文档库 最新最全的文档下载
当前位置:文档库 › 顺磁共振与核磁共振

顺磁共振与核磁共振

顺磁共振与核磁共振
顺磁共振与核磁共振

顺磁共振与核磁共振实验报告

【摘要】

核磁共振是指受电磁波作用的原子核系统在外磁场中能级之间发生共振跃迁的现象。电子顺磁共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振。铁磁共振具有磁共振的一般特性,而且效应显著,它和核磁共振,顺磁共振一样也是研究物质宏观性能和微观结构的有效手段。它能测量微波铁氧体的许多重要参数,对于微波铁氧体器件的制造、设计,生产有重要作用。铁磁物质在一定的外加恒定磁场和一定频率的微波磁场中当满足共振条件时产生强烈吸收共振的现象。本实验目的是学习用传输式谐振腔法研究铁磁共振现象并测量铁磁物质的共振线宽和g因子。

【关键词】

核磁共振顺磁共振电子自旋自旋g因子

【引言】

核磁共振是指受电磁波作用的原子核系统在外磁场中能级之间发生共振跃迁的现象。早期的核磁共振电磁波主要采用连续波,灵敏度较低,1966年发展起来的脉冲傅里叶变换核磁共振技术,将信号采集由频域变为时域,从而大大提高了检测灵敏度,由此脉冲核磁共振得到迅速发展,成为物理、化学、生物、医学等领域中分析、鉴定和微观结构研究不可缺少的工具。

顺磁共振(EPR)又称为电子自旋共振(ESR),EPR现象首先是由苏联物理学家 E.K.扎沃伊斯基于1944年从MnCl2、CuCl2等顺磁性盐类发现的。物理学家最初用这种技术研究某些复杂原子的电子结构、晶体结构、偶极矩及分子结构等问题。以后化学家根据EPR测量结果,阐明了复杂的有机化合物中的化学键和电子密度分布以及与反应机理有关的许多问题。60年代以来,由于仪器不断改进和技术不断创新,EPR技术至今已在物理学、半导体、有机化学、络合物化学、辐射化学、化工、海洋化学、催化剂、生物学、生物化学、医学、环境科学、地质探矿等许多领域内得到广泛的应用。

【正文】

核磁共振,是指具有磁矩的原子核在恒定磁场中由电磁波引起的共振跃迁现象。它是测定原子的核磁矩和研究核结构的直接而又准确的方法,也是精确测量磁场和稳定磁场的重要方法之一。

电子顺磁共振共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。简称“EPR”或“ESR”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。

一、发展过程

核磁共振的物理基础是原子核的自旋。泡利在1924年提出核自旋的假设,1930年在实验上得到证实。1932年人们发现中子,从此对原子核自旋有了新的认识:原子核的自旋是质子和中子自旋之和,只有质子数和中子数两者或者其中之一为奇数时,原子核具有自旋角动量和磁矩。这类原子核称为磁性核,只有磁性核才能产生核磁共振。磁性核是核磁共振技术的研究对象。1945年12月,美国哈佛大学帕塞尔等人,报道了他们在石蜡样品中观察到质子的核磁共振吸收信号;1946年1月,美国斯坦福大学布洛赫等人,也报道了他们在水样品中观察到质子的核感应信号。两个研究小组用了稍微不同的方法,几乎同时在凝聚物质中发现了核磁共振。因此,1945年发现核磁共振现象的美国科学家珀塞耳(Purcell)和布

珞赫(Bloch)1952年获得诺贝尔化学奖。以后,许多物理学家进入了这个领域,取得了丰硕的成果。目前,核磁共振已经广泛地应用到许多学科领域,是物理、化学、生物、临床诊断、计量科学和石油分析与勘探等研究中的一项重要实验技术。

电子自旋的概念是Pauli在1924年首先提出的。1925年,S.A.Goudsmit和G.Uhlenbeck用它来解释某种元素的光谱精细结构获得成功.Stern和Ger1aok也以实验直接证明了电子自旋磁矩的存在。1944年由前苏联的柴伏依斯基首先发现。它与核磁共振(NMR)现象十分相似,所以1945年Purcell、Paund、Bloch和Hanson等人提出的NMR实验技术后来也被用来观测ESR现象。EPR现象首先是由苏联物理学家E.K.扎沃伊斯基于1944年从MnCl2、CuCl2等顺磁性盐类发现的。物理学家最初用这种技术研究某些复杂原子的电子结构、晶体结构、偶极矩及分子结构等问题。以后化学家根据EPR测量结果,阐明了复杂的有机化合物中的化学键和电子密度分布以及与反应机理有关的许多问题。美国的B.康芒纳等人于1954年首次将EPR技术引入生物学的领域之中,他们在一些植物与动物材料中观察到有自由基存在。60年代以来,由于仪器不断改进和技术不断创新,EPR技术至今已在物理学、半导体、有机化学、络合物化学、辐射化学、化工、海洋化学、催化剂、生物学、生物化学、医学、环境科学、地质探矿等许多领域内得到广泛的应用。ESR己成功地被应用于顺磁物质的研究,例如发现过渡族元素的离子;研究半导体中的杂质和缺陷;离子晶体的结构;金属和半导体中电子交换的速度以及导电电子的性质等。所以,ESR也是一种重要的近代物理实验技术。

