文档库 最新最全的文档下载
当前位置:文档库 › 圆锥曲线中的最值问题,复习课用教案

圆锥曲线中的最值问题,复习课用教案

圆锥曲线中的最值问题,复习课用教案
圆锥曲线中的最值问题,复习课用教案

圆锥曲线中的最值问题

1、已知点(1,3),(5,2)M N -,在x 轴上取一点P ,使得PM PN -最大,则点P 的坐标______

2、已知点A ,双曲线2

2

14

y x -=的右焦点F ,P 为双曲线右支上任一点,则PA PF +最小值为

变式:已知点)4,3(A ,F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时,M 点坐标是 .

3、已知双曲线)0,0(122

22>>=-b a b

y a x 的左、右焦点分别为21,F F ,点P 在双曲线的右

支上,且||4||21PF PF =,则此双曲线的离心率e 的最大值为

4、 若P ,Q 分别抛物线C :与圆上的两个动点,则PQ

的最小值为

例题1已知椭圆),1(12

22>=+a y a

x 直线l 过点)0,(a A -和点)0)(,(>t ta a B 交椭圆于M ,

直线MO 交椭圆于N 。

(1)t a ,表示AMN ?的面积S ;(2)若a t ),2,1[∈为定值,求S 的最大值

变式:已知椭圆C :()22

2210x y a b a b

+=>>的离心率为12,12F F 、分别为椭圆C 的左、

右焦点,若椭圆C 的焦距为2. ⑴求椭圆C 的方程;

⑵设M 为椭圆上任意一点,以M 为圆心,1MF 为半径作圆M ,当圆M 与椭圆的右准线 l 有公共点时,求△12MF F 面积的最大值.

例题2如图,已知椭圆C :

22

13620

x y +=的左顶点,右焦点分别为A 、F ,右准线为l ,N 为l 上一点,且在x 轴上方,AN 与椭圆交于点M .

(1)若AM=MN ,求证:AM ⊥MF ;

(2)过A 、F 、N 三点的圆与y 轴交于P 、Q 两点,求PQ 的最小值.

作业:

1、抛物线y 2=2x 上到直线x-y +3=0距离最短的点的坐标为__________

2、已知双曲线122

22=-b

y a x 的左右两焦点分别为21F F 、,点P 在双曲线上,且215PF PF =,

则此双曲线的离心率e 的取值范围为 .

3、若P ,Q 分别是两条曲线上的任意两点,则称长度的最小值为这两曲线之

间的距离.给定直线062:=++y x l 与椭圆13

42

2=+y x ,则直线与椭圆之间的距离为

4、若椭圆)0(122

22>>=+b a b

y a x 上存在一点M ,使021=?M F M F ,其中1F 、2F 为椭圆

的左、右两焦点,求椭圆的离心率的取值范围.

变式:已知21F F 、是椭圆的两个焦点,P 为椭圆上一点, 6021=∠PF F .求椭圆离心率的范围;

5、设椭圆中心在坐标原点,)0,2(A ,)1,0(B 是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于F E 、两点(1)若6=,求k 的值;(2)求四边形AEBF 面积的最大值.

6、已知P 点在圆x 2

+(y -2)2

=1上移动,Q 点在椭圆2

219

x y +=上移动,试求|PQ|的最大值。

变式:设P 是椭圆()22

211x y a a

+=>短轴的一个端点,Q 为椭圆上的一个动点,求PQ 的

最大值。

7、如图,点A 为圆形纸片内不同于圆心C 的定点,动点M 在圆周上,将纸片折起,使点M 与点A 重合,设折痕m 交线段CM 于点N .现将圆形纸片放在平面直角坐标系xoy 中,设

圆C :()()()2

22

141,1,0x y a a A ++=>,记点N 的轨迹为曲线E .

⑴证明曲线E 是椭圆,并写出当2a =时该椭圆的标准方程;

⑵设直线

l 过点C 和椭圆E 的上顶点B ,点A 关于直线l 的对称点为点Q ,若椭圆E 的离

心率12e ?∈???

