文档库 最新最全的文档下载
当前位置:文档库 › 手机camera原理

手机camera原理

手机camera原理
手机camera原理

1 手机摄像头概述

1.1 手机摄像头概述

手机的数码相机功能指的是手机是否可以通过内置或是外接的数码相机进行拍摄静态图片或短片拍摄,作为手机的一项新的附加功能,手机的数码相机功能得到了迅速的发展。

手机摄像头分为内置与外置,内置摄像头是指摄像头在手机内部,更方便。外置手机通过数据线或者手机下部接口与数码相机相连,来完成数码相机的一切拍摄功能。

外置数码相机的优点在于可以减轻手机的重量,而且外置数码相机重量轻,携带方便,使用方法简单。

处于发展阶段的手机的数码相机的性能应该也处于初级阶段,带有光学变焦的手机目前国内销售的还没有这个功能,不过相信随着手机数码相机功能的发展,带有光学变焦的手机也会逐渐上市,但大部分都拥有数码变焦功能。

除此之外,目前手机的数码相机功能主要包括拍摄静态图像,连拍功能,短片拍摄,镜头可旋转,自动白平衡,内置闪光灯等等。手机的拍摄功能是与其屏幕材质、屏幕的分辨率、摄像头像素、摄像头材质有直接关系。

1.2 Camera分类

Camera一般分为Digital camera 数字式与Digital Still Cameras模拟式。

1.2.1 Digital camera 数字式

数字摄像头是直接将摄像单元和视频捕捉单元集成在一起,然后通过串、并口或者USB 接口连接到HOST SYSTEM上。现在CAMERA市场上的摄像头基本以数字摄像头为主,而数字摄像头中又以使用新型数据传输接口的USB数字摄像头为主(独立),在手机上主要是直接通过IO (BTB,USB,MINI USB…)与HOST SYSTEM连接,经过HOST SYSTEM的编辑后以数字信号输出到DISPLAY上显示。目前CAMERA市场上主流的CAMERA全DIGITAL

CAMERA。

1.2.2 Simulant camera 模拟式

模拟摄像头是将视频采集设备产生的模拟视频信号转换成数字信号,进而将其储存到SYSTEM MEMORY里。模拟摄像头捕捉到的视频信号必须经过特定的视频捕捉卡将模拟信号转换成数字模式,并加以压缩后才可以转换到HOST SYSTEM上运用,经HOST SYSTEM

的编辑,通过DISPLAY显示和输出。

1.3 Camera结构

1.3.1 CCD结构

分三层:LENS、分色滤色片、感光层

第1层LENS:CAMERA的成像关键在于SENSOR,为了扩大CCD的采光率必须扩大单一象素的受光面积,在提高采光率的同时会导致画面质量下降。LENS就是相当于在SENSOR 前面增加一副眼镜,SENSOR的采光率就不是由SENSOR的开口面积决定而是由LENS的表面积决定。

第2层分色滤色片:

目前分色滤色片有两种分色方法:RGB原色分色法,就是三原色分色法,几乎所有的人类眼睛可以识别的颜色都可以通过R.G.B来组成,RGB就是通过这三个通道的颜色调节而成。

CMYK补色分色法,由四个通道的颜色配合而成,分别是青(C)、洋红(M)、黄(Y)、黑(K),但是调节出来的颜色不如RGB的颜色多。

第3层感光层SENSOR

CCD的第三层是SENSOR,SENSOR主要是将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片(DSP),将影像还原。

1.3.2 LENS(镜头)

一般CAMERA的镜头结构是有几片透镜组成,分有塑胶透镜(PLASTIC)和玻璃透镜(GLASS),通常CAMERA用的镜头结构有:1P,2P,1G1P,1G3P,2G2P,4G等。透镜越多,成本越高;玻璃透镜比塑胶透镜贵,但是玻璃透镜的成像效果比塑胶透镜的成像效果要好。目前市场上针对MOBILE PHONE配置的CAMERA以1G3P(1片玻璃透镜和3片塑胶透镜组成)为主,目的是降低成本。

1.3.3 SENSOR(图象传感器)

图像传感器(SENSOR)是一种半导体芯片,其表面包含有几十万到几百万的光电二极管。光电二极管受到光照射时,就会产生电荷。目前的SENSOR类型有两种:CCD(Charge Couple Device),电荷耦合器件CMOS(Complementary Metal Oxide Semiconductor),互补金

属氧化物半导体

1.3.4 A/D转换器

A/D转换器即ADC(Analog Digital Converter 模拟数字转换器)ADC的两个重要指标是转换速度和量化精度,由于CAMERA SYSTEM中高分辨率图象的象素量庞大,因此对速度转换器的要求很高。同时量化精度对应的ADC转换器将每一个象素的亮度和色彩值量化为若干的等级,这个等级就是CAMERA的色彩深度。由于CMOS已经具备数字化传输接口,所以不需要A/D4.0 数字信号处理芯片(DSP)数字信号处理芯片DSP(DIGITAL SIGNAL PROCESSING)功能:主要是通过一系列复杂的数学算法运算,对数字图像信号参数进行优化处理,并把处理后的信号通过USB等接口传到PC等设备。

1.3.5 DSP结构框架

1. ISP(image signal processor)(镜像信号处理器)

2. JPEG encoder(JPEG图像解码器)

3. USB device controller(USB设备控制器)

1.4 Camera技术指标

1.4.1 图像压缩方式JPEG

(joint photographic expert group)静态图像压缩方式。一种有损图像的压缩方式。压缩比越大,图像质量也就越差。当图像精度要求不高存储空间有限时,可以选择这种格式。目前大部分数码相机都使用JPEG格式。

1.4.2 图像噪音

指的是图像中的杂点干扰,表现为图像中有固定的彩色杂点。

1.4.3 视角

与人的眼睛成像是相似原理,简单说就是成像范围。

1.4.4 白平衡处理技术(AWB)

要求在不同色温环境下,照白色的物体,屏幕中的图像应也是白色的。色温表示光谱成份,光的颜色。色温低表示长波光成分多。当色温改变时,光源中三基色(红、绿、蓝)的比例会发生变化,需要调节三基色的比例来达到彩色的平衡,这就是白平衡调节的实际。

图象传感器的图象数据被读取后,系统将对其进行针对镜头的边缘畸变的运算修正,然后经过坏像处理后被系统送进去进行白平衡处理(在不同的环境光照下,人类的眼睛可以把一些“白”色的物体都看成白色,是因为人眼进行了修正。但是SENSOR没有这种功能,因此需要对SENSOR输出的信号进行一定的修正,这就是白平衡处理技术)。

1.4.5 电源

好的摄像头内部电源也是保证摄像头稳定工作的一个因素。

1.4.6 彩色深度(色彩位数)

反映对色彩的识别能力和成像的色彩表现能力,就是用多少位的二进制数字来记录三种原色。实际就是A/D转换器的量化精度,是指将信号分成多少个等级,常用色彩位数(bit)表示。彩色深度越高,获得的影像色彩就越艳丽动人。非专业的SENSOR一般是24位;专业型SENSOR至少是36位。24位的SENSOR,感光单元能记录的光亮度值最多有2^8=256级,每一种原色用一个8位的二进制数字来记录,最多记录的色彩是256×256×256约16,77万种。

36位的SENSOR,感光单元能记录的光亮度值最多有2^12=4096级,每一种原色用一个12位的二进制数字来记录,最多记录的色彩是4096×4096×4096约68.7亿种。

1.4.7 输出/输入接口(IO)

串行接口(RS232/422):传输速率慢,为115kbit/s。

并行接口(PP):速率可以达到1Mbit/s。

红外接口(IrDA):速率也是115kbit/s,一般笔记本电脑有此接口。

通用串行总线USB:即插即用的接口标准,支持热插拔。USB1.1速率可12Mbit/s,USB2.0可达480bit/s。

IEEE1394(火线)接口(亦称ilink):其传输速率可达100M~400Mbit/s。

1.4.8 图像格式(image Format/ Color space)

RGB24,I420是目前最常用的两种图像格式。RGB24:表示R、G、B三种颜色各8bit,最多可表现色。

I420:YUV格式之一。

其它格式有: RGB565,RGB444,YUV4:2:2等。

1.4.9 分辨率(Resolution)