实验装置

(一)核磁共振实验装置

(二)顺磁共振实验装置

由电磁铁系统,微波系统和电子检测系统等组成。

1.微波系统:

①三厘米固态信号源②隔离器③可变衰减器④波长计⑤调配器⑥检波器⑦谐振腔

2.魔T :

魔 T 是一个具有与低频电桥相类似特征的微波元器件,如图所示。它有四个臂,相当于一个E ~T 和一个H ~T 组成,故又称双T ,是一种互易无损耗四端口网络,具有“双臂隔离,旁臂平分”的特性。利用四端口S 矩阵可证明,只要1,4臂同时调到匹配,则2,3

臂也自动获得匹配;反之亦然。E 臂和H 臂之间固有隔离,

反向臂2,3之间彼此隔离,即从任一臂输入信号都不能

从相对臂输出,只能从旁臂输出。信号从H 臂输入,同相

等分给2,3臂;E 臂输入则反相等分给2,3臂。由于互

易性原理,若信号从反向臂2,3同相输入,则E 臂得到

它们的差信号,H 臂得到它们的和信号;反之,若2,3

臂反相输入,则E 臂得到和信号,H 臂得到差信号。

当输出的微波信号经隔离器、衰减器进入魔 T 的H

臂,同相等分给2,3臂,而不能进入E 臂。3臂接单螺调

配器和终端负载;2臂接可调的反射式矩形样品谐振腔,样品DPPH 在腔内的位置可调整。E 臂接隔离器和晶体检波器;2,3臂的反射信号只能等分给E ,H 臂,当3臂匹配时,E 臂上微波功率仅取自于2臂的反射。

3. 样品腔

样品腔结构,是一个反射式终端活塞可调的矩型谐振腔。谐振腔的末端是可移动的活塞,调节活塞位置,使腔长度等于半个波导波长的整数倍时,谐振腔谐振。当谐振腔谐振时,电磁场沿谐振腔长L 方向出现P 个长度驻立半波。腔内闭合磁力线平行于波导宽壁,且同一驻立半波磁力线的方向相同、相邻驻立半波磁力线的方向相反。在相邻两驻立半波空间交界处,微波磁场强度最大,微波电场最弱。满足样品磁共振吸收强,非

共振的介质损耗小的要求,所以,

是放置样品最理想的位置。 4. 磁场系统

由电磁铁,励磁电源和调场

电源组成,用于产生外磁场B= BD

+BAcos ωt 。励磁电源接到电磁铁

直流绕组,产生BD 通过调整励磁

电流改变BD 。调场电源接到电磁

铁交流绕组,产生BAcos ωt ,并

经过相移电路接到示波器X 轴输

入端。

5.电子仪器:

微安表、示波器、特斯拉计

三、实验设计

魔T 示意图 z H 微波腔长标尺样品活塞

样品位置标尺

微波磁场线电场线谐振腔示意图

核磁共振实验报告

核磁共振实验报告 一、实验目的: 1.掌握核磁共振的原理与基本结构; 2.学会核磁共振仪器的操作方法与谱图分析; 3.了解核磁共振在实验中的具体应用; 二、实验原理 核磁共振的研究对象为具有磁矩的原子核。原子核是带正电荷的粒子,其自旋运动将产生磁矩,但并非所有同位素的原子核都有自旋运动,只有存在自选运动的原子核才具有磁矩。原子核的自选运动与自旋量子数I有关。I=0的原子核没有自旋运动。I≠0的原子核有自旋运动。 原子核可按I的数值分为以下三类: 1)中子数、质子数均为偶数,则I=0,如12C、16O、32S等。 2)中子数、质子数其一为偶数,另一为基数,则I为半整数,如: I=1/2;1H、13C、15N、19F、31P等; I=3/2;7Li、9Be、23Na、33S等; I=5/2;17O、25Mg、27Al等; I=7/2,9/2等。 3)中子数、质子数均为奇数,则I为整数,如2H、6Li、14N等。 以自旋量子数I=1/2的原子核(氢核)为例,原子核可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类似一个小磁铁。当置于外加磁场H0中时,相对于外磁场,可以有(2I+1)种取向: 氢核(I=1/2),两种取向(两个能级): a.与外磁场平行,能量低,磁量子数m=+1/2; b.与外磁场相反,能量高,磁量子数m=-1/2;