,求点Q 的纵坐标的取值范围.

8、如图,椭圆)0(1:22

22>>=+b a b

y a x E 的左、右焦点分别为21F F 、,点)m A(4,在椭圆E

上,且0212=?F F AF ,点)0D(2,到直线A F 1的距离5

18

=

DH . (1)求椭圆E 的方程

;(2)设点P 位椭圆E 上的任意一点,求PF ?1的取值范围。

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

圆锥曲线教案

直 线 与 圆 锥 曲 线 的 位 置 关 系 题型归纳: 题型1向量与圆锥曲线相结合的问题 1.设12F F ,分别是双曲线2 2 19y x +=的左、右焦点.若点P 在双曲线上,且120PF PF ?=,则12PF PF += 2.设P 为双曲线2 2 112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为 题型2变量取值范围问题 3、设 1F ,2F 分别是椭圆14 22 =+y x 的左右焦点。1)若P 是该椭圆上的一个动点,求21PF PF ?的最值; (2)设过定点()2,0M 的直线l 与椭圆交于不同的两点A,B,且AOB ∠为锐角(O 为坐标原点),求直线l 的斜率k 的范围 题型3圆锥曲线中的最值问题 4、设P 是椭圆()2 2211x y a a +=>短轴的一个端点,Q 为椭圆上一个动点,求PQ 的最大值. 5、已知椭圆C:22 221(0)x y a b a b +=>>,F 为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2(1)求椭圆C 的方程;(2)直线l :y=kx+m (0km ≠)与椭圆C 交于A 、B 两点,若线段AB 中点在直线x+2y=0上,求?FAB 的面积的最大值。 … 题型4定值问题 6.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 题型5 存在性问题 7.椭圆)0(12222>>=+b a b y a x 的离心率23e =,A 、B 是椭圆上关于,x y 轴均不对称的两点,线段AB 的垂直平分线与x 轴交于(1,0)P ,点 F 是椭圆的右焦点.Ⅰ)设AB 的中点为00(,)C x y ,求0x 的值; (Ⅲ)过P 的直线交椭圆于,C D 两点,在x 轴上是否存在定点E ,使得CED ∠总被x 轴平分,若存在,求出点E 的坐标;若不存在,请说明理由. 题型6对称性问题 8.已知双曲线2 213y x -=上存在关于直线:4l y kx =+的对称点,求实数k 的取值范围.

高三数学一轮复习教案:圆锥曲线

圆锥曲线复习 【复习指导】 1、掌握椭圆、双曲线和抛物线的定义、标准方程及几何性质; 2、圆锥曲线的应用。 【重点难点】 重点:椭圆、双曲线和抛物线的定义、标准方程及几何性质 难点:圆锥曲线的应用 【教学过程】 一、知识梳理 1、焦点在x轴上的椭圆、双曲线、抛物线的定义、图像和性质: 同样,类比得到焦点在y轴的椭圆、双曲线、抛物线的图像和性质。

小试牛刀: (1)已知椭圆 116 252 2=+y x 上一点P 到椭圆的一个焦点的距离为3,则点P 到另一个焦点的距离( ) A 2 B 3 C 5 D 7 (2)已知双曲线 19 -252 2=y x 上一点P 到椭圆的一个焦点的距离为12,则点P 到另一个焦点的距离( ) A 2 B 22 C 2或22 D 4或22 (3)如果方程22 2=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围 是 ( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1) (4)方程 12 --42 2=+t y t x 所表示的曲线为C ,有下列命题: ①若曲线C 为椭圆,则4t 2<<; ②若曲线C 为双曲线,则2t 4t <>或; ③曲线C 不可能为圆; ④若曲线C 为焦点在y 轴的双曲线,则4t >。 以上命题正确的是 。 (5)抛物线的焦点是双曲线369-422=y x 的左顶点,则抛物线的标准方程为 。 二、典例示范 类型一 圆锥曲线的定义及其应用 例一 求与圆1)3(22=+-y x 及9)3(22=++y x 都外切的动圆圆心M 的轨迹方程.