所谓分辨率就是指画面的解析度,由多少象素构成的数值越大,图像也就越清晰。分辨率不仅与显示尺寸有关,还会受到显像管点距、视频带宽等因素的影响。我们通常所看到的分辨率都以乘法形式表现的,比如1024*768,其中的1024表示屏幕上水平方向显示的点数,768表示垂直方向的点数。

SXGA(1280 x1024)又称130万像素

XGA(1024 x768)又称80万像素

SVGA(800 x600)又称50万像素

VGA(640x480)又称30万像素(35万是指648X488)

CIF(352x288) 又称10万像素

SIF/QVGA(320x240)

QCIF(176x144)

QSIF/QQVGA(160x120)

1.5 Camera工作原理

景物(SCE)通过镜头(LENS)生成的光学图像投射到图像传感器(Sensor)

表面上,然后转为电信号,经过A/D(模数转换)转换后变为数字图像信号,再送到数字信号处理芯片(DSP)中加工处理,再通过IO接口传输到CPU中处理,通过DISPLAY就可以看到图像了。

1.6 Camera常用术语解释

1.6.1 像素

数码相机的像素数包括有效像素(Effective Pixels)和最大像素(Maximum Pixels)。与最大像素不同的是有效像素数是指真正参与感光成像的像素值,而最高像素的数值是感光器件的真实像素,这个数据通常包含了感光器件的非成像部分,而有效像素是在镜头变焦倍率下所换算出来的值。

对于手机的数码相机像素,目前只能处于初级发展阶段,像素数并不很高,大都在30万-- 200万像素之间。数码相机的像素数越大,所拍摄的静态图像的分辨率也越大,相应的一张图片所占用的空间也会增大。

1.6.2 有效像素

有效像素数英文名称为Effective Pixels。与最大像素不同,有效像素数是指真正参与感光成像的像素值。最高像素的数值是感光器件的真实像素,这个数据通常包含了感光器件的非成像部分,而有效像素是在镜头变焦倍率下所换算出来的值。

数码图片的储存方式一般以像素(Pixel)为单位,每个象素是数码图片里面积最小的单位。像素越大,图片的面积越大。要增加一个图片的面积大小,如果没有更多的光进入感光器件,唯一的办法就是把像素的面积增大,这样一来,可能会影响图片的锐力度和清晰度。所以,在像素面积不变的情况下,数码相机能获得最大的图片像素,即为有效像素。

1.6.3 最大像素

最大像素英文名称为Maximum Pixels,所谓的最大像素是经过插值运算后获得的。插值运算通过设在数码相机内部的DSP芯片,在需要放大图像时用最临近法插值、线性插值等运算方法,在图像内添加图像放大后所需要增加的像素。插值运算后获得的图像质量不能够与真正感光成像的图像相比。以最大像素拍摄的图片清晰度比不上以有效像素拍摄的。

1.6.4 传感器

作为手机新型的拍摄功能,内置的数码相机功能与我们平时所见到的低端的(30万--200万像素)数码相机相同。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码相机的“胶卷”就是其成像感光器件,而且是与相机一体的,是数码相机的心脏。感光器是数码相机的核心,也是最关键的技术。目前手机数码相机的核心成像部件有两种:一种是广泛使用的CCD(电荷藕合)元件;另一种是CMOS(互补金属氧化物导体)器件。

1.6.5 CCD

电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。

CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。CCD和传统底片相比,CCD更接近于人眼对视觉的工作方式。只不过,人眼的视网膜是由负责光强度感应的杆细胞和色彩感应的锥细胞,分工合作组成视觉感应。

CCD经过长达35年的发展,大致的形状和运作方式都已经定型。CCD的组成主要是由一个类似马赛克的网格、聚光镜片以及垫于最底下的电子线路矩阵所组成。目前有能力生产CCD的公司分别为:SONY、Philps、Kodak、Matsushita、Fuji和Sharp,大半是日本厂商。

1.6.6 CMOS

互补性氧化金属半导体CMOS(Complementary Metal-Oxide Semiconductor)和CCD一样同为在数码相机中可记录光线变化的半导体。CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点,这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。

1.6.7 CCM

CCM其实就是CMOS镜头,只是CCM的画质比CMOS高一点,拍照时感应速度也较快,但以照片品质来说还是逊色于CCD镜头,在实际拍摄中也可以感觉出来,取景速度非常快,就算迅速移动手机摄像头时,屏幕都可以迅速显示所捕抓的画面,过程非常流畅,几

乎没有什么延迟。

1.6.8 CCD与CMOS的不同

由两种感光器件的工作原理可以看出,CCD的优势在于成像质量好,但是由于制造工艺复杂,只有少数的厂商能够掌握,所以导致制造成本居高不下,特别是大型CCD,价格非常高昂。

在相同分辨率下,CMOS价格比CCD便宜,但是CMOS器件产生的图像质量相比CCD来说要低一些。到目前为止,市面上绝大多数的消费级别以及高端数码相机都使用CCD作为感应器;

CMOS感应器则作为低端产品应用于一些摄像头上,若有哪家摄像头厂商生产的摄想头使用CCD感应器,厂商一定会不遗余力地以其作为卖点大肆宣传,甚至冠以“数码相机”之名。一时间,是否具有CCD感应器变成了人们判断数码相机档次的标准之一。

CMOS影像传感器的优点之一是电源消耗量比CCD低,CCD为提供优异的影像品质,付出代价即是较高的电源消耗量,为使电荷传输顺畅,噪声降低,需由高压差改善传输效果。但CMOS影像传感器将每一画素的电荷转换成电压,读取前便将其放大,利用3.3V的电源即可驱动,电源消耗量比CCD低。

CMOS影像传感器的另一优点,是与周边电路的整合性高,可将ADC与讯号处理器整合在一起,使体积大幅缩小,例如,CMOS影像传感器只需一组电源,CCD却需三或四组电源,由于ADC与讯号处理器的制程与CCD不同,要缩小CCD套件的体积很困难。

但目前CMOS影像传感器首要解决的问题就是降低噪声的产生,未来CMOS影像传感器是否可以改变长久以来被CCD压抑的宿命,往后技术的发展是重要关键。感光器件的发展CCD 是1969年由美国的贝尔研究室所开发出来的。进入80年代,CCD影像传感器虽然有缺陷,由于不断的研究终于克服了困难,而于80年代后半期制造出高分辨率且高品质的CCD。

到了90年代制造出百万像素之高分辨率CCD,此时CCD的发展更是突飞猛进,算一算CCD 发展至今也有二十多个年头了。进入90年代中期后,CCD技术得到了迅猛发展,同时,CCD 的单位面积也越来越小。但为了在CCD面积减小的同时提高图像的成像质量,SONY与1989年开发出了SUPER HAD CCD,这种新的感光器件是在CCD面积减小的情况下,依靠CCD 组件内部放大器的放大倍率提升成像质量。以后相继出现了NEW STRUCTURE CCD、EXVIEW HAD CCD、四色滤光技术(专为SONY F828所应用)。而富士数码相机则采用了超级CCD(Super CCD)、Super CCD SR。对于CMOS来说,具有便于大规模生产,且速度快、成本较低,将是数字相机关键器件的发展方向。

目前,在CANON等公司的不断努力下,新的CMOS器件不断推陈出新,高动态范围CMOS 器件已经出现,这一技术消除了对快门、光圈、自动增益控制及伽玛校正的需要,使之接近了CCD的成像质量。

另外由于CMOS先天的可塑性,可以做出高像素的大型CMOS感光器而成本却不上升多少。相对于CCD的停滞不前相比CMOS作为新生事物而展示出了蓬勃的活力。作为数码相机的核心部件,CMOS感光器以已经有逐渐取代CCD感光器的趋势,并有希望在不久的将来成为主流的感光器。

影像感光器件因素对于数码相机来说,影像感光器件成像的因素主要有两个方面:一是感光器件的面积;二是感光器件的色彩深度。感光器件面积越大,成像较大,相同条件下,能记录更多的图像细节,各像素间的干扰也小,成像质量越好。但随着数码相机向时尚小巧化的方向发展,感光器件的面积也只能是越来越小。

除了面积之外,感光器件还有一个重要指标,就是色彩深度,也就是色彩位,就是用多少位的二进制数字来记录三种原色。非专业型数码相机的感光器件一般是24位的,高档点的采样时是30位,而记录时仍然是24位,专业型数码相机的成像器件至少是36位的,据说已经有了48位的CCD。

