文档库 最新最全的文档下载
当前位置:文档库 › 重点高中数学解析几何专题之椭圆(汇总解析版)

重点高中数学解析几何专题之椭圆(汇总解析版)

重点高中数学解析几何专题之椭圆(汇总解析版)
重点高中数学解析几何专题之椭圆(汇总解析版)

重点高中数学解析几何专题之椭圆(汇总解析版)

————————————————————————————————作者:————————————————————————————————日期:

圆锥曲线第1讲 椭圆

【知识要点】 一、椭圆的定义 1. 椭圆的第一定义:

平面内到两个定点1F 、2F 的距离之和等于定长a 2(

2

12F F a >)的点的轨迹叫椭圆,这两

个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。

注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离

2

1F F (记作c 2),否则点的轨迹就不是一个椭圆。具体情形如下:

(ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。

注2:若用M 表示动点,则椭圆轨迹的几何描述法为

a

MF MF 221=+(c a 22>,

c

F F 221=),即

2

121F F MF MF >+.

注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件:

a

MF MF 221=+千万不可忘记。

2. 椭圆的第二定义:

平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<

二、椭圆的标准方程

(1)焦点在x 轴、中心在坐标原点的椭圆的标准方程是122

2

2=+b y a x (0>>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122

22=+b x a y (0>>b a ).

注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。

(1)注2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点的位置,则可设

其方程为12222=+b y a x (0>>b a )或122

22=+b x a y (0>>b a );若题目未指明椭圆的焦

点究竟是在x 轴上还是y 轴上,则中心在坐标原点的椭圆的方程可设为

12

2=+ny mx (0>m ,0>n ,且n m ≠).

三、椭圆的性质

以标准方程122

22=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法得到相关结论。

(1)范围:a x a ≤≤-,b y b ≤≤-;

(2)对称性:关于x 轴、y 轴轴对称,关于坐标原点中心对称;

(3)顶点:左右顶点分别为)0,(1a A -,)0,(2a A ;上下顶点分别为),0(1b B ,),0(2b B -; (4)长轴长为a 2,短轴长为b 2,焦距为c 2;

(5)长半轴a 、短半轴b 、半焦距c 之间的关系为2

2

2

c b a +=;

(6)准线方程:c a x 2

±

=; (7)焦准距:c b 2

(8)离心率:

a c

e =

且10<

(9)焦半径:若),(00y x P 为椭圆122

22=+b y a x 在第一象限内一点,则由椭圆的第二定义,

1ex a PF +=,

2ex a PF -=;

(10)通径长:a b 22

.

注1:椭圆的焦准距指的是椭圆的焦点到其相应准线的距离。以椭圆的右焦点)0,(2c F 和右

准线l :c a x 2=为例,可求得其焦准距为

c b c c a c c a 2222=-=-. 注2:椭圆的焦点弦指的是由过椭圆的某一焦点与该椭圆交于不同两点的直线所构成的弦。椭圆的通径指的是过椭圆的某一焦点且垂直于其对称轴的弦。通径是椭圆的所有焦点弦中最

短的弦。设椭圆的方程为122

22=+b y a x (0>>b a ),过其焦点)0,(2c F 且垂直于x 轴的直线交该双曲线于A 、B 两点(不妨令点A 在x 轴的上方),则),(2a b c A ,)

,(2

a b c B -,于是该椭圆的通径长为

a b a b a b AB 2

222

)(=--=.

四、关于椭圆的标准方程,需要注意的几个问题

(1)关于椭圆的标准方程,最基本的两个问题是:其一,当题目已指明曲线的位置特征,并给出了“特征值”(指a 、b 、c 的值或它们之间的关系,由这个关系结合2

2

2

b a

c -=,我们可以确定出a 、b 、c 的值)时,我们便能迅速准确地写出椭圆的标准方程;其二,当题目已给出椭圆的标准方程时,我们便能准确地判断出曲线的位置特征,并能得到a 、b 、

c 的值。

(2)椭圆的标准方程中的参数a 、b 、c 是椭圆所固有的,与坐标系的建立无关;a 、b 、

c 三者之间的关系:222b a c -=必须牢固掌握。

(3)求椭圆的标准方程,实质上是求椭圆的标准方程中的未知参数a 、b 。根据题目已知条件,我们列出以a 、b 为未知参数的两个方程,联立后便可确定出a 、b 的值。特别需要注意的是:若题目中已经指明椭圆的焦点在x 轴或y 轴上,则以a 、b 为未知参数的方程组只有一个解,即a 、b 只有一个值;若题目未指明椭圆的焦点在哪个轴上,则以a 、b 为未