变式训练: 点B(-4,0),C(4,0)且△ABC 的周长是18,则△ABC 的顶点A 的轨迹方程。 类型二 圆锥曲线的标准方程与几何性质 例二 (1)求焦点为(0,6)且与双曲线1-2 2 2 y x 有相同渐近线的 双曲线方程; 思考:若将焦点为(0,6)该为焦距为12,求标准方程。

圆锥曲线教学设计

圆锥曲线 一、教学内容分析 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。 二、学生学习情况分析 我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。 3.借助多媒体辅助教学,激发学习数学的兴趣.

五、教学重点与难点: 教学重点 1.对圆锥曲线定义的理解 2.利用圆锥曲线的定义求“最值” 3.“定义法”求轨迹方程 教学难点: 巧用圆锥曲线定义解题 六、教学过程设计 【设计思路】 (一)开门见山,提出问题 一上课,我就直截了当地给出—— 例题1:(1) 已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。 (A)椭圆(B)双曲线(C)线段(D)不存在 (2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。 (A)椭圆(B)双曲线(C)抛物线(D)两条相交直线 【设计意图】

圆锥曲线解题技巧教案整理后1

圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程8=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y += 1(0a b >>)。方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B , C 同号,A ≠B )。 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____(答: 11 (3,)(,2)22 --- ) ; (2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2y x +的最小值是 ___2) (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1 (0,0a b >>)。方程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A , B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点 )10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口 向上时22(0)x py p =>,开口向下时2 2(0)x py p =->。 如定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。 4 5

2021年高中数学.7圆锥曲线复习课(3)教学案苏教版选修11

2021年高中数学2.7圆锥曲线复习课(3)教学案苏教版选修1-1班级:高二()班姓名:____________ 1.如果方程表示双曲线,则实数m的取值范围是 2.一个椭圆的离心率,准线方程是x=4,对应的焦点F(2,0), 则椭圆的方程是; 3.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点, 如果x1+x2=6,那么|AB|长是; 4.如图,已知OA是双曲线的实半轴,OB是虚半轴,F为焦点, 且S△ABF=,∠BAO=30°, 则双曲线的方程为____________ 5.若椭圆长轴长与短轴长之比为,它的一个焦点是, 则椭圆的标准方程是 6.椭圆上有一点,它到左准线的距离等于,那么点到右焦点的距离为 7.已知定点、, 且, 动点满足,则的最小值是 8.椭圆上的一点M到左焦点的距离为,是的中点, 是坐标原点,则等于 9.设椭圆的焦点为,点为其椭圆上的动点, 当为钝角时,点横坐标的取值范围是。 10.已知有三点、、

(Ⅰ)求以、为焦点且过点的椭圆的标准方程; (Ⅱ)设点关于直线的对称点为,求过点的抛物线的标准方程。 11.椭圆的两个焦点, 是椭圆上任意一点。求证:,。

班级:高二()班姓名:____________ 1.椭圆上一点到它的左焦点的距离为6,则点到椭圆左准线的距离 2.(06浙江)双曲线上的点到左焦点的距离与到左准线的距离的比 是3,则等于 3.(13江苏)在平面直角坐标系中,椭圆的标准方程为 ,右焦点为,右准线为,短轴的一个端点为,设原点到直线的距离为,到的距离为.若,则椭圆的离心率为 . 4.(xx江苏)如图,在平面直角坐标系中,椭圆的左、右焦点分别为,.已知和都在椭圆上,其中为椭圆的离心率. (1)求椭圆的方程; (2)设是椭圆上位于轴上方的两点, 且直线与直线平行,与交于点P.