对于24位的器件而言,感光单元能记录的光亮度值最多有2^8=256级,每一种原色用一个8位的二进制数字来表示,最多能记录的色彩是256x256x256约16,77万种。对于36位的器件而言,感光单元能记录的光亮度值最多有2^12=4096级,每一种原色用一个12位的二进制数字来表示,最多能记录的色彩是4096x4096x4096约68.7亿种。举例来说,如果某一被摄体,最亮部位的亮度是最暗部位亮度的400倍,用使用24位感光器件的数码相机来拍摄的话,如果按低光部位曝光,则凡是亮度高于256备的部位,均曝光过度,层次损失,形成亮斑,如果按高光部位来曝光,则某一亮度以下的部位全部曝光不足,如果用使用了36位感光器件的专业数码相机,就不会有这样的问题。

1.6.9 闪光灯

闪光灯的英文学名为Flash Light。闪光灯也是加强曝光量的方式之一,尤其在昏暗的地方,打闪光灯有助于让景物更明亮。使用闪光灯也会出现弊端,例如在拍人物时,闪光灯的光线可能会在眼睛的瞳孔发生残留的现象,进而发生「红眼」的情形,因此许多相机商都将"消除红眼"这项功能加入设计,在闪光灯开启前先打出微弱光让瞳孔适应,然后再执行真正的闪光,避免红眼发生。中低档数码相机一般都具备三种闪光灯模式,即自动闪光、消除红眼与关闭闪光灯。再高级一点的产品还提供“强制闪光”,甚至“慢速闪光”功能。

1.6.10 变焦

变焦分两种,一种是数字变焦;一种是光学变焦。作用与手机上,多数都采用数码变焦。

1.6.11 数字变焦

数字变焦也称为数码变焦,英文名称为Digital Zoom,数码变焦是通过数码相机内的处理器,把图片内的每个象素面积增大,从而达到放大目的。这种手法如同用图像处理软件把图片的面积改大,不过程序在数码相机内进行,把原来CCD影像感应器上的一部份像素使用"插值"处理手段做放大,将CCD影像感应器上的像素用插值算法将画面放大到整个画面。

与光学变焦不同,数码变焦是在感光器件垂直方向向上的变化,而给人以变焦效果的。在感

光器件上的面积越小,那么视觉上就会让用户只看见景物的局部。但是由于焦距没有变化,所以,图像质量是相对于正常情况下较差。通过数码变焦,拍摄的景物放大了,但它的清晰度会有一定程度的下降,所以数码变焦并没有太大的实际意义。不过索尼独创“智能数码变焦”,据说该先进技术,可以使图像在数码变焦之后仍然保持一定的清晰度。

1.6.12 光学变焦

光学变焦英文名称为Optical Zoom,数码相机依靠光学镜头结构来实现变焦。数码相机的光学变焦方式与传统35mm相机差不多,就是通过镜片移动来放大与缩小需要拍摄的景物,光学变焦倍数越大,能拍摄的景物就越远。光学变焦是通过镜头、物体和焦点三方的位置发生变化而产生的。当成像面在水平方向运动的时候,如下图,视觉和焦距就会发生变化,更远的景物变得更清晰,让人感觉像物体递进的感觉。

显而易见,要改变视角必然有两种办法,一种是改变镜头的焦距。用摄影的话来说,这就是光学变焦。通过改变变焦镜头中的各镜片的相对位置来改变镜头的焦距。另一种就是改变成像面的大小,即成像面的对角线长短在目前的数码摄影中,这就叫做数码变焦。

实际上数码变焦并没有改变镜头的焦距,只是通过改变成像面对角线的角度来改变视角,从而产生了“相当于”镜头焦距变化的效果。如今的数码相机的光学变焦倍数大多在2倍-5倍之间,即可把10米以外的物体拉近至5-3米近;也有一些数码相机拥有10倍的光学变焦效果。

家用摄录机的光学变焦倍数在10倍~22倍,能比较清楚的拍到70米外的东西。使用增倍镜能够增大摄录机的光学变焦倍数。如果光学变焦倍数不够,我们可以在镜头前加一增倍镜,其计算方法是这样的,一个2倍的增距镜,套在一个原来有4倍光学变焦的数码相机上,那么这台数码相机的光学变焦倍数由原来的1倍、2倍、3倍、4倍变为2倍、4倍、6倍和8倍,即以增距镜的倍数和光学变焦倍数相乘所得。

1.6.13 连拍

连拍功能英文学名为continuous shooting,是通过节约数据传输时间来捕捉摄影时机。连拍模式通过将数据装入数码相机内部的高速存储器(高速缓存),而不是向存储卡传输数据,可以在短时间内连续拍摄多张照片。由于数码相机拍摄要经过光电转换,a/d转换及媒体记录等过程,其中无论转换还是记录都需要花费时间,特别是记录花费时间较多。

因此,所有数码相机的连拍速度都不很快。连拍一般以帧为计算单位,好像电影胶卷一样,每一帧代表一个画面,每秒能捕捉的帧数越多,连拍功能越快。

目前,数码相机中最快的连拍速度为7帧/秒,而且连拍3秒钟后必须再过几秒才能继续拍摄。当然,连拍速度对于摄影记者和体育摄影受好者是必须注意的指标,而普通摄影场合可以不必考虑。

一般情况下,连拍捕捉的照片,分辨率和质量都会有所减少。有些数码相机在连拍功能上可以选择,拍摄分辨率较小的照片,连拍速度可以加快,反之,分辨率大的照片的连拍速度

会相对减缓。通过连续快拍模式,只须轻按按钮,即可连续拍摄,将连续动作生动地记录下来。

1.6.14 自动白平衡

白平衡英文名称为White Balance。物体颜色会因投射光线颜色产生改变,在不同光线的场合下拍摄出的照片会有不同的色温。例如以钨丝灯(电灯泡)照明的环境拍出的照片可能偏黄,一般来说,CCD没有办法像人眼一样会自动修正光线的改变。白平衡就是无论环境光线如何,让数码相机默认“白色”,就是让他能认出白色,而平衡其他颜色在有色光线下的色调。

颜色实质上就是对光线的解释,在正常光线下看起来是白颜色的东西在较暗的光线下看起来可能就不是白色,还有荧光灯下的"白"也是"非白"。对于这一切如果能调整白平衡,则在所得到的照片中就能正确地以"白"为基色来还原其他颜色。现在大多数的商用级数码相机均提供白平衡调节功能。正如前面提到的白平衡与周围光线密切相关,因而,启动白平衡功能时闪光灯的使用就要受到限制,否则环境光的变化会使得白平衡失效或干扰正常的白平衡。

1.6.15 视频拍摄

短片拍摄功能即数码相机具备拍摄视频文件的功能。有别于DV(数码摄像机),数码相机只可以把视频文件存放在记忆卡里面,由于记忆体的空间有限,所以视频文件的质量跟大小都比较差。使用移动电话所拍摄的视频,一般是采用128×96与176×144大小两种分辨率,根据手机内存而定,相对来说支持扩展存储的手机拍摄视频时间也长。

2手机摄像头分析

2.1摄像头原理简析

OmniVision 技术有限公司是世界上为大批量影像市场提供单芯片摄像机解决方案的主要供应商。其独有的CameraChips TM 技术,OmniVision集成影像采集和处理功能于单一芯片中,只需一个镜头即可提供一个完整的影像解决方案。不同于其它多芯片影像传感器解决方案,OmniVision 的CameraChips TM 不需要外接处理器即可以输出高质量的静态图片和视频图像。从而得到功耗更低、体积更小、外围功能更强、比竞争对手价格更低的解决方案。我们的知识产权包括提高灵敏度、扩展动态范围、提高影像分辨率、显著减少噪声的独有技术。减少噪声进一步提高了灵敏度,又扩展了OmniVision CameraChips TM 可以应用的场合。

SCCB是OmnVision公司开发的一种双向三线的同步串行总线,引线接口有使能线SCCB_E,是串行时钟信号总线SIO_C,串行数据信号总线SIO_D。SCCB控制总线功能的实现完全是依靠SCCE、SIO_C、SIO_D三条总线上电平的状态以及三者之间的相互配合实现的。

控制总线规定的条件如下:当SCCE有高电平变到低电平时,数据传输开始。当SCCE有低电平转化为高电平时,数据传输结束。为了避免传送无用的信息位,分别在传输开始之前、传输结束之后将SIO_D设置为高电平。在数据传输期间,SCCE始终保持低电平,SIO_D 上数据的传输受SIO_C的控制。当SIO_C为低电平时,SIO_D上数据有效,SIO_D为稳定数据状态,SIO_C每出现一正脉冲,将传送一位数据。