正向排列的核能量较低,逆向排列的核能量较高。两种进动取向不同的氢核之间的能级差:△E= μH0(μ磁矩,H0外磁场强度)。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。三、实验仪器 400MHz超导傅里叶变换核磁共振波谱仪 (仪器型号:AVANCE III 400) 四、仪器构造、组成 1)操作控制台:计算机主机、显示器、键盘和BSMS键盘。 计算机主机运行Topspin程序,负责所有的数据分析和存储。BSMS键盘可以让用户控制锁场和匀场系统及一些基本操作。 2)机柜:AQS(采样控制系统)、BSMS(灵巧磁体系统),VTU(控温单元)、 各种功放。 AQS各个单元分别负责发射激发样品的射频脉冲,并接收,放大,数字化样品放射出的NMR信号。AQS完全控制谱仪的操作,这样可以保证操作不间断从而保证采样的真实完整。BSMS:这个系统可以通过BSMS键盘或者软件进行控制,负责操作锁场和匀场系统以及样品的升降、旋转。3)磁体系统:自动进样器、匀场系统、前置放大器(HPPR)、探头。 本仪器所配置的自动进样器可放置60个样品。磁体产生NMR跃迁所需的

核磁共振技术及其应用分解

核磁共振技术及其在食品分析检测中 的应用 The Technology of Nuclear Magnetic Resonance and Its Application in food analysis and detection

摘要 核磁共振分析技术是利用物理原理, 通过对核磁共振谱线特征参数的测定来分析物质的分子结构与性质.它不破坏被测样品的内部结构, 是一种无损检测方法. 本文重点介绍了核磁共振技术的原理及其在食品中的水分、油脂、玻璃态转变、碳水化合物、蛋白质及品质鉴定等方面的研究进展。 关键词:核磁共振技术;应用;食品;分析;检测。

Abstract The technology of nuclear magnetic resonance analysis can be used to determine the structure and the nature of molecules and it is a nondestructive test. This article introduces briefly its principles and its application in food detection was summarized in the aspect of moisture, oil, glass transition, carbohydrate, protein and quality detection. Keywords: technology of the nuclear magnetic resonance; application; food;analysis;detection.

最新核磁共振实验报告

一、实验目的与实验仪器 1.实验目的 (1)了解核磁共振的基本原理; (2)学习利用核磁共振校准磁场和测量因子g 的方法: (3)掌握利用扫场法创造核磁共振条件的方法,学会利用示波器观察共振吸收信号; (4)测量19F 的g N 因子。 2.实验仪器 NM-Ⅱ型核磁共振实验装置,水 样品和聚四氟乙烯样品。 探测装置的工作原理:图一中绕 在样品上的线圈是边限震荡器电路 的一部分,在非磁共振状态下它处在 边限震荡状态(即似振非振的状态), 并把电磁能加在样品上,方向与外磁 场垂直。当磁共振发生时,样品中的 粒子吸收了震荡电路提供的能量使振荡电路的Q 值发生变化,振荡电路产生显著的振荡,在示波器上产生共振信号。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 原子核自旋角动量不能连续变化,只能取分立值即: P = 其中I 称为自旋量子数,I=0,1/2,1,3/2,2,5/2,…本实验涉及的质子和氟核 F 19 的自旋量子数I 都等于1/2。类似地原子核的自旋角动量在空间某一方向,例如z 方向的分量不能连续变化,只能取分立的数值 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩, 其大小为: P 2M e g =μ 核磁共振 实验报告

其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 成为原子核的g 因子。由于核自旋角动量在任意给定的z 方向的投影只可能取(2I+1)个分立的数值,因此核磁矩在z 方向上的投影也只能取(2I+1)个分立的数值: 2M e g p 2M e g m z z ==μ 原子核的磁矩的单位为: 2M e N =μ 当不存在外磁场时,原子核的能量不会因处于不同的自旋状态而不同。通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为: B B P B B E z z m γγμμ-=-=-=?-= 核磁矩在加入外场B 后,具有了一个正比于外场的频率。量子数m 取值不同,则核磁矩的能量也就不同。原来简并的同一能级分裂为(2I+1)个子能级。不同子能级的能量虽然不同,但相邻能级之间的能量间隔 却是一样的,即: B E γ=? 而且,对于质子而言,I=1/2,因此,m 只能取m=1/2和m= -1/2两个数值。简并能级在磁场中分开。其中的低能级状态,对应E 1=-mB ,与场方向一致的自旋,而高的状态对应于E 2=mB ,与场方向相反的自旋。当核自旋能级在外磁场B 作用下产生分裂以后,原子核在不同能级上的分布服从玻尔兹曼分布。 若在与B 垂直的方向上再施加一个高频电磁场(射频场),且射频场的频率满足一定条件时,会引起原子核在上下能级之间跃迁。这种现象称为共振跃迁(简称共振)。 发生共振时射频场需要满足的条件称为共振条件: B π γν2= 如果用圆频率ω=2πν 表示,共振条件可写成:B γω=