知参数的方程组应有两个解,即a 、b 应有两个值。

(4)有时为方便解题,中心在坐标原点的椭圆的方程也可设为

122=+ny mx ,但此时m 、n 必须满足条件:0>m ,0>n ,且n m ≠.

五、点与椭圆的位置关系

点),(00y x P 与椭圆122

22=+b y a x (0>>b a )的位置关系有以下三种情形:

(ⅰ)若122

220=+b y a x ,则点),(00y x P 在椭圆上; (ⅱ)若122

022

0>+b y a x ,则点),(00y x P 在椭圆外; (ⅲ)若122

022

0<+b y a x ,则点),(00y x P 在椭圆内;

【例题选讲】

题型1:椭圆定义的应用

1. 平面内存在一动点M 到两个定点1F 、2F 的距离之和为常数a 2(2

12F F a ≥),则点M

的轨迹是()

A. 圆

B. 椭圆

C. 线段

D. 椭圆或线段 解:由题意知,2

1212F F a MF MF ≥=+

(ⅰ)当212F F a >时,点M 的轨迹是椭圆; (ⅱ)当

2

12F F a =时,点M 的轨迹是线段21F F .

故点M 的轨迹是椭圆或线段

2. 已知圆C :

36)1(22=+-y x ,点)0,1(-A ,M 是圆C 上任意一点,线段AM 的中垂线l 和直线CM 相交于点Q ,则点Q 的轨迹方程为__________.

解:圆C :

36)1(2

2=+-y x 的圆心坐标为)0,1(C ,半径6=r 连接QA ,由l 是直线AM 的中垂线知,

QA

QM =

∴6===+=+r CM QC QM QC QA

2=AC ,∴AC QC QA >+

于是点Q 的轨迹是以)0,1(-A ,)0,1(C 为左右焦点的椭圆,其中62=a ,22=c

3=?a ,1=c ,819222=-=-=c a b

又该椭圆的中心为坐标原点

故点Q 的轨迹方程为1

892

2=+y x

3. 已知点)0,3(A ,点Q 是圆

42

2=+y x 上的一个动点,线段AQ 的垂直平分线交圆的半径OQ 于点P ,当点Q 在圆周上运动时,点P 的轨迹方程为__________.

解:圆O :

42

2=+y x 的圆心坐标为)0,0(O ,半径2=r 连接PA ,由l 是直线AQ 的垂直平分线知,

PA

PQ =

∴2===+=+r OQ PQ PO PA PO

3

=OA ,∴

OA

PA PO >+

于是点P 的轨迹是以)0,0(O ,)0,3(A 为左右焦点的椭圆,其中22=a ,32=c

1=?a ,

23=

c ,41

431222=-=-=c a b

又该椭圆的中心为OA 的中点

)

23

,

0()2

3,0(OA

故点P 的轨迹方程为1

41)2

3(2

2=+-y x

注:本题点P 的轨迹方程虽是椭圆,但该椭圆不关于坐标原点对称,而是关于点)

0,23

(

称,其方程可由把椭圆1

41

2

2

=+y x 沿x 轴向右平移了23个单位得到。

4. 方程

2

222222++=+--+y x y x y x 表示的曲线是()

A. 椭圆

B. 双曲线

C. 抛物线

D. 线段

解:由222222

2++=+--+y x y x y x ,有()