SCCB_E低电平有效,如果将其接地,那么SIO_C,SIO_D的工作方式十分类似于I2C总线。与I2C总线一样,在SCCB总线中主设备发送一个字节后,从设备需要将数据线SIO_D拉低作为应答信号(ACK)返回给主设备,才能表示发送成功。值得注意的是由于CMOS器件所能承受的灌电流很低,所以接至时钟线SIO_C、数据线SIO_D的上拉电阻阻值应在3~5 kΩ之间,并且对于主设备发送参数完毕后,需立即释放数据线SIO_D以保证其处于悬空状态,即主设备在送完一个字节后立即执行一条指令,使数据线SIO_D发出读取信号的操作。

摄像头基础知识培训

深圳市银之杰科技股份有限公司 摄像头基础知识培训 一.摄像头种类 (3) 二.USB摄像头工作原理 (3) 三.摄像头零件解构 (4) 1、图像传感器SENSOR (4) 2、数字信号处理芯片DSP (5) 3、镜头(LENS) (5) 4、USB线 (7) 四.摄像头驱动 (9) 五.摄像头的一些名词分辩率 (9) 1、分辨率 (9) 2、感光面积 (10) 3、灯光条纹(属于软件问题) (10) 4、景深 (12) 5、清晰度 (13) 6、坏点(属于硬件问题) (13) 7、色彩还原 (14)

8、FOV (14) 9、帧率 (15) 10、视频格式 (16) 11、失真(畸变) (17) 12、白平衡 (18) 13、曝光 (19) 14、带宽 (20) 15、DPI (21) 16、拍照方式 (22) 17、错误码 (23)

一.摄像头种类 摄像头是一种光电转换设备,种类主要包括USB 摄像头(USB 接口),手机摄像头(DVP&MIPI 接口),模拟摄像头(AV 接口,主要用于监控,车载等),网络摄像头(RJ45&无线接口,主要用于监控)等。 USB 摄像头手机摄像头模拟摄像头网络摄像头 二.USB 摄像头工作原理 摄像头的工作原理大致为: 景物通过镜头(LENS)生成的光学图像投射到图像传感器(SENSOR)表面上,然后转为电信号,经过A/D(模数转换)转换后变为数字图像信号,再送到数字信号处理芯片(DSP)中加工处理,再通过USB 接口传输到电脑中处理,通过显示器就可以看到图像了。

三.摄像头零件解构 1、图像传感器SENSOR 在摄像头的三大结构组件中,我认为最重要的就是图像传感器了,因为感光器对成像质量起着决定性的作用,如果图像传感器效果不怎么好,无论后端的DSP和电脑端应用软件再强大,也不可能让图像效果有大的提升,而一个效果好的图像传感器采集到的图像甚至可以不需要后端处理。 感光芯片可以分为两类: CCD(charge couple device):电荷耦合器件 CMOS(complementary metal oxide semiconductor):互补金属氧化物半导体 CCD的价格比较高,多用在网络摄像头,车载摄像头等监控设备上,还有就是数码相机,而CMOS摄像头则是非常主流(性能,包括价格)的大众级产品,从理论上说,CCD 传感器在灵敏度、分辨率、噪声控制等方面都优于CMOS传感器,而CMOS传感器则具有低成本、低功耗、以及高整合度的特点。 简单地讲,就是CCD摄像头成像质量会更好,图像明锐通透、细节丰富,色彩还原度好,曝光准确。 之前的CMOS都是属于前照式,但随着科技的发展,现在的CMOS也发展出了背照式CMOS,背照式CMOS的制作工艺和前照式不同,能增大感光量,提高拍摄灵敏度,显著提高低光照条件下的拍摄效果,像现在我们的手机和数码相机800万及以上的摄像头,都已经采用了背照式。

手机拍照内存大学问:摄像头参数解读

手机拍照内存大学问:摄像头参数解读 随着智能手机的普及和不断升级,用户对于手机拍照画质也就越来越高,好的拍照画质就离不开出色的手机摄像头配置,而目前市面上手机摄像头的规格众多,参数各不相同,怎么去看这些名词和参数来挑选好的拍照手机呢?下面让我们一起来简单学习一下。 2000年11月,夏普联合日本当时第三大移动运营商J-photo推出了全球第一款拍照手机,像素仅有11万。时至今日,手机拍照已经成为手机必不可少的一个功能,手机摄像头历经多年发展,也已经不可同日而语。 随着智能手机的普及和不断升级,用户对于手机拍照画质也就越来越高,好的拍照画质就离不开出色的手机摄像头配置,而目前市面上手机摄像头的规格众多,参数各不相同,怎么去看这些名词和参数来挑选好的拍照手机呢?下面让我们一起来简单学习一下。 手机摄像头的结构和工作原理 拍摄景物通过镜头,将生成的光学图像投射到传感器上,然后光学图像被转换成电信号,电信号再经过模数转换变为数字信号,数字信号经过DSP加工处理,再被送到手机处理器中进行

处理,最终转换成手机屏幕上能够看到的图像。 手机摄像头的简单结构 手机摄像头的工作流程 由于手机摄像头的工作原理基本都相同,对于我们选择好的手机摄像头并不产生影响,我们只需要简单了解即可。 影响手机摄像头拍照画质的几个因素 1、传感器的类型 传感器是决定手机摄像头成像品质最为重要的一部份,也经常被手机厂商作为宣传的重点,厂商也习惯采用传感器的分类来对手机摄像头的类型进行分类。 常见的摄像头传感器类型主要有两种,一种是CCD传感器,一种是CMOS传感器。 CCD的优势在于成像质量好,但是制造工艺复杂,成本居高不下,特别是大型CCD价格非常高昂,且耗电高,并不适合在移动设备上使用。在相同分辨率下,CMOS价格比CCD便宜,

一般手机摄像头测试项目以及方法

一般手机摄像头测试项目以及方法 对于镜头的测试有: 1.杂光(仪器DNP VIEWER和EIAJ test chart F) 2. Resolution解析度(Light Box和ISO 12233 chart) 3. Distortion畸变(仪器DNP VIEWER和EIAJ test chart I) 4. Flare(点光源都能测试) 5. Light leaking漏光(A light source) 对于CMOS Image Sensor的测试有: 1. AWB白平衡(Light box和GretagMacbeth ColorChecker和IMATEST) 2. Gray灰阶(Light box和KODAK testing card) 3.动态范围(Light box和ISO14524动态范围测试卡) 4. AE曝光收敛范围(Light source Box) 5.色彩还原Color(DNP,color bar,IMATEST) 6.工频干扰Flicker(50,60 HZ光源) 7.暗角测试Lens shaing (另一种说法是相对照度,Relative illumination,一般直接对着DNP看就行) 8.坏点&黑点测试(defect pixel and particle,一般的图象软件都有查找坏点的功能) 9.信号噪点比(SNR,用IMATEST和GretagMacbeth ColorChecker可以得到精确数值) 注: 括号外的一般是项目名称,括号内的是测试仪器,软件等。

暂时想到这么多,更加详细的图片和说明马上送上[欢迎大家补充~ EIAJ test chart F 此主题相关图片如下: 如果有杂光散光现象,那么十字架就会拍成一个圆圈。 杂光的造成,镜头制作的不均匀,光的折射有偏差。 对最后成像的影响,造成图片在对着光源的时候有一种模糊朦胧的感觉。普通场景下一般差别不大。 为了更好的说明,我提供两个图片进行说明。 不同lens的不同效果图。其中一个有明显的散光。 ISO 12233 chart 这个就不介绍了,自己看资料: 数码相机分辨率测试方法CIPA日本.pdf EIAJ test chart I 此主题相关图片如下: 一般性的要求 图像高度技术要求 0.5y≤3% 0.85y≤3% 关于Flare 我试过很多次去改善Flare,但是没有效果。如果有这方面的达人可以提供资料最好。 如何测试:

手机摄像头参数

手机摄像头参数 1.结构、原理 2.像素, 像素是构成数码影像的基本单位,通常以像素的每英寸的PPI(pixels per inch)为单位来表示影像分辨率的大小。 从硬件方面来讲,如果传感器面积不变,而单纯提高像素,高像素密度的传感器相对对于低像素密度的传感器在拍照时更容易产生大量噪点 像素≠成像质量; 像素密度大→噪点多→影响清晰度 改善方法:增大单个感光像素面积→减小像素密度 3.传感器, CCD(成像好,价格高,功耗大,不适合手机) CMOS(大部分手机摄像头)分为:普通式、背照式、堆栈式。 普通与背照式区别 背照式对换了感光层与基质的位置,使感光层直接与透光面接触,减少了中间环

节光线的损失,并且在透光面上每个对应的像素表面都改为透镜的形式,更集中地汇聚了外界的光线到对应的像素点上,减少了像素之间多余的光线干扰(也简称增加了开口率)。在弱光环境下,提高约30%—50%的感光能力,能够在弱光下拍摄更高的质量的照片。(如下图) 搭载背照式摄像头的手机有 iPhone 4/4S、小米2S、魅族MX2、索尼LT26i等(如下图)

背照式与堆栈式区别 堆栈式实际是背照式的改良,原来传感器里的信号处理电路放到了原来的基板上(如下图) 优点; 1、在较小的芯片尺寸上行成大量的像素点,体积做到更小; 2、加入了RGBW的编码技术,就是是由原来的 R(红),G(绿),B(蓝) 三原色像素点中再加入W(白)像素点来提升画质, 3、堆栈式传感器更加支持硬件HDR功能,能够精确地单独控制每一 行像素的曝光时间,从而在传感器层面上就实现原生的高动态范 围渲染,有别于之前的软件HDR技术,照片生成的速度更快,而 且可以实现HDR录像。 使用堆栈式首款OPPO Find 5(如下图) 4、镜头参数 4.1焦距, 焦距是指从镜头的透镜中心到成像面(也就是感光元件)的距离(如下图)。

免费的手机摄像头分辨率测试方案

免费的手机摄像头分辨率测试方案 鉴于很多网友询问手机摄像头不清晰的问题,爱色影为大家提供一种免费的测试手机摄像头清晰度的方法;该方法简单有效,不需要任何费用,有兴趣的朋友可以按下面的方案试一试。^_^ 首先,简单说明一下,清晰度、分辨率、解析度的差别。 1.清晰度是数字图像成像质量常用的一种表述方式,常用单位是LP/MM(每毫米显示成像线数)。 2.分辨率通常分为显示分辨率与图像分辨率两类。 显示分辨率是指图像(或显示屏)的精密度,是指图像(或显示屏)所包含的像素有多少。常用单位是px(像素)。 比如我们常说的800W像素的镜头就是指显示分辨率。 图像分辨率则是单位英寸中所包含的像素点数。描述图像分辨率的单位有:(dpi点每英寸)、lpi(线每英寸)和ppi(像素每英寸)。 3.解析度通常就是指图像分辨率,常用单位是lpi(线每英寸)、lines(电视线)。 通常情况下,非专业场合所说的清晰度、解析度和图像分辨率是一个概念。而显示分辨率则是另外一个概念。 现在我们来说手机摄像头;一般手机会注明摄像头分辨率是多少,如1300万像素;很明显这是摄像头的显示分辨率。显示分辨率并不能说明手机的清晰度,这就是为什么iPhone 5s 800W像素的摄像头比很多1000W像素以上的手机拍出的照片更清晰。真正决定摄像头成像质量的是图像分辨率(解析度)。 为了不被奸商们欺骗,现在我们来看看自己的手机的真实分辨率(图像分辨率)吧。 下面开始做测试: 一、我们需要下载一个摄像头清晰度简易测试卡图纸。 (图一) 二、用普通打印机打印该图纸,粘贴到光源充足的位置。如图:

(图二) 三、 用手机拍摄该测试图,如图三;保证拍摄的楔形线上端可以分清黑白边界,下端无法分清黑白边界, 如图四: (图三) 图四

手机摄像头sensor基础知识

手机摄像头sensor基础知识 作为手机新型的拍摄功能,内置的数码相机功能与我们平时所见到的低端的(10万-130万像素)数码相机相同。与传统相机相比,传统相机使用“胶卷”作为 其记录信息的载体,而数码摄像头的“胶卷”就是其成像感光器件,是数码拍摄的心脏。感光器是摄像头的核心,也是最关键的技术。 摄像头按结构来分,有内置和外接之分,但其基本原理是一样的。 按照其采用的感光器件来分,有CCD和CMOS之分: CCD(Charge CoupledDevice,电荷耦合组件)使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。它就像传统相机的底片一样的感光系统,是感应光线的电路装置,你可以将它想象成一颗

颗微小的感应粒子,铺满在光学镜头后方,当光线与图像从镜头透过、投射到CCD表面时,CCD就会产生电流,将感应到的内容转换成数码资料储存起来。CCD像素数目越多、单一像素尺寸越大,收集到的图像就会越清晰。因此,尽管CCD数目并不是决定图像品质的唯一重点,我们仍然可以把它当成相机等级的重要判准之一。目前扫描机、摄录放一体机、数码照相机多数配备CCD。 CCD经过长达35年的发展,大致的形状和运作方式都已经定型。CCD的组成主要是由一个类似马赛克的网格、聚光镜片以及垫于最底下的电子线路矩阵所组成。目前有能力生产CCD的公司分别为:SONY、Philps、Kodak、Matsushita、Fuji和Sharp,大半是日本厂商。 CMOS(Complementary etal-OxideSemiconductor,附加金属氧化物半导体组件)和CCD一样同为在数码相机中可记录光线变化的半导体。CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS 上共存着带N(带–电)和P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点,这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而

手机摄像头行业分析

目录 1、手机镜头产业链及发展历程 (1) 1.1手机镜头工作原理 (1) 1.2手机镜头产业链 (1) 1.3镜头产业技术演进历程 (3) 1.4手机摄像头发展趋势---注重画质与轻薄化 (5) 2、镜头行业市场规模情况 (7) 2.1近几年镜头市场概况 (7) 2.2近年来市场容量快速增长的因素分析 (10) 2.2.1因素一:搭载率上升与出货量上升 (10) 2.2.2因素二:高像素使用比例的提升 (10) 2.3棱镜市场规模测算 (12) 3、镜头产业链主要厂家与最新动态 (13) 3.1蓝玻璃滤光片市场 (13) 3.1.1 蓝玻璃滤光片的快速发展 (13)

3.1.2 蓝玻璃滤光片的相关公司情况 (14) 3.2棱镜市场 (17) 3.2.1片数增加、工艺难度变高 (17) 3.2.2棱镜厂商情况 (17) 3.3 CMOS传感器市场 (19) 3.3.1 产业集中化,寡头优势明显 (19) 3.3.2 四大厂商垄断市场,其他厂商难以介入 (20) 3.4 镜头模组市场 (21) 3.4.1模组封装发展趋势 (21) 3.4.2模组市场三大阵营技术差距明显 (25) 概要 2012年,手机镜头中棱镜的市场规模约为70亿元,其中5M以上的市场占70%左右,且有持续上升的趋势。算上其他用途的棱镜头(平板电脑、汽车、电视等)市场约100亿。 根据IDC预计,2011-2016全球2011-2016年智能手机的出货量综合增长率约20.5%。中低端的智能手机增长率快于高端手机。如果算上搭载率的提升以及高像素的使用比例提升,手机镜头中棱镜的市场规模预计复合增长率预计在30%以上,2016

一般手机摄像头测试项目以及方法

一般手机摄像头测试项目 以及方法 The Standardization Office was revised on the afternoon of December 13, 2020