核磁共振实验报告

1、前言和实验目的 核磁共振是指受电磁波作用的原子核系统在外磁场中磁能级之间发生共振跃迁的现象。本实验的样品在外磁场中,外磁场使样品核能级因核自旋不同的取向而分裂,在数千高斯外磁场下核能级的裂距一般在射频波段,样品在射频电磁波作用下,粒子吸收电磁波的能量,从而产生核能级的跃迁。1932年发现中子后,才认识到核自旋是质子自旋和中子自旋之和,质子和中子都是自旋角动量为2 的费米子,只有质子数和中子数两者或其一为奇数时,核才有非零的核磁矩,正是这种磁性核才能产生核磁共振。 核磁共振信号可提供物质结构的丰富信息,如谱线的宽度、形状、面积、谱线在频率或磁场刻度上的准确位置、谱线的精细结构、超精细结构、弛豫时间等,加之是对样品的无损测量,广泛的应用于分子结构的确定、液相和固相的动力学研究、医用诊断、固体物理学、分析化学、分子生物学等领域,是确定物质结构、组成和性质的重要实验方法。核磁共振还是磁场测量和校准磁强计的标准方法之一,其不确定度可达001.0±%。 实验目的: (1)掌握核磁共振的实验原理和方法 (2)用核磁共振方法校准外磁场B ,测量氟核的F g 因子以及横向驰豫时间2T 2、实验原理 如原子处在磁场中会发生能级分裂一样,许多原子核处在磁场中也会发生能级的分裂,因为 原子核也存在自旋现象。质子和中子都是自旋角动量等于2 的费米子,当质子数和中子数都为偶数时原子核的磁矩为0,当其一为奇数时原子核磁矩为半整数,当两个都为奇数时核磁矩为整数。只有具有核磁矩的原子核才有核磁共振现象。 我们知道在微观世界里物理量都只能取分立的值,即都是量子化的。原子核的角动量也只能取分立的值 )1(+= I I p ,I 为自旋量子数,取分立的值。对于本实验用到的H 1和F 19,自旋量 子数I 都为1/2。沿z 方向的角动量为 m p z =,在这里m 只能取1/2或-1/2。而自旋角动量不为0的核具有核磁矩p m e g p 2F =,考虑沿z 轴方向则有N z p Z mgF p m e G F ==2,其中以 γ== p z m e F 2为原子核磁矩的基本单位,p m e 2=γ。 在没有磁场作用时,原子核的能量时一样的,但处于磁场中则会发生能级分裂, B m γ-B -F B F E Z =?=?-=,本实验中1=?m ,故有B E γ=?。外加一射频场,当满足一定 的条件时就会发生共振吸收,条件为πγγυ2hB B E h = =?= ,从而有共振频率B π γ υ2= 。通过

核磁共振实验报告

应物0903班 核磁共 振实验报告 王文广U8 苏海瑞 U8

核磁共振实验报告 一、实验目的 1.了解核样共振的基本原理 2.学习利用核磁共振测量磁场强度和原子核的g 因子的方法 二、实验内容 1.在加不同大小扫场情况下仔细观察水样品的核磁共振现象,记录每种情况下的共振峰形和对应的频率 2.仔细观察和判断扫场变化对共振峰形的影响,从中确定真正能应永久磁铁磁场0B 的共振频率,并以此频率和质子的公认旋磁比值 ()267.52MHz /T γ=计算样品所在位置的磁场0B 3.根据记录的数据计算扫场的幅度 4.研究射频磁场的强弱对共振信号强度的影响 5.观察聚四氟乙烯样品的核磁共振现象,并计算氟核的g 因子 三、实验原理 1.核磁共振现象与共振条件 原子的总磁矩j μ和总角动量j P 存在如下关系 22B j j j j e e B e g P g P P m h e e m πμμγμγ=-==为朗德因子,、是电子电荷和质量,称为玻尔磁子,为原子的旋磁比

对于自旋不为零的原子核,核磁矩j μ和自旋角动量j P 也存在如下关系 22N I N I N I I p e g P g P P m h πμμγ=-== 按照量子理论,存在核自旋和核磁矩的量子力学体系,在外磁场 0B 中能级将发生赛曼分裂,相邻能级间具有能量差E ?,当有外界条 件提供与E ?相同的磁能时,将引起相邻赛曼能级之间的磁偶极跃迁,比如赛曼能级的能量差为02B h E γπ ?= 的氢核发射能量为h ν的光子,当0= 2B h h γνπ 时,氢核将吸收这个光子由低塞曼能级跃迁到高塞曼能级,这种共振吸收跃迁现象称为“核磁共振” 由上可知,核磁共振发生和条件是电磁波的圆频率为 00B ωγ= 2.用扫场法产生核磁共振 在实验中要使0= 2B h h γνπ 得到满足不是容易的,因为磁场不是容易控制,因此我们在一个永磁铁0B 上叠加一个低频交谈磁场 sin m B B t ω=,使氢质子能级能量差 ()0sin 2m h B B t γωπ +有一个变化的区域,调节射频场的频率ν,使射频场的能量h ν能进入这个区域,这样在某一瞬间等式 ()0sin 2m h B B t γωπ +总能成立。如图,