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

2019届二轮复习 圆锥曲线 学案 (全国通用)

第九讲 圆锥曲线 一、知识方法拓展: 1、直线系方程 若直线1111:0l a x b y c ++=与直线2222:0l a x b y c ++=相交于P ,则它们的线性组合()()1112220a x b y c a x b y c λμ+++++=(,R λμ∈,且不全为0)(*)表示过P 点的直线系。当参数,λμ为一组确定的值时,(*)表示一条过P 点的直线。 特别地,当0λ=时,(*)式即2220a x b y c ++=; 当0μ=时,(*)式即1110a x b y c ++=。 对于12,l l 以外的直线,我们往往只在(*)式中保留一个参数,而使另一个为1. 又若1l 与2l 平行,这时(*)式表示所有与1l 平行的直线。 2、圆锥曲线的第二定义(离心率、准线方程等) 圆锥曲线的统一定义为:平面内到一定点F 与到一条定直线l (点F 不在直线l 上) 的距离之比为常数e 的点的轨迹: 当01e <<时, 点的轨迹是椭圆, 当 1e >时, 点的轨迹是双曲线, 当 1e =时, 点的轨迹是抛物线, 其中e 是圆锥曲线的离心率c e a = ,定点F 是圆锥曲线的焦点, 定直线l 是圆锥曲线的准线,焦点在X 轴上的曲线的准线方程为2 a x c =±。 3、圆锥曲线和直线的参数方程 圆2 2 2 x y r +=的参数方程是cos sin x r y r θ θ=?? =? ,其中θ是参数。 椭圆22 221x y a b +=的参数方程是cos sin x a y b θθ =??=?,其中θ是参数,称为离心角。

双曲线22 221x y a b -=的参数方程是sec tan x a y b θθ =??=?,其中θ是参数。 抛物线2 2y px =的参数方程是2 22x pt y pt ?=?=?,其中t 是参数。 过定点()00,x y ,倾斜角为α的直线参数方程为00cos sin x x t y y t α α=+??=+? ,t 为参数。(关注几 何意义)。 4、圆锥曲线的统一极坐标方程 以圆锥曲线的焦点(椭圆的左焦点、双曲线的右焦点、抛物线的焦点)为极点,过极点引相应准线的垂线的反向延长线为极轴,则圆锥曲线的统一极坐标方程为 1cos ep e ρθ = -,其中e 为离心率,p 是焦点到相应准线的距离。 二、热身练习: 1、(07武大)如果椭圆()222210x y a b a b +=>> 那么双曲线22221x y a b -=的 离心率为( ) (A (B )2 (C (D ) 54 【答案】C 【解析】圆锥曲线的离心率c e a = , 椭圆中:2 2 2 c a b =-∴222 2 34 a b e a -==,得22 4a b = 双曲线中:2222 2254c a b e a a +=== ,得e = C 。

圆锥曲线优秀教案

与圆锥曲线有关的几种典型题 一、教案目标 (一)知识教案点 使学生掌握与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线相交问题等. (二)能力训练点 通过对圆锥曲线有关的几种典型题的教案,培养学生综合运用圆锥曲线知识的能力. (三)学科渗透点 通过与圆锥曲线有关的几种典型题的教案,使学生掌握一些相关学科中的类似问题的处理方法. 二、教材分析 1.重点:圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题. (解决办法:先介绍基础知识,再讲解应用.) 2.难点:双圆锥曲线的相交问题. (解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.) 3.疑点:与圆锥曲线有关的证明问题. (解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.) 三、活动设计 演板、讲解、练习、分析、提问. 四、教案过程 (一)引入

与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“与圆锥曲线有关的几种典型题”. (二)与圆锥曲线有关的几种典型题 1.圆锥曲线的弦长求法 设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为: (2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|. A、B两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解. 由学生演板完成.解答为: ∵抛物线方程为x2=-4y,∴焦点为(0,-1). 设直线l的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入x2=-4y中得:x2+4kx-4=0. ∴x1+x2=-4,x1+x2=-4k. ∴ k=±1.