一般手机摄像头测试项目以及方法 对于镜头的测试有: 1.杂光(仪器DNP VIEWER和EIAJ test chart F) 2. Resolution解析度(Light Box和ISO 12233 chart) 3. Distortion畸变(仪器DNP VIEWER和EIAJ test chart I) 4. Flare(点光源都能测试) 5. Light leaking漏光(A light source) 对于CMOS Image Sensor的测试有: 1. AWB白平衡(Light box 和GretagMacbeth ColorChecker和IMATEST) 2. Gray灰阶(Light box和KODAK testing card) 3.动态范围(Light box 和ISO14524动态范围测试卡) 4. AE曝光收敛范围(Light source Box) 5.色彩还原Color(DNP,color bar,IMATEST) 6.工频干扰Flicker(50,60 HZ光源) 7.暗角测试Lens shaing (另一种说法是相对照度,Relative illumination,一般直接对着DNP看就行) 8.坏点&黑点测试(defect pixel and particle,一般的图象软件都有查找坏点的功能) 9.信号噪点比(SNR,用IMATEST和GretagMacbeth ColorChecker可以得到精确数值) 注:括号外的一般是项目名称,括号内的是测试仪器,软件等。 暂时想到这么多,更加详细的图片和说明马上送上欢迎大家补充~ EIAJ test chart F 此主题相关图片如下: 如果有杂光散光现象,那么十字架就会拍成一个圆圈。 杂光的造成,镜头制作的不均匀,光的折射有偏差。 对最后成像的影响,造成图片在对着光源的时候有一种模糊朦胧的感觉。普通场景下一般差别不大。 为了更好的说明,我提供两个图片进行说明。 不同lens的不同效果图。其中一个有明显的散光。 ISO 12233 chart 这个就不介绍了,自己看资料:数码相机分辨率测试方法CIPA.pdf EIAJ test chart I

手机摄像头参数解析

手机摄像头参数解析-CAL-FENGHAI.-(YICAI)-Company One1

手机摄像头参数解析 2000年11月,夏普联合日本当时第三大移动运营商J-photo推出了全球第一款拍照手机,像素仅有11万。时至今日,手机拍照已经成为手机必不可少的一个功能,手机摄像头历经多年发展,也已经不可同日而语。 随着智能手机的普及和不断升级,用户对于手机拍照画质也就越来越高,好的拍照画质就离不开出色的手机摄像头配置,而目前市面上手机摄像头的规格众多,参数各不相同,怎么去看这些名词和参数来挑选好的拍照手机呢下面让我们一起来简单学习一下。 手机摄像头的结构和工作原理 拍摄景物通过镜头,将生成的光学图像投射到传感器上,然后光学图像被转换成电信号,电信号再经过模数转换变为数字信号,数字信号经过DSP加工处理,再被送到手机处理器中进行处理,最终转换成手机屏幕上能够看到的图像。

手机摄像头的简单结构 手机摄像头的工作流程 由于手机摄像头的工作原理基本都相同,对于我们选择好的手机摄像头并不产生影响,我们只需要简单了解即可。 影响手机摄像头拍照画质的几个因素 1、传感器的类型 传感器是决定手机摄像头成像品质最为重要的一部份,也经常被手机厂商作为宣传的重点,厂商也习惯采用传感器的分类来对手机摄像头的类型进行分类。 常见的摄像头传感器类型主要有两种,一种是CCD传感器,一种是CMOS传感器。 CCD的优势在于成像质量好,但是制造工艺复杂,成本居高不下,特别是大型CCD价格非常高昂,且耗电高,并不适合在移动设备上使用。在相同分辨率下,CMOS价格比CCD便宜,但图像质量相比CCD来说要低一些。 CMOS影像传感器相对CCD具有耗电低的优势,加上随着工艺技术的进步,CMOS的画质水平也不断地在提高,所以目前市面上的手机摄像头都采用CMOS传感器。

手机摄像头模组生产工艺的SMT流程及SMT应用分析(1)

手机摄像头模组生产工艺的SMT流程及SMT应用分析 摘要 随着通信技术的不断扩延,手机已成为人们生活、工作、学习、娱乐不可或缺的工具。而手机摄像头模组是手机中非常重要的组件之一,其品质的好坏直接影响手机整体品质的高低。因此在手机摄像头模组生产的过程中每一步都是要严格把关的,不能有丝毫的懈怠。在手机摄像头模组中,FPC软电路板是决定手机照相生成图片的关键组件之一,因此它的生产工艺及质量好坏显得尤为重要。 基于此,首先简单介绍了手机摄像头模组原理以及SMT技术在手机摄像头模组生产工艺中的应用,着重阐述了手机摄像头模组FPC软电路板的改良设计和SMT生产工艺流程及产品质量分析。根据手机摄像头模组FPC软电路板的具体要求,合理进行SMT技术指标优化,分析研究了手机摄像头模组再流焊SMT焊接温度分布曲线。针对FPC软电路板产品设置了AIO(automatic optical inspection)检测及ICT在线测试方法。 关键字:手机摄像头模组 SMT AIO检测 ICT在线测试

Mobile phone camera module production technology of SMT processes and SMT application ABSTRACT Summary as communication technologies continues expansion, mobile phone has become the people's life, work, learn, play an indispensable tool. Mobile phone camera module is one of the very important components in the mobile phone, its quality directly affect the overall level of quality phones. In the mobile phone camera module production at every step in the process is to strictly, there can be no slack. Mobile phone camera module in the FPC flexible circuit board is to determine the key components of the camera phone picture, therefore its production process and the quality is particularly important. Based on this, the first simply introduced the mobile phone camera module principle and SMT technology and its application in mobile phone camera module production, focusing on mobile phone camera module is described FPC flexible circuit board design and analysis of SMT production process and product quality. According to mobile phone camera module FPC flexible circuit board requirements, reasonable SMT technical specifications, analysis of mobile phone camera module for reflow SMT soldering temperature distribution curves.FPC flexible circuit board set AIO products (automatic optical inspection) test online test methods and ICT. Keyword: mobile phone camera module;SMT;AIO ICT;on-line test

手机摄像头调试经验分享

手机摄像头调试经验分享 我这里要介绍得就就是CMOS摄像头得一些调试经验。 首先,要认识CMOS摄像头得结构。我们通常拿到得就是集成封装好得模组,一般由三个部分组成:镜头、感应器与图像信号处理器构成。一般情况下,集成好得模组我们只瞧到外面得镜头、接口与封装壳,这种一般就是固定焦距得。有些厂商只提供芯片,需要自己安装镜头,镜头要选择合适大小得镜头,如果没有夜视要求得话,最好选择带有红外滤光得镜头,因为一般得sensor都能感应到红外光线,如果不滤掉,会对图像色彩产生影响,另外要注意在PCB设计时要保证镜头得聚焦中心点要设计在sensor得感光矩阵中心上。除了这点CMOS Sensor硬件上就与普通得IC差不多了,注意不要弄脏或者磨花表面得玻璃。 其次,CMOS模组输出信号可以就是模拟信号输出与数字信号输出。模拟信号一般就是电视信号输出,PAL与NTSC都有,直接连到电视瞧得;数字输出一般会有并行与串行两种形式,由于图像尺寸大小不同,所要传输得数据不同,数据得频率差异也很大,但就是串行接口得pixel clock频率都要比并行方式高(同样得数据量下这不难理解),较高得频率对外围电路也有较高得要求;并行方式得频率就会相对低很多,但就是它需要更多引脚连线;所以这应该就是各有裨益。(笔者测试使用得系统就是8bit并行接口)另外输出信号得格式有很多种,视频输出得主要格式有:RGB、YUV、BAYER PATTERN等。一般CMOS Sensor模组会集成ISP在模组内部,其输出格式可以选择,这样可以根据自己使用得芯片得接口做出较适合自己系统得选择。其中,部分sensor为了降低成本或者技术问题,sensor部分不带ISP或者功能很简单,输出得就是BAYER PATTERN,这种格式就是sensor得原始图像,因此需要后期做处理,这需要有专门得图像处理器或者连接得通用处理器有较强得运算能力(需要运行图像处理算法)。 不管sensor模组使用何种数据格式,一般都有三个同步信号输出:帧同步/场同步(Frame synchronizing)、行同步(Horizontal synchronizing)与像素时钟(pixel clock)。要保证信号得有效状态与自己系统一致,如都就是场同步上升(下降)沿触发、行同步高(低)电平有效等。 通过以上介绍,我们就可以根据自己得使用得系统选择适合得sensor模组。要选择接口对应(如果并行接口,sensor模组输出数据bit位多于接受端,可以用丢弃低位得数据得方法连接)、数据格式可以接受或处理、pixel clock没有超过可接受得最高频率(有得就是可调得,但帧率会受影响)、场同步与行同步可以调节到一致得sensor模组,这样才可以保证可以使用。