磁共振实验报告

近代物理实验题目磁共振技术 学院数理与信息工程学院 班级物理082班 学号08220204 姓名 同组实验者 指导教师

光磁共振实验报告 【摘要】本次实验在了解如光抽运原理,弛豫过程、塞曼分裂等基本知识点的基础上,合理进行操作,从而观察到光抽运信号,并顺利测量g因子。 【关键词】光磁共振光抽运效应塞曼能级分裂超精细结构 【引言】光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。 【正文】 一、基本知识 1、铷原子基态和最低激发态能级结构及塞曼分裂 本实验的研究对象为铷原子,天然铷有两种同位素;85Rb(占72.15%)和87Rb(占27.85%).选用天然铷作样品,既可避免使用昂贵的单一同位素,又可在一个样品上观察到两种原子的超精细结构塞曼子能级跃迁的磁共振信号.铷原子基态和最低激发态的能级结构如图1所示.在磁场中,铷原子的超精细结构能级产生塞曼分裂.标定这些分裂能级的磁量子数m F=F,F-1,…,-F,因而一个超精细能级分裂为2F+1个塞曼子能级. 设原子的总角动量所对应的原子总磁矩为μF,μF与外磁场B0相互作用的能量为 E=-μF·B0=g F m FμF B0(1) 这正是超精细塞曼子能级的能量.式中玻尔磁子μB=9.2741×10-24J·T-1 ,朗德因子g F= g J [F(F+1)+J(J+1)-I(I+1)] ? 2F(F+1)(2) 图1 其中g J= 1+[J(J+1)-L(L+1)+S(S+1)] ? 2J(J+1)(3) 上面两个式子是由量子理论导出的,把相应的量子数代入很容易求得具体数值.由式(1)可知,相邻塞曼子能级之间的能量差 ΔE=g FμB B0(4) 式中ΔE与B0成正比关系,在弱磁场B0=0,则塞曼子能级简并为超精细结构能级.

磁共振成像(MRI)质量控制手册(ACR)

磁共振成像(MRI)质量控制手册――英文版前 言 美国放射学院(ACR)磁共振成像成像(MRI)质量保证委员会成立的目的,就是为了保证各指定医院磁共振成像性能质量。委员会的任命是为了保证患者、相关的医生和其它研究的完成。而这些研究是在指定医院,由训练有素、高技能的人员正确使用MRI设备下进行的。 美国放射学院指定的MRI机构已同意持续进行MRI设备质量控制计划。美国放射学院MRI质量保证委员会已收到很多提问,如“组成一个恰当的MRI设备质量控制计划的内容是什么?”、“各科室不同的医疗卫生专业人员的恰当角色应当是怎样的?”等等。 本手册旨在帮助医院检测和维护自己的MRI设备,这和美国放射学院制定的《MRI设备医学、诊断、物理、性能标准》[Res.19—1999]中的公开原则是一致的。委员会已把这些原则用于阐述哪些人应对哪项具体工作负有责任的具体内容,并提供了使用美国放射学院MRI体模检测和评价设备性能的许多方法。 美国放射学院MRI质量保证委员会成员,无偿地贡献出自己的时间和经验来完成《美国放射学院MRI质量控制手册》,特别是Geoffrey Clarke 博士编写了本手册的重要部分,并花费了大量时间检测本手册所写的程序。委员会之外的人员也参与其中,提供了非常有价值的

内容和建议,在这里向他们表示衷心的感谢!他们是:William G..Bradley,Fr.,M.D.,Edward F.Jackson,Ph.D.,Joel P.Felmlee,Ph.D.,and Wlad Sobol,Ph.D.,and Jonathan Tucker,Ph.D., 后四位专家专门编写了“MRI物理师/技术专家篇”。我们也向美国放射学院秘书长Jeff Hayden,R.T.(R)(MR)表示感谢!向Pamela Wilcox Buchalla, Marie Zinninger,美国放射学院两位副执行官,以及几年来一直关注这项计划和美国放射学院其它计划认定的同仁,一并表示感谢! 我们使用本手册进行实验性检测来判断它的兼容性,美国放射学院向以下在实验性检测中主动提供宝贵的反馈意见的人员致谢!他们是:Tom Callahan,MPS,R.T.(R)(MR),Glyn Johnson,Ph.D.,Viswanathan Venkataraman,M.S.,Edmond Knopp,M.D., Laura Foster B.S. R.T.(R)(QM)(M). Jeffrey C.Weinreb,M.D. 美国放射学院MRI质量保证委员会主席 2001年1月 磁共振成像(MRI)质量控制手册――中文版序言1978年第一台头部磁共振成像(MRI)设备、 1980年第一台全身