完整word版,椭圆(高三复习课教案)

椭圆(高三复习课) 恩平市第一中学张雪梅 一、教学内容分析 圆锥曲线是解析几何的主体内容,也是高中数学的重点内容,而椭圆是圆锥曲线的起始部分,通过本节课的学习,不但让学生对椭圆的知识结构有一个较清晰的认识,而且在处理问题时,让学生学会灵活运用定义,正确选用标准方程,恰当利用几何性质,合理的分析,准确的计算,并且为复习双曲线和抛物线奠定了基础。 二、学生学习情况分析 本班是普通文科班,此课之前,学生已经在人教版《普通高中课程标准实验教科书·数学选修1—1》(A版)第二章《圆锥曲线与方程》中学习过相关内容。此时,学生已有一定的学习基础和学习兴趣。总体上来讲,由于学生应用数学知识的意识不强,创造力较弱,分析问题不透彻,知识体系不完整,使得学生在对椭圆定义的理解及其标准方程的灵活运用上有一定的难度。因此根据尝试教学法,教学过程中遵循“练习探索——自主复习——课堂研究——巩固运用”的四个要素,侧重学生的“练”、“思”、“究”的自主学习。通过学生的“练”、“思”、“究”,再到教师的“讲”,使学生的学习达到“探索有所得,研究获本质”。 三、教学目标 1、知识与能力:能用自己的语言描述椭圆的定义;准确地写出椭圆两种形式的标准方程;能根据椭圆的定义及标准方程画出椭圆的几何图形;并概括出椭圆的简单几何性质。 2、过程与方法:通过了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;理 解数形结合的思想,并能用数形结合的思想结合椭圆的有关性质,解决椭圆的简单应用问题。 3、情感、态度与价值观:通过与同学、老师的交流、合作与探究,体会合作学习的乐趣;通过对椭圆的定义、几何图形、基本性质的探索,体会椭圆的几何图形与方程之间的相互联系和相互转化的规律,感受数学的严谨性;逐步形成细心观察、认真分析、善于总结的良好思维习惯。 四、教学重点与难点 教学重点:1、掌握椭圆的定义,几何图形,标准方程及简单的几何性质。 2、了解椭圆的简单应用。 教学难点:椭圆的定义和简单几何性质的应用,理解数形结合的思想。 五、教学过程

圆锥曲线知识点总结

圆锥曲线 一、椭圆 1、定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 ()2 2101c b e e a a ==-<

二、双曲线 1、定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于 12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。 这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 2、双曲线的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210,0x y a b a b -=>> ()22 2 210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈ 顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==+ 对称性 关于x 轴、y 轴对称,关于原点中心对称 离心率 ()2 211c b e e a a ==+>,e 越大,双曲线的开口越阔 渐近线方程 b y x a =± a y x b =± 5、实轴和虚轴等长的双曲线称为等轴双曲线. 三、抛物线

圆锥曲线第二定义学案

圆锥曲线第二定义练习学案 1.过抛物线x 4y 2=的焦点F 作直线交抛物线于A (11y x ,)、B (22y x ,),若6x x 21=+,求|AB|的长。 2. 设椭圆22 22b y a x +=1(a>b>0)的右焦点为1F ,右准线为l 1,若过F 1且垂直于x 轴的弦的长度等于F 1到准线l 1的距离,求椭圆的离心率。 3. 双曲线13 y x 2 2 =-的右支上一点P ,到左焦点F 1与到右焦点F 2的距离之比为2:1,求点P 的坐标。 4.点P 在椭圆 上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标为_______ 5. 抛物线上的两点A 、B 到焦点的距离和是5,则线段AB 的中点到轴的距离为 6. 椭圆内有一点,F 为右焦点,在椭圆上有一点M ,使 之值最小,则点M 的坐标为_______ 7. 已知椭圆)0b a (1b y a x 22 22>>=+,21F F 、分别是左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率e 的取值范围。 8. 已知点A (32,-),设点F 为椭圆112 y 16x 2 2=+的右焦点,点M 为椭圆上一动点,求|MF |2|MA |+的最小值,并求此时点M 的坐标。 9.椭圆x 2/25+y 2 /9=1上有一点P ,如果它到左准线的距离为5/2,那么P 到右焦点的距离是 。 10. F 2是椭圆x 2/a 2+y 2/b 2=1(a >b>0)的右焦点,P(x 0,y 0)是椭圆上任一点,则|PF 2|的值为: A. ex 0-a B. a-ex 0 C. ex 0-a D.e-ax 0 11.过抛物线y 2=4x 的焦点的一条直线交抛物线于A 、B 两点,若线段的中点的横坐标为3,则|AB|= 。 12. 已知椭圆方程为x 2/b 2+y 2/a 2=1(a>b>0),求与这个椭圆有公共焦点的双曲线,使得以它 们的交点为顶点的四边形面积最大,并求相应的四边形的顶点坐标。 13. 已知椭圆x 2/4+y 2/3=1内有一点P(1,-1),F 为右焦点,椭圆上有一点M ,使|MP|+2|MF|值最小,求点M 的坐标