手机摄像头基础知识

手机摄像头基础知识 作为手机新型的拍摄功能,内置的数码相机功能与我们平时所见到的低端的(10万-130万像素)数码相机相同。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码摄像头的“胶卷”就是其成像感光器件,是数码拍摄的心脏。感光器是摄像头的核心,也是最关键的技术。 摄像头按结构来分,有内置和外接之分,但其基本原理是一样的。 按照其采用的感光器件来分,有CCD和CMOS之分: CCD(Charge Coupled Device,电荷耦合组件)使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。它就像传统相机的底片一样的感光系统,是感应光线的电路装置,你可以将它想象成一颗颗微小的感应粒子,铺满在光学镜头后方,当光线与图像从镜头透过、投射到CCD表面时,CCD就会产生电流,将感应到的内容转换成数码资料储存起来。CCD像素数目越多、单一像素尺寸越大,收集到的图像就会越清晰。因此,尽管CCD数目并不是决定图像品质的唯一重点,我们仍然可以把它当成相机等级的重要判准之一。目前扫描机、摄录放一体机、数码照相机多数配备CCD。 CCD经过长达35年的发展,大致的形状和运作方式都已经定型。CCD 的组成主要是由一个类似马赛克的网格、聚光镜片以及垫于最底下的电子线路矩阵所组成。目前有能力生产CCD 的公司分别为:SONY、Philps、Kodak、Matsushita、Fuji和Sharp,大半是日本厂商。CMOS(Complementary etal-Oxide Semiconductor,附加金属氧化物半导体组件)和CCD一样同为在数码相机中可记录光线变化的半导体。CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点,这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。 CCD和CMOS各自的利弊,我们可以从技术的角度来比较两者主要存在的区别: 信息读取方式不同。CCD传感器存储的电荷信息需在同步信号控制下一位一位的实施转移后读取,电荷信息转移和读取输出需要有时钟控制电路和三组不同的电源相配合,整个电路较为复杂。CMOS传感器经光电转换后直接产生电流(或电压)信号,信号读取十分简单。 速度有所差别。CCD传感器需在同步时钟的控制下以行为单位一位一位的输出信息,速度较慢;而CMOS传感器采集光信号的同时就可以取出电信号,还能同时处理各单元的图象信息,速度比CCD快很多。 电源及耗电量。CCD传感器电荷耦合器大多需要三组电源供电,耗电量较大;CMOS传感器只需使用一个电源,耗电量非常小,仅为CCD电荷耦合器的1/8到1/10,CMOS光电传感器在节能方面具有很大优势。 成像质量。CCD传感器制作技术起步较早,技术相对成熟,采用PN结合二氧化硅隔离层隔离噪声,成像质量相对CMOS传感器有一定优势。由于CMOS传感器集成度高,光电传感元件与电路之间距离很近,相互之间的光、电、磁干扰较为严重,噪声对图象质量影响很大。在相同分辨率下,CMOS价格比CCD便宜,但是CMOS器件产生的图像质量相比CCD来说要低一些。到目前为止,市面上绝大多数的消费级别以及高端数码相机都使用CCD作为感

手机摄像头当电脑摄像头图文教程

手机摄像头当电脑摄像头图文教程

————————————————————————————————作者:————————————————————————————————日期:

手机摄像头当电脑摄像头图文教程 手机摄像头连接电脑.因为我的手提电脑没有自带摄像头,只有自带的麦克风,使我出差的时候,如果要应付单位的视频会议或者和朋友QQ视频聊天,则要自带一个摄像头,包里装了一大堆线,很不爽.入手了多普达D600后,看着手机上200万像素的相机,心里就想,能否把手机的摄像功能共享到电脑上,实现视频共享? 经过搜索寻找,我终于发现了一款软件可以实现此功能.现在把这款软件及设置办法告诉大家,希望能够给广大像我一样的机油带来方便. 这款软件就是Ateksoft公司出品的WebCamera.是免费的,不过是英文版.也不要紧的,相信只要有初中以前英语水平都应该很容易弄懂英文意思.呵呵,希望有心人能够把它弄成汉化版更好.下载后,会有两个文件,一个是CameraPlusSetup.exe,是在电脑上安装的文件,另一个是“覆盖XX”文件夹,文件夹里面是一个WebcameraPlus.exe文件,是等下用来破解用的(不过我试过了好像作用不大)。 一、在电脑和手机上安装Webcamera 在安装软件前,电脑上必须安装有ACTIVESYNC4.2以上,实现手机与电脑的同步。由于我是用蓝牙与电脑同步的,在此不再罗索,如果哪位不懂如何实现用蓝牙与电脑同步的,请看我先前的宝典,里面有详细说明。 先把数据线连上手机,双击下载的WebCameraPlusSetup.exe进行安装,由于和电脑通用软

手机摄像头知识(知识材料)

手机摄像头 百科名片 手机摄像头 手机的数码相机功能指的是手机是否可以通过内置或是外接的数码相机进行拍摄静态图片或短片拍摄,作为手机的一项新的附加功能,手机的数码相机功能得到了迅速的发展。 目录 手机摄像头 1像素有效像素 1最大像素 传感器 CCD CMOS CCM CCD与CMOS有什么不同 感光器件的发展 影像感光器件因素 闪光灯 变焦数字变焦 光学变焦 连拍 自动白平衡 视频拍摄 展开

编辑本段手机摄像头 手机摄像头分为内置与外置,内置摄像头是指摄像头在手机内部,更方便。外置手机通过数据线或者手机下部接口与数码相机相连,来完成数码相机的一切拍摄功能。外置数码相机的优点在于可以减轻手机的重量,而且外置数码相机重量轻,携带方便,使用方法简单。处于发展阶段的手机的数码相机的性能应该也处于初级阶段,带有光学变焦的手机目前国内销售的还没有这个功能,不过相信随着手机数码相机功能的发展,带有光学变焦的手机也会逐渐上市,但大部分都拥有数码变焦功能。除此之外,目前手机的数码相机功能主要包括拍摄静态图像,连拍功能,短片拍摄,镜头可旋转,自动白平衡,内置闪光灯等等。手机的拍摄功能是与其屏幕材质、屏幕的分辨率、摄像头像素、摄像头材质有直接关系。 编辑本段像素 数码相机的像素数包括有效像素(Effective Pixels)和最大像素(Maximum Pixels)。与最大像素不同的是有效像素数是指真正参与感光成像的像素值,而最高像素的数值是感光器件的真实像素,这个数据通常包含了感光器件的非成像部分,而有效像素是在镜头变焦倍率下所换算出来的值。对于手机的数码相机像素,目前只能处于初级发展阶段,像素数并不很高,大都在10万--130万像素之间。数码相机的像素数越大,所拍摄的静态图像的分辨率也越大,相应的一张图片所占用的空间也会增大。手机摄像头目前像素最大可做到1200万像素。 有效像素 有效像素数英文名称为Effective Pixels。与最大像素不同,有效像素数是指真正参与感光成像的像素值。最高像素的数值是感光器件的真实像素,这个数据通常包含了感光器件的非成像部分,而有效像素是在镜头变焦倍率下所换算出来的值。数码图片的储存方式一般以像素(Pixel)为单位,每个象素是数码图片里面积最小的单位。像素越大,图片的面积越大。要增加一个图片的面积大小,如果没有更多的光进入感光器件,唯一的办法就是把像素的面积增大,这样一来,可能会影响图片的锐力度和清晰度。所以,在像素面积不变的情况下,数码相机能获得最大的图片像素,即为有效像素。 最大像素 最大像素英文名称为Maximum Pixels,所谓的最大像素是经过插值运算后获得的。插值运算通过设在数码相机内部的DSP芯片,在需要放大图像时用最临近法插值、线性插值等运算方法,在图像内添加图像放大后所需要增加的像素。插值运算后获得的图像质量不能够与真正感光成像的图像相比。以最大像素拍摄的图片清晰度比不上以有效像素拍摄的。

手机摄像头电路原理及故障维修

手机摄像头电路原理及故障维修 来源:智能手机推荐 https://www.wendangku.net/doc/888766873.html, 手机摄像头电路原理及故障维修 摄像头原理 CPU集成了视频处理系统和摄像头驱动等,CPU和摄像头数据信号有8-10个,是根据CPU型号和摄像头本身来定的,当手机系统进入拍照或摄像状态,有电源提供一个2.8V电压,有CPU送出的复位信号使摄像头进行复位,数据开始传送同时摄像头进入工作状态。 摄像故障维修 在维修中经常发现,装置未就绪、照相花、照相死机、拍照时屏显示黑底色,拍了照后在保存时候图片有图像,拍照保存后无图像是全黑色、屏不显示等故障,给大家介绍以下我个人的维修经验。 1、摄像头本身坏引起的故障 装置未就绪、照相花、照相死机、拍照时屏显示黑底色,拍了照后在保存时候图片有图像,拍照保存后无图像是全黑色等摄像头本身坏引起的故障。 2、装置未就绪 软件坏、CPU坏或虚悍、摄像头没有供电引起的。 装置未就绪在我们维修中遇见的很多,在我们写新资料时版本不对,也就是说摄像头数据不对也会出现装置未就绪,无法驱动摄像头造成的,软件坏也能引起装置未就绪,我们通常处理办法是格式化多媒体就可以了,CPU坏或虚悍引起的也很多,CPU有25跟线通往摄像头的,有一根线断就会引起摄像头故障。 3、ZT288手机,摄像头照不出来画面,屏幕是黑色的,可是照的图片是正常的,我一看就很好奇,这个故障很少见的,在我