磁共振的临床应用价值

磁共振的临床应用价值 1、MRI比较于CT的优势 MRI利用人体中最多的氢质子在磁场中产生的共振效应,通过计算机处理后得到的图像。根据图像的性质不同,一般可分为T1加权像,T2加权像,质子密度像这三种基本图像。而CT是依赖于组织的X线衰减(CT值)。这是它们图像上的基本不同。所以,MRI相对于CT的优势非常明显: 1、MRI有很高的组织对比分辨率:MRI成像主要是考察组织的含水量的多少 以及所含水的特性不同。也就是说,含水量不同,MRI图像上就可以明显区分开来,即使含水量一样,由于所含水的特性(比如弛豫特性、流动特性、扩散特性 等等)不同,在MRI的图像上,最终表现出来的信号会完全不同。所以MRI的图像在所有的影像学图像中,是最接近于人体实际解剖结构的,甚至可以说和解剖书上的示图完全一样,非常直观。在考察软组织病变,特别是占位性病变比如脑膜瘤,胶质瘤,垂体腺瘤等等时,MRI的优势巨大。MRI图像上病变边缘会较CT 清晰锐利得多,完全可以确定占位性病变的边界,对临床手术及切除后复诊起到极其重要的指导意义。 2、MRI有多种参数的选择与变化从而有可能对各种病变的性质加以判断。 CT只能通过CT值的变化来进行诊断,参数只有CT值一个。MRI的参数有几十种之多,经常用到的就有十几种。根据参数选择的不同,MRI的图像就会完全不同。一般可分为T1加权像,T2加权像,质子密度像这三种基本图像。临床上最常用 到的是T1加权像(又称解剖像)和T2加权像(又称病理像)。举例来说,脂肪在T1加权像和T2加权像上均为高信号,肌肉、肝脏、胰腺等组织器官在T1加权像上为中等信号,而在T2加权像上则为较低信号,肺组织,大血管,钙化等 在上述图像上均为一般均匀低信号,而肾、脾等组织器官在T1加权像上为较低信号,在质子像和T2加权像上均为较高信号。通过选择不同的参数,得到几种 不同信号表现的图像,MRI可以将每种组织器官及病变完全区分开来,而不同的 组织的CT值有可能完全一样,这时CT的局限性就暴露出来了。 3、MRI没有放射线的损害,MRI使用的是无线电波进行检测,频率也不高,以0.35T为例,频率仅为14.9MHz,并且持续时间很短。MRI只产生非常微量的热效应,人体几乎感觉不到。相对于CT所使用的射线,MRI无疑是一种环保的,

核磁共振成像实验报告

中国石油大学 近代物理实验 实验报告 成 绩: 班级: 姓名 同组者: 教师: 核磁共振实验 【实验目的】 1、理解核磁共振的基本原理; 2、理解磁体的中心频率和拉莫尔频率的关系,并掌握拉莫尔频率的测量方法; 3、掌握梯度回波序列成像原理及其成像过程; 4、掌握弛豫时间的计算方法,并反演 T1和T2谱。 【实验原理】 一.核磁共振现象 原子核具有磁矩,氢原子核在绕着自身轴旋转的同时,又沿主磁场方向B 0作圆周运动,将质子磁矩的这种运动称之为进动,如图1所示。 图1 质子磁矩的进动 在主磁场中,宏观磁矩像单个质子磁矩那样作旋进运动,磁矩进动的频率符合拉莫尔(Larmor )方程:. 0/2f B γπ= 二、施加射频脉冲后(氢)质子状态 当生物组织被置于一个大的静磁场中后,其生物组织内的氢质子顺主磁场方向的处于低能态而逆主磁场方向者为高能态。在低能态与高能态之间根据静磁场场强大小与当时的温度,势必要达到动态平衡,称为“热平衡”状态。这种热平衡状态中的氢质子,被施以频率与质子群的旋进频率一致的射频脉冲时,将破坏原来的热平衡状态。施加的射频脉冲越强,

持续时间越长,在射频脉冲停止时,M离开其平衡状态B0越远。 如用以B0为Z轴方向的直角座标系表示M,则宏观磁化矢量M平行于XY平面,而纵向磁化矢量Mz=0,横向磁化矢量Mxy最大,如图2所示。这时质子群几乎以同样的相位旋进。施加180°脉冲后,M与B0平行,但方向相反,横向磁化矢量Mxy为零,如图3所示。 图2 90°脉冲后横向磁化矢量达到最大 图3 180°脉冲后的横向磁化分量为0 三、射频脉冲停止后(氢)质子状态 脉冲停止后,宏观磁化矢量又自发地回复到平衡状态,这个过程称之为“核磁弛豫”。当90°脉冲停止后,M仍围绕B0轴旋转,M末端螺旋上升逐渐靠向B0,如图4所示。 图4 90度脉冲停止后宏观磁化矢量的变化 1. 纵向弛豫时间(T1) 90°脉冲停止后,纵向磁化矢量要逐渐恢复到平衡状态,测量时间距射频脉冲终止的时