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

圆锥曲线习题课 教案

圆锥曲线习题课教案 一、教学目标: (1)巩固并灵活运用圆锥曲线的定义及标准方程; (2)注意研究方程的形式和基本量的几何意义 ; (3)通过本节的学习,可以培养我们观察、推理的能力。 二、重 点:圆锥曲线的定义及其性质应用。 三、难 点:直线与圆锥曲线相交问题。 四、数学探究 问题1:圆锥曲线定义的灵活运用: 例1.如果双曲线19 162 2=-y x 右支上一点P 到它的右焦点的距离等于2,则点P 到左准线的距离为__________. 1、已知双曲线x 2 - y 2 =1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若P F 1⊥P F 2, 则∣P F 1∣+∣P F 2∣的值为______________. 2、 若点O 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ? 的最大值为( ) A .2 B .3 C .6 D .8 3、已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准 线的距离之和的最小值为_______. 4、若动圆与圆1)2(22=+-y x 外切,又与直线01=+x 相切,则动圆圆心轨迹方程是__________. 问题2:求圆锥曲线的标准方程 方法:待定系数法 例 2.与双曲线14 162 2=-y x 有公共焦点,且过点)2,23(的双曲线的标准方程是_______________. 5、抛物线顶点在原点,它的准线过双曲线)0(122 22>>=-b a b y a x 的一个焦点并与双曲线实轴垂直,已知抛物线与双曲线的交点为)6,2 3(,求抛物线和双曲线的方程.

圆锥曲线知识点总结(供参考)

圆锥曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或122 22=+b x a y (0a b >>)(焦点在y 轴 上)。 注:①以上方程中,a b 的大小0a b >>,其中2 2 2 b a c =-; ②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2 x 和2y 的分 母的大小。例如椭圆 22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令 0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -, 2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

高考数学一轮 圆锥曲线的综合问题(学案)

§9.8圆锥曲线的综合问题 ★知识梳理★ 1.直线与圆锥曲线C 的位置关系: 将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0. (1)交点个数: ①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。 (2) 弦长公式: 2.对称问题: 曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。 3.求动点轨迹方程: ①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。 ★重难点突破★ 重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题 重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能 ①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求. 2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用 问题1:已知点1F 为椭圆15 92 2=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 . 点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形, ||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6 ★热点考点题型探析★ 考点1直线与圆锥曲线的位置关系 题型1:交点个数问题 [例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ) A .[- 21,2 1 ] B .[-2,2] C .[-1,1] D .[-4,4] 【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线2 8y x =的准线2x =-与x 轴的交点为Q (-2 , 0), 于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+, 4)(1 ||1||212212122x x x x k x x k AB ?-+?+=-?+=