1,02

2

22)1()1(22∈=++-+-y x y x

这表明,点),(y x P 到定点)1,1(F 的距离与它到定直线l :02=++y x 的距离之比等于常

数22(1

220<<).由椭圆的第二定义知,点),(y x P 的轨迹是椭圆,即方程2

222222++=+--+y x y x y x 表示的曲线是椭圆。

5. 椭圆131222=+y x 的左、右焦点分别为1F 、2F ,点P 在椭圆上。若线段1PF 的中点在y 轴

上,则

1

PF 是

2

PF 的()

A. 7倍

B. 5倍

C. 4倍

D. 3倍

解:在椭圆13122

2=+y x 中,

9312,3,122

2222=-=-===b a c b a 3,3,32===∴c b a

于是)0,3(),0,3(21F F -

又Θ线段1PF 的中点在y 轴上,而O 是线段21F F 的中点

y PF 2∴

于是轴x PF ⊥2

(法一)在12F PF Rt ?中,

2

2

12221F F PF PF +=

36944))((22

2

12121=?===-+∴c F F PF PF PF PF

又由椭圆的定义,有

3

4322221=?==+a PF PF ①

333436

21==

-∴PF PF ②

联立①、②得,

237233341=+=

PF ,23

237342=-=PF

故723

23

721

==PF PF ,即1PF 是2

PF 的7倍。

(法二)

2332322=

==a b PF ,而34322221=?==+a PF PF 23723341=-

=∴PF

故723

23

721

==PF PF ,即1PF 是2

PF 的7倍。

6. 设1F 、2F 为椭圆1

492

2=+y x 的两个焦点,P 为椭圆上的一点。已知P ,1F ,2F 是一个

直角三角形的三个顶点,且

2

1PF PF >,则

2

1

PF PF =__________.

解:在椭圆1492

2=+y x 中,

549,4,92

2222=-=-===b a c b a 5,2,3===∴c b a

于是)0,5(1-F ,)0,5(2F

(ⅰ)当ο

9021=∠PF F 时,2054422

212

22

1=?===+c F F PF PF

又Θ

6

32221=?==+a PF PF ①

8220

362

)

()(2

2212

2121=-=

+-+=

?∴PF PF PF PF PF PF

于是4

84364)()(21221221=?-=?-+=-PF PF PF PF PF PF

2

1PF PF > 2

21=-∴PF PF ②

联立①、②得,

422

61=+=PF ,2

462=-=PF

于是此时

22

4

2

1

==

PF PF

(ⅱ)当ο

9012=∠F PF 时,

2

2

12221F F PF PF +=

20544))((2

2

2

12121=?===-+∴c F F PF PF PF PF

6

32221=?==+a PF PF ③

310

62021==

-∴PF PF ④

联立③、④得,

3146282310

61==+

=

PF ,3431462=

-=PF

于是此时27

34314

2

1==PF PF

故21

PF PF 的值为2或27

题型2:求椭圆的方程

7. (1)若方程1352

2=-+-k y k x 表示椭圆,则k 的取值范围是__________;

(2)若方程1

352

2=-+-k y k x 表示焦点在x 轴上的椭圆,则k 的取值范围是__________;