核磁共振及其应用

核磁共振及其应用 发布范围:公开2010-02-03 16:26 核磁共振现象是由美国科学家柏塞尔 (E.M.Purcell)和瑞士科学家布洛赫(E.Blo ch)于1945年12月和1946年1月分别独立 发现的。他们共享了1952年诺贝尔物理学 奖。 核磁共振(nuclear magnetic resonan ce)是原子核的磁矩在恒定磁场和高频磁场同时作用,且满足一定条件时所发生的共振吸收现象,是一种利用原子核在磁场中的能量变化来获得关于核信息的技术。50多年来,由核磁共振转化为探索物质微观结构和性质的高新技术已取得了惊人的进展。目前,核磁共振已在物理学、化学、材料科学、生命科学等领域得到广泛应用。 如同电子具有自旋角动量和自旋磁矩一样,核也具有自旋角动量和自旋磁矩。核自旋 即是原子核内所有核子的自旋角动量与轨道角动量的矢量和,其大小 ,其中I为核自旋量子数。在外磁场方向(设磁场沿z方向)的投影为 ,称为核自旋磁量子数,I一定时,有(2I +1)个取值。 自旋不为零的原子核有磁矩,它与核自旋的关系为,式中为质子的质量,称为核的朗德因子,它取决于核的内部结构与特性,且是一个无量纲的量。于是,旋磁比。 核磁子在外磁场(沿z轴)方向的投影

, 其中 称作核磁子。通常将取最大值I时的 称为核的磁矩,记作 (1) 这磁矩在空间的可能取向如图2所示,它位于核磁矩在外磁场(沿z轴)中旋进的锥面上。磁矩与磁场的相互作用能为 (2) 由于同一I下有(2I +1)个值,因而原来得一个核能级附加上相互作用能,将会有(2 I +1)个能量值,称为为子能级。相邻两个子能级的能量差(因其值相差为1)为 (3) 例如,氢核的基态核能级,在恒定磁场中的分裂情况如图3所示。 已知核磁矩在外磁场的作用下旋进,可以求得其旋进角速度为,若再在垂直于 的方向加一个频率在射频范围的交变磁场B (如图4所示),当其频率与核磁矩旋进频

核磁共振成像实验报告

核磁共振成像实验 【目的要求】 1.学习和了解核磁共振原理和核磁共振成像原理; 2.掌握MRIjx 核磁共振成像仪的结构、原理、调试和操作过程; 【仪器用具】 MRIjx 核磁共振成像仪、计算机、样品(油) 【原 理】 磁共振成像(MRI )是利用射频电磁波(脉冲序列)对置于静磁场B 0中的含有自旋不为零的原子核(1H )的物质进行激发,发生核磁共振,用感应线圈检测技术获得物质的组织驰豫信息和氢质子密度信息(采集共振信号),用梯度磁场进行空间定位、通过图像重建,形成磁共振图像的方法和技术。 具体的讲,核磁共振是利用核磁共振现象获取分子结构、样品内部结构信息的技术。当具有自旋的原子核的磁矩处于静止外磁场中时会产生进动和能级分裂。在交变磁场作用下,自旋的原子核会吸收特定频率的无线电射频电磁波,从较低的能级跃迁到较高能级。在停止射频脉冲后,原子核按特定频率发出射电信号,并将吸收的能量释放出来,被物体外的接受器收录,经电子计算机处理获得图像,这就是做核磁共振成像过程。 MRI 的特点: ● 具有较高的物质组织对比度和组织分辨力,对软组织分辨率极佳,能清晰地显示软组织、软骨结构,解剖结构和医学上的病变形态,显示清楚、逼真。 ● 多方位成像,能对被检查部位进行横断面、冠状面、矢状面以及任何斜面成像。 ● 多参数成像,获取T 1加权成像(T 1W1):T 2加权成像(T 2W2)、质子密度加权成像(PDW1),在影像上取得物质的组织之间、组织与变化之间T 1、T 2和PD 的信号对比,在医学上对显示解剖结构和病变敏感。 ● 能进行形态学、功能、组织化学和生物化学方面的研究。 ● 以射频脉冲作为成像的能量源,不使用电离辐射,对人体安全、无创。 一、核磁共振原理 产生核磁共振信号必须满足三个基本条件:(1)能够产生共振跃迁的原子核;(2)恒定的静磁场(外磁场、主磁场)B 0;(3)产生一定频率电磁波的交变磁场,射频磁场(RF );即:“核”:共振跃迁的原子核;“磁”:主磁场B 0和射频磁场RF ;“共振”:当射频磁场的频率与原子核进动的频率一致时原子核吸收能量,发生能级间的共振跃迁。 1. 原子核的自旋和磁矩 原子核由质子和中子组成,原子核有自旋运动,可以粗略的理解为原子核绕自身的轴向高速旋转的运动,对应有确定的自旋角动量,反映了原子核的内禀特性。自旋的大小与原子核中的核子数及其分布有关,质子数和中子数均为偶数的原子核,自旋量子数I=0,质量数为奇数的原子核,自旋量子数为半整数,质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。原子核自旋角动量的具体数值由原子核的自旋量子数I 决定, )(1+=I I l I 。 原子核具有电荷分布,自旋时形成循环电流,产生磁场,形成磁矩,磁矩的方向与自旋角动量方向一致,大小I P γγμ==,P 是角动量,γ是磁旋比,等于