直线与圆锥曲线的位置关系一教学设计

北京市北纬路中学徐学军 《直线与圆锥曲线的位置关系(一)》教学设计 一、教材分析及学生情况分析 本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。 学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。 二、教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标: 知识与技能:①理解直线与椭圆的位置关系; ②会进行位置关系的判断,计算弦长。 过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法, 学会解决相关的问题。 情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。 三、教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习 一、椭圆方程. 1. 椭圆的第一定义: 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+πφ 2.椭圆的方程形式: ①椭圆的标准方程: i. 中心在原点,焦点在x 轴上: ) 0(12 22 2φφb a b y a x =+ . ii. 中心在原点,焦点在y 轴上: )0(12 22 2φφb a b x a y =+ . ②一般方程:)0,0(12 2 φφB A By Ax =+.③椭圆的参数方程: 2 22 2+ b y a x ?? ?==θ θsin cos b y a x (一象限θ应是属于20π θππ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2 2 21,2b a c c F F -==.⑤准线:c a x 2 ±=或 c a y 2±=.⑥离心率:)10(ππe a c e =.⑦焦半径: i. 设),(00y x P 为椭圆 )0(12 22 2φφb a b y a x =+ 上的一点,21,F F 为左、右焦点,则: 证明:由椭圆第二定义可知:)0()(),0()(0002 200201φπx a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起 来为“左加右减”. ii.设),(00y x P 为椭圆 )0(12 22 2φφb a a y b x =+ 上的一点,21,F F 为上、下焦点,则: ⑧通径:垂直于x 轴且过焦点的弦叫做通径: 2 22b d a =;坐标:22(,),(,)b b c c a a - 4.共离心率的椭圆系的方程:椭圆)0(12 22 2φφb a b y a x =+的离心率是)(22b a c a c e -== ,方程 t t b y a x (2 22 2=+是大于0的参数,)0φφb a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆: 12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为 2 tan 2θ b (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . 1020 ,PF a ex PF a ex =+=-1020 ,PF a ey PF a ey =+=-asin α,)α)

圆锥曲线与方程单元教学设计

圆锥曲线与方程单元教 学设计 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

课题名称《圆锥曲线与方程》单元教学设计 设计者姓名郭晓泉 设计者单位华亭县第二中学 联系电话 电子邮箱 《圆锥曲线与方程》单元教学设计 一、教学内容分析 1、实际背景分析 该单元选自人教版数学选修2-1.圆锥曲线与科研、生产以及人类生活关系密切,早在16、17世纪之交,开普勒就发现了行星绕太阳运行的轨道是一个椭圆;探照灯反射镜是抛物线绕其对称轴旋转形成的抛物面;发电厂冷却塔的外形线是双曲线,……现代航空航天领域内圆锥曲线也有重要的应用。圆锥曲线在实际生产生活中有着巨大的作用,主要来自于它们的几何特征及其特性。 2、数学视角分析 《圆锥曲线与方程》是中学数学解析几何的主要内容,研究圆锥曲线的性质,是圆的几何性质的推广与延伸,是运用坐标法从代数的角度来研究圆锥曲线性质,为了解决这个问题,让学生更好地理解和学习圆锥曲线的性质,先了解曲线与方程的关系,研究如何建立曲线的方程,把几何的形与代数的数通过这个关系有机的联系起来,充分运用数的运算来解决形的问题,达到数形统一,体现数形结合的思想。对于圆锥曲线的几何特征与方程的研究,延续了必修课程《必修2》中研究直线与圆的方程的方法,通过图形探究圆锥曲线的几何特征,建立它们的方程,并通过方程来研究他们的简单性质,进而利用坐标法解决一些圆锥曲线有关的简单几何问题和实际问题。 3、课程标准视角分析 (1)学生学习方式的转变问题。在本部分内容中,延续了《必修2》中研究直线与圆的方程的思想,所以应该引导学生通过积极主动的探索来完成圆锥曲线的学习,教师通过圆锥曲线背景的介绍,激发学生的学习兴趣,在研究了椭圆方程及性质的基础上,用类比的方法来研究双曲线和抛物线的方程及性质,经历直观感知,定义、建立方程、研究性质的基本过程,感受坐标法的作用,体会数形结合法的思想。 (2)学生思维能力培养的问题。“高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。”这是课标对学生思维培养的要求,在圆锥曲线这部分

相关文档
相关文档 最新文档