解析几何的经典结论

解析几何的经典结论

点P 处的切线PT 平分△ PF 1F 2在点P 处的外角. PT 平分△ PF 1F 2在点P 处的外角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点 以焦点弦PQ 为直径的圆必与对应准线相离 以焦点半径PF 为直径的圆必与以长轴为直径的圆内切 2 2 x y x)x y 0 y 2 2= 1上,则过P °的椭圆的切线方程是 ~2 ~2 1. a b a b 2 2 第+打=1外,则过Po 作椭圆的两条切线切点为 P 、P 2,则切点弦P 1P 2的直线方程是辱+_^?=1. a 2 b 2 a 2 b 2 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和AQ 分别交相应于焦点 F 的椭圆准线于 MN 两点,_则MF 丄NF. 过椭圆一个焦点 F 的直线与椭圆交于两点 P 、Q, A 1、A 为椭圆长轴上的顶点,A 1P 和氏Q 交于点M AP 和AQ 交于点N,则MF 丄NF. 二、双曲线 1. 点P 处的切线PT 平分△ PFF 2在点P 处的内角. 2. PT 平分△ PF .F 2在点P 处的内角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点 3. 以焦点弦PQ 为直径的圆必与对应准线相交 . 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切 .(内切:P 在右支;外切:P 在左支) 2 2 5. 若F 0(X 0,y °)在双曲线 务…占=1 ( a> 0,b > 0 )上,则过F 0的双曲线的切线方程是 x -出^=1. a b a b 2 2 x y 6. 若P 0(x 0,y 0)在双曲线 — 2 =1 (a > 0,b > 0 )外,则过Po 作双曲线的两条切线切点为 R 、P 2,则切点弦P 1P 2的直线 a b 方程是彎一智九 有关解析几何的经典结论 、椭 圆 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. x 2 y 2 椭圆 2 =1 (a > b> 0)的左右焦点分别为 F 1,F 2,点P 为椭圆上任意一点.F 1PF^ '■,则椭圆的焦点角形的面积为 b 2 1 2 2 =b ta n 2 2 y_ 2 a 2 S F 1PF 2 X 2 椭圆二 2 =1 ( a> b > 0)的焦半径公式: a b I MF 1 | = a ex o , IMF 2 | = a - ex o ( F,-c,0) , F 2(c,0) M (x °, y °)). 若F 0(x °, y °)在椭圆 若F 0(x °, y °)在椭圆 2 2 AB 是椭圆x 匕 2 . 2 a b =1的不平行于对称轴的弦, M (x 0, y 0)为AB 的中点,_则k OM k AB = b 2 即K AB b x ° 2 a y ° F 0(x °, y °)在椭圆 _ _ 2 x y x)x y 0y x 0 2 2 =1内,则被 Po 所平分的中点弦的方程是 ~2 - b a b 2 _ a 2 F 0(x °, y °)在椭圆 2 x ~~2 a 2 2 2 ■占 二1内,则过Po 的弦中点的轨迹方程是 —2 ■ ^2 b 2 a 2 b 2 X 0X y °y a 2 b 2

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

解析几何的结论

解析几何的结论 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

有关解析几何的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1 、P 2 ,则切点弦P 1P 2 的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1 ,F 2 ,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦 点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交 于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2 OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是2200222 2x x y y x y a b a b +=+. 二、双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

解析几何的经典结论

有关解析几何的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是002 21x x y y a b +=. 6. 若000 (,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1 、P 2 ,则切点弦P 1 P 2 的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为 F 1,F 2,点P 为椭圆上任意一点12 F PF γ ∠=,则椭圆的焦点角形的面积为 122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2 OM AB b k k a ?=-, 即0 2 02y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002 222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b += +. 二、双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

高中数学解析几何题型

解析几何题型 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22 162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =, 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123 301y x x x b x x y x b ?=-+?++-=?+=-? =+?,进而可求出AB 的中点11(,)22M b -- +,又由11 (,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出2 211 14(2)32AB =+-?-=. 例3.如图,把椭圆22 12516 x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆22 12516 x y +=的方程知225, 5.a a =∴= ∴1234567 7277535.2 a PF P F P F P F P F P F P F a ?++++++==?=?= 考点3. 曲线的离心率