们维修中特别是很少见的故障一般不轻易动主板,也是我们维修的本能,就先格式化以下看看,故障还是一样,就在网上下了个资料写进去后开机开启摄像机屏幕上显示画面正常了。4、同行拿来两台不照相故障手机,我打开看看主板都动了一遍了,有一台是浸液手机,同行说摄像头都换过故障还是一样,这么说就不是摄像头本身的问题了,打开手机开始修,浸液的手机主板在超声波里清晰,这一台先修,把摄像头拿下看看连接座也没有问题,在启动摄像头时测量供电电压也正常,测量连接座线的对地阻值发现有两根没有阻值,是不是空脚我把主板上的摄像头座拿掉发现有腐蚀的痕迹主板上的焊点是黑色死点,经清洗后焊回座把摄像头装好开机试机摄像正常了。这一台修好了在修那一台,从超声波里拿出来吹干后安上摄像头试机,这个也正常了,不用修了。 经验:在我们维修中,要注意细节问题,不能把他忽视掉了,特别是这些细节问题节约你的时间,同行拿过来的手机都是他们修不好的基本上大件都动过了,你要从细节上下手这样提高你的维修速度,也提高你的技术。

camera测试解读

Camera图像效果测试指导书 本规范规定的手机拍照效果相关测试项目: 1)解析度 Resolution 2)色彩还原 Color Accuracy 3)均一性 Lens Shading And Color Shading 4)白平衡 AWB 5)灰阶\动态范围 Gray Scale/Dynamic Range 6)几何失真 TV-Distortion 7)信噪比 SNR 8)视场角 FOV 完成以上测试项目需要的测试设备及软件: 1硬件设备: 多光源测试灯箱(可提供D65,TL84,CWF,A光等多种光源),色温照度测试计,均匀光源(DNP灯箱,亮度可调),各种测试Chart(包括24色色卡,ISO12233 Chart,21阶灰卡,动态范围测试Chart, EIAJ Chart等); 2软件: Imatest, Photoshop等。 Camera图像效果测试规范正文 1 解析度测试 Resolution 1.1 测试目的: 测试手机拍照系统的清晰度,包含中心解析度和边角解析度; 1.2 测试设备: 12233 Chart ,色温照度计; 1.3 测试软件: Imatest; 1.4 测试环境: 光线照度为600Lux+/- 200 Lux; 保证ISO12233 整个Chart表面的亮度值相差小于20%; 1.5 测试步骤:

1)调节Camera的驱支参数到最佳,将下载最佳效果参数的手机打开,将拍照相关的参数设备为自动模式(如自动曝光,自动白平衡等),拍照分辩率设备为最大; 2)将12233 Chart 垂直固定在墙上; 注间:本规范规定30万以下像素选用1X的Chart,130万和200万像素的选用2 X的Chart,300万及以上像素的项目选用3 X的Chart; 3)中心解析度的测试: 移动手机的位置,保证手机摄像头的光轴与ISO12233 Chart平面垂直,且使ISO12233 Chart中的4:3区域正好落在手机的预览画面中,如下图红线框所示: 图1 4)固定手机,在画面稳定时拍照; 5)分析解析度蓝线区域图像,得出中心解析度值; 6)边角解析度的测试: 方法同步骤3,4,5,不同的是调节手机预览ISO12233 Chart 的区域,以达到测试各个角落解析度的目的,具体拍照区域见图2,图3的红色线框区域:

手机camera原理

1 手机摄像头概述 1.1 手机摄像头概述 手机的数码相机功能指的是手机是否可以通过内置或是外接的数码相机进行拍摄静态图片或短片拍摄,作为手机的一项新的附加功能,手机的数码相机功能得到了迅速的发展。 手机摄像头分为内置与外置,内置摄像头是指摄像头在手机内部,更方便。外置手机通过数据线或者手机下部接口与数码相机相连,来完成数码相机的一切拍摄功能。 外置数码相机的优点在于可以减轻手机的重量,而且外置数码相机重量轻,携带方便,使用方法简单。 处于发展阶段的手机的数码相机的性能应该也处于初级阶段,带有光学变焦的手机目前国内销售的还没有这个功能,不过相信随着手机数码相机功能的发展,带有光学变焦的手机也会逐渐上市,但大部分都拥有数码变焦功能。 除此之外,目前手机的数码相机功能主要包括拍摄静态图像,连拍功能,短片拍摄,镜头可旋转,自动白平衡,内置闪光灯等等。手机的拍摄功能是与其屏幕材质、屏幕的分辨率、摄像头像素、摄像头材质有直接关系。 1.2 Camera分类 Camera一般分为Digital camera 数字式与Digital Still Cameras模拟式。 1.2.1 Digital camera 数字式 数字摄像头是直接将摄像单元和视频捕捉单元集成在一起,然后通过串、并口或者USB 接口连接到HOST SYSTEM上。现在CAMERA市场上的摄像头基本以数字摄像头为主,而数字摄像头中又以使用新型数据传输接口的USB数字摄像头为主(独立),在手机上主要是直接通过IO (BTB,USB,MINI USB…)与HOST SYSTEM连接,经过HOST SYSTEM的编辑后以数字信号输出到DISPLAY上显示。目前CAMERA市场上主流的CAMERA全DIGITAL CAMERA。 1.2.2 Simulant camera 模拟式 模拟摄像头是将视频采集设备产生的模拟视频信号转换成数字信号,进而将其储存到SYSTEM MEMORY里。模拟摄像头捕捉到的视频信号必须经过特定的视频捕捉卡将模拟信号转换成数字模式,并加以压缩后才可以转换到HOST SYSTEM上运用,经HOST SYSTEM

手机摄像头sensor基础知识

手机摄像头sensor基础知识

手机摄像头sensor基础知识 作为手机新型的拍摄功能,内置的数码相机功能与我们平时所见到的低端的(10万-130万像素)数码相机相同。与传统相机相比,传统相机使用“胶卷”作为 其记录信息的载体,而数码摄像头的“胶卷”就是其成像感光器件,是数码拍摄的心脏。感光器是摄像头的核心,也是最关键的技术。 摄像头按结构来分,有内置和外接之分,但其基本原理是一样的。 按照其采用的感光器件来分,有CCD和CMOS之分: CCD(Charge CoupledDevice,电荷耦合组件)使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。它就像传统相机的底片一样的感光系统,是感应光线的电路装置,你可以将它想象成一颗

会产生过热的现象。 CCD和CMOS各自的利弊,我们可以从技术的角度来比较两者主要存在的区别: 信息读取方式不同。CCD传感器存储的电荷信息需在同步信号控制下一位一位的实施转移后读取,电荷信息转移和读取输出需要有时钟控制电路和三组不同的电源相配合,整个电路较为复杂。CMOS传感器经光电转换后直接产生电流(或电压)信号,信号读取十分简单。 速度有所差别。CCD传感器需在同步时钟的控制下以行为单位一位一位的输出信息,速度较慢;而CMOS传感器采集光信号的同时就可以取出电信号,还能同时处理各单元的图象信息,速度比CCD快很多。 电源及耗电量。CCD传感器电荷耦合器大多需要三组电源供电,耗电量较大;CMOS传感器只需使用一个电源,耗电量非常小,仅为CCD电荷耦合器的1/8到1/10,CMOS光电传感器在节能方面具有很大优势。 成像质量。CCD传感器制作技术起步较早,技术相对成熟,采用PN结合二氧化硅隔离层隔离噪声,成像质量相对CMOS传感器有一定优势。由于CMOS传感器集成度高,光电传感元件

相关文档
相关文档 最新文档