT=V a-V b=0V,即V a的 变化与V b的变化相互抵消。这就是差动放大器可以作直流信号放大的原因。若差放的两个输入为,则它的输出V out为: 其中Ad是差模增益 (differential-mode gain),Ac是共模增益 (common-mode gain)。 因此为了提高信/噪比,应提高差动放大倍数,降低共模放大倍数。二者之比称做共模仰制比(CMRR, common-mode rejection ratio)。共模放大倍数AC可用下式求出: A c=2R l/2R e 通常以差模增益和共模增益的比值共模抑制比 (CMRR, common-mode rejection ratio) 衡量差分放大器消除共模信号的能力: 由上式可知,当共模增益Ac→0时,CMRR→∞。Re越大,Ac就越低,因此共模抑制比也就越大。因此对于完全对称的差分放大器来说,其Ac = 0,故输出电压可以表示为: 所谓共模放大倍数,就是V a,V b输入相同信号时的放大倍数。如果共模放大倍数为0,则输入噪声对输出没有影响。 要减小共模放大倍数,加大R E就行通常使用内阻大的恒流电路来带替R E

差分放大器是普通的单端输入放大器的一种推广,只要将差放的一个输入端接地,即可得到单端输入的放大器。很多系统在差分放大器的一个输入端输入反馈信号,另一个输入端输入反馈信号,从而实现负反馈。常用于电机或者伺服电机控制,稳压电源,测量仪器以及信号放大。在离散电子学中,实现差分放大器的一个常用手段是差动放大,见于多数运算放大器集成电路中的差分电路。 单端输出的差动放大电路 (不平衡输出) 称为单端Single ended或不平衡输出Unbalance Output。 单端较差动输出之幅度小一倍,使用单端输出时,共模讯号不能被抑制,因Vi1与Vi2同时增加,VC1与VC2则减少,而且VC1=VC2,但Vo =VC2,并非于零(产生零点漂移)。 但是加大RE阻值可以增大负回输而抑制输出,并且抑制共模讯号,因Vi1=Vi2时, Ii1及Ii2也同时增加,IE亦上升而令VE升高,这对Q1和Q2产生负回输, 令Q1和Q2之增益减少,即Vo减少。 当差动讯号输入时,Vi1 = -Vi2,IC1增加而IC2减少,总电流IE = IC1 + IC2便不变, 因此VE也不变,加大RE电阻值之电路会将差动讯号放大,不会对Q1及Q2产生负回输 及抑制。 。 b)减低功率消耗(相对纯电阻来说)。 c)提高差动放大之输出电压。 d)提高共模抑制比CMRR。 即差动输入,则IC1升而IC2下降(并且,ΔIC1 = ΔIC2) 因电流镜像原理,IC4 = IC1 故此,Io = IC4 IC2 = IC1 IC2 (ΔIo = 2ΔIC1或2ΔIC2) 这说明了输出电流是IC1和IC2的相差,即将输出变为具有双端差动输出性能的单端输出 (故对共模讯号之抑制有改善因双端差动输出才能产生消除共模讯号作用)。

什么叫差分信号差分信号详解

什么叫差分信号?差分信号详解 什么叫差分信号?差分信号详解 一个差分信号是用一个数值来表示两个物理量之间的差异。从严格意义上来讲,所有电压信号都是差分的,因为一个电压只能是相对于另一个电压而言的。在某些系统里,系统'地'被用作电压基准点。当'地'当作电压测量基准时,这种信号规划被称之为单端的。我们使用该术语是因为信号是用单个导体上的电压来表示的。 另一方面,一个差分信号作用在两个导体上。信号值是两个导体间的电压差。尽管不是非常必要,这两个电压的平均值还是会经常保持一致。我们用一个方法对差分信号做一下比喻,差分信号就好比是跷跷板上的两个人,当一个人被跷上去的时候,另一个人被跷下来了- 但是他们的平均位置是不变的。继续跷跷板的类推,正值可以表示左边的人比右边的人高,而负值表示右边的人比左边的人高。0 表示两个人都是同一水平。 图1 用跷跷板表示的差分信号 应用到电学上,这两个跷跷板用一对标识为V+和V-的导线来表示。当V+>V-时,信号定义成正极信号,当V+

相关文档