解析几何归纳总结

解析几何归纳总结 1、直线与圆的方程 对于直线方程,要理解直线的倾斜率和斜率的概念,掌握点到直线的距离公式等,特别是直线方程的几种形式 对于圆的方程,要熟练运用与圆相关的基本问题的求解方法,如求解圆的方程的待定系数法、圆的圆心与半径的配方法、求圆的弦心距的构造直角三角形法、判断直线与圆、圆与圆的位置关系的几何法、求圆的切线的基本方法等 例1:若直线 1x y a b +=通过点M (cos α,sin α),则 A 221a b +≤ B 221a b +≥ C 22111a b +≤ D 22111a b +≥ 2、圆锥曲线的定义、标准方程 圆锥曲线的定义一般涉及焦半径、焦点弦、焦点三角形和准线,利用余弦定理解三角形等。 例2:(1)已知12,F F 为双曲线C :22 2x y -=的左、右焦点,点P 在C 上,122PF PF =,cos 12F PF ∠=___________________ (2)已知12,F F 为双曲线C: 22 1x y -=的左、右焦点,点P 在C 上,1260F PF ∠=?,则P 到x 轴的距离为___________ (3)已知12,F F 为双曲线C: 22 1927 x y -=的左、右焦点,点A 在C 上,M (2,0),AM 为12F AF ∠的平分线,则2AF =____________________ (4)已知抛物线C :2 4y x =的焦点为F ,直线y=2x-4与C 交于A,B 两点,则cos AFB ∠=___________ 3、圆锥曲线的离心率 求离心率的值(或其取值范围)的问题是解析几何中常见的问题,常规求值问题需要找等式,求范围问题需要找不等式:其归纳结底是利用定义寻求关于a,b,c 的相应关系式,并把式中的a,b,c 转化为只含有a,c 的齐次式或不等式,再转化为含e 的关系式,最后求解。小题中常涉及焦半径等,可利用第二定义来解决,避免了复杂的运算。 例3(1)已知F 为椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交在C 于点 D ,且2BF DF = ,则C 的离心率为_____________ (2)已知抛物线C :2 2y px =(p>0)的准线为l ,过M (1,0l 交于点A ,与C 的一个交点为B,若AM MB = ,则p=_______________ 4、直线与圆锥曲线问题的常规解题方法

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

解析几何基本结论

解析几何基本结论 理论1、 2 设P (x °,y °)为抛物线y =2px,(p . 0)上一定点,PA 、PB 为它的任意两条弦, 宀,2分别是PA 、PB 的倾斜角,则(1 )当tan:1 tan 〉2二定值t 时,直线AB 过定点 2)当tan:-1 - tan:? 2二定值t 时,直线 AB 过定点 (注意:这里,我把(% ? y 2)和y i y 2看成是两个参数团,只要找到这两个参数团的关系, 从而把两个参数团减少为一个,就可以得到定点问题。 对于(i ),我们可以得到下面的过程: 对于(2),完全可仿照上面过程。 对于(3),则要麻烦一些。由tant =tan (:^ :■ 2)(先讨论tan : i ,ta n : 2,tan (〉i 匕辽)都 存在的情况),知道: 2p 2p y o y i y 。 y 2 2p (2y 。 % y ?) tant 2 2 i _ 2p ______ 2p y o +y °(y i 十丫2)十丫』2 —4p y o y i y o y ? 2p x 0 …,- y o );( X o 2y o ,一 y 或有定向k = P ; ( 3)当①亠二2二定值t 时,直线AB 过定点 y o X o 一2% tant ,一y o 2P tant )或有定向 k = —P 。 y o 证明思路:设 A (x i ,y i ), B (x 2,y 2),则 k AB 二 2p y i y 2 所以 I AB : y - y i = 2p (x_x i ) 化简:(% ⑴-価2二2px (*) k PA k PB 2p 2p y o y i y o y ? 2 y o y o (y i y ?) yy 4p 2 F 面只需把 --y 。2 - y o (y i y 2) 代入(*)即可。

高中数学解析几何答题全攻略,2020高考生必看!

高中数学解析几何答题全攻略,2020高考生必看! 解析几何由于形式复杂多样,一直是难于解决的问题,很多同学对于解析几何的把握还差很多,很多同学对此知识点提出了相应的问题。对此清华附中数学老师有针对性的回答了同学们的共性问题。下面是对本次答疑情况的汇总,希望对大家学习数学尤其是解析几何部分有所帮助。 1 考试时间分配 问题1:老师我怎么这么短时间内做几道题通解一类题目呢?解析几何也有不少类型题 老师:理解的基础上去做,不要单纯的套公式,做题一定要保证真的会了,而不是只追求数量。如果感觉自己的水平没有提高,那么问问自己错题有没有好好整理,有没有盖住答案重新做过,再做的时候能不能保证很快的就有思路,之前出过的问题有没有及时得到解决?总之刷题不能埋头死刷,要有总结和反思。如果都做到了,考试还是没有好成绩,那么看看是不是考试时过于紧张,这个时候心态也很重要! 问题2:错题也有很多呀,怎么从错题那里去帮助学习数学呀?都抄几遍和看几遍吗?很多呀!该怎么办呢? 老师:对待错题,不要抄也不要只是看,当做新题重新做一遍,有时候一道题我们直接去看答案,总是发现不了问题,我建议把错题的题目直接汇编在一起,不要有答案,每隔一段时间都重新做一下,如果做题的过程很肯定,没有模糊的地方,这道题才可以过。这个过程比做新题更重要。

问题3:老师我数学只有三四十分马上高考该从哪里开始复习分数会提高呢? 老师:简单的题目模块比如复数、集合、线性规划、程序框图、三角函数与解三角形、简单的等差等比数列以及立体几何等,还有导数和圆锥曲线的第一问,找出前几年的高考题,看看都考了哪些简单模块,一个模块练几十道,绝对会有效果的,别放弃,只要努力一定能看到进步! 问题4:三视图怎么想也想不出来!有什么好的办法呀!老师!救救我 老师:平时见到三视图的题目无论问什么,都是去画他的立体图形,训练自己。如果考试时真的想不出来了,那么看看能不能判断出这个图形是什么,比如正视图和侧视图都只有一个最高顶点,那么基本可以判断这是一个椎体,如果是求体积的题目,直接底面积乘以高除以3就可以了,但是这个方法不是所有题目都适用。还有就是如果正视侧视和俯视都和正方形或者等腰直角三角形有关,那么可以画一个正方体,去找这个立体图形的可能性。 2 解析几何如何把握

二级结论在解析几何中的作用

二级结论在解析几何中的作用 一 椭圆、双曲线的“垂径定理” 1.(14浙江理)设直线)0(03≠=+-m m y x 与双曲线12222=-b y a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________. 2. 已知点是椭圆22 221(0)x y a b a b +=>>的右焦点,过原点的直线交椭圆于点 ,垂直 于轴,直线交椭圆于点,PB PA ⊥,则该椭圆的离心率__________. 3. 设动直线与椭圆交于不同的两点与双曲线 交于不同的两点 且则符合条件的直线共有______条. 4.已知某椭圆的焦点是过点 并垂直于轴的直线与椭圆的一个交 点为,且 .椭圆上不同的两点 满足条件: 成等差数列. (1)求该椭圆方程; (2)求弦中点的横坐标; (3)设弦 的垂直平分线的方程为 ,求的取值范围. 5.(16四川)已知椭圆:22 221(0)x y a b a b +=>>的一个焦点与短轴的两个端点是正三角形 的三个顶点,点在椭圆上. (Ⅰ)求椭圆的方程; (Ⅱ)设不过原点且斜率为的直线与椭圆交于不同的两点,线段 的中点为,直 线 与椭圆交于 ,证明: 二 圆锥曲线的共圆问题 6. (11全国)已知O 为坐标原点,F 为椭圆2 2 :12 y C x +=在y 轴正半轴上的焦点,过F

且斜率为-2的直线l 与C 交于A 、B 两点,点P 满足0.OA OB OP ++= (Ⅰ)证明:点P 在C 上; (Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上. 7. 已知抛物线C :y 2 =2px (p >0)的焦点为,直线与轴的交点为,与C 的交点为Q , 且|QF|=|PQ|. (Ⅰ)求C 的方程; (Ⅱ)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程. 二 抛物线的性质 8. (14四川)已知F 为抛物线2 y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧, 2OA OB ?=(其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是( ) A 、2 B 、3 C 、 172 8 D 、10 9.(15新课标)在直角坐标系中,曲线C :y =2 4 x 与直线y kx a =+(a >0)交与M ,N 两 点, (Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程; (Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由。 9. (14山东)已知抛物线2 :2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF ?为正三角形. (Ⅰ)求C 的方程; (Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E . (ⅰ)证明直线AE 过定点,并求出定点坐标; (ⅱ)ABE ?的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. 10. 点到点 及直线 的距离都相等,且这样的点只有一个,求值. 三 椭圆、双曲线的性质 11. 已知两点1(1,0)F -及2(1,0)F ,点P 在以1F 、2F 为焦点的椭 O 1F 2F x y l M N

相关文档
相关文档 最新文档