核磁共振实验报告电子版

核磁共振实验报告 04级11系姓名:徐文松学号:PB04210414 日期:2006.05.12 CONTENTS OF THIS REPORT (Click while press CTRL to locate it) return 核磁共振 return 1.观察核磁共振稳态吸收现象; 2.掌握和磁共振基本试验原理和方法; 值和g因子。 3.测量1H和19F的 return 1.核自旋

原子核具有自旋,其自旋角动量为 h I I p )1(1+= 其中I 是核自旋量子数,其值为半整数或整数。当质子数和质量数均为偶数时,I=0,当质量数为偶数而质子数为奇数时,I=0,1,2…,当质量数为奇数时,I=2n (n=1,3,5…). 2. 核磁矩 原子核带有电荷,因而具有子旋磁矩,其大小为 )1(211+==I I g p m e g N N μμ N N m eh 2=μ 式中g 为核的朗德因子,对质子,g =5.586,N m 为原子核质量,N μ为核磁子,N μ= 227100509.5m A ??-,令 g m e N 2= γ 显然有 I I p γμ= γ称为核的旋磁比。 3. 核磁矩在外磁场中的能量 核自旋磁矩在外磁场中会进动。进动的角频率 00B γω= 0B 为外恒定磁场。 4.核磁共振 实现核磁共振,必须有一个稳恒的外磁场 O B 及一个与O B 和总磁矩m 所组成的平面相垂直的旋转磁场1B ,当1B 的角频率等于0ω时,旋转磁场的能量为E h ?=0ω,则核吸收此旋转磁场能量,实现能级间的跃迁,即发生核磁共振。 此时应满足

00B h g h E N μω==? 00B γω= h 为普朗克常数。 改变O B 或ω都会使信号位置发生相对移动,当共振信号间距相等重复频率为f π4时,表示共振发生在调制磁场的相位为02=ft π,π,π2,… 此时,若已知样品的γ,测出对于能够的射频场频率ν,即可算出O B 。反之测出O B ,可算出γ和g 因子。 本次实验的装置包括电磁铁、边限振荡器、探头及样品、频率计、示波器及移相器等。 return 1. 观察1()H 的核磁共振信号(图像见原始数据): (1) 固定电压调节射频场的频率 如图组一所示,当ω改变时,共振磁场 γω=B 也就发生改变,因此相邻峰的间距改变, 而相隔的两个峰间距不变。 f

核磁共振实验报告

核磁共振实验报告 一、实验目的与实验仪器 1.实验目的 (1)了解核磁共振的基本原理; (2)学习利用核磁共振校准磁场和测量因子g的方法: (3)掌握利用扫场法创造核磁共振条件的方法,学会利用示波器观察共振吸收信号; (4)测量19F的g N因子。 2.实验仪器 NM-Ⅱ型核磁共振实验 装置,水样品和聚四氟乙烯 样品。 探测装置的工作原理: 图一中绕在样品上的线圈是边限震荡器电路的一部分,在非磁共振状态下它处在边限震荡状态(即似振非振的状态),并把电磁能加在样品上,方向与外磁场垂直。当磁共振发生时,样品中的粒子吸收了震荡电路提供的能量使振荡电路的Q值发生变化,振荡电路产生显著的振荡,在示波器上产生共振信号。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)

原子核自旋角动量不能连续变化,只能取分立值即: P = 其中I 称为自旋量子数,I=0,1/2,1,3/2,2,5/2,…本实验涉及的质子和氟核 F 19 的自旋量子数I 都等于1/2。类似地原子核的自旋角动量在空间某一方向,例如z 方向的分量不能连续变化,只能取分立的数值 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩, 其大小为: P 2M e g =μ 其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 成为原子核的g 因子。由于核自旋角动量在任意给定的z 方向的投影只可能取(2I+1)个分立的数值,因此核磁矩在z 方向上的投影也只能取(2I+1)个分立的数值: 2M e g p 2M e g m z z ==μ 原子核的磁矩的单位为: 2M e N = μ 当不存在外磁场时,原子核的能量不会因处于不同的自旋状态而不同。通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为: B B P B B E z z m γγμμ-=-=-=?-= 核磁矩在加入外场B 后,具有了一个正比于外场的频率。量子数

核磁共振实验报告

关于核磁共振现象的实验研究与讨论 崔泽轮0942024018 物理学院核工程与核技术专业 摘要:利用连续波法观察了核磁共振现象,测定了H核的核磁共振频率,计算了H核的核磁共振参数,研究了H核在扫场频率和振荡幅度分别作用下的饱和现象。 关键词:核磁共振;共振频率;共振信号;饱和现象;匀强磁场 引言 核磁共振是指具有磁矩的原子核在恒定磁场中,由电磁波引起的共振跃迁现象。1945年12月,珀塞尔等人首先在石蜡样品中观察到核磁共振吸收信号,之后核磁共振领域得到广泛关注,许多物理学家进入这个领域,并取得了丰硕成果。目前,核磁共振技术已经广泛应用于物理、化学、生物、医学等各个领域并发挥着日益重要的作用。它在测定原子核磁矩以及研究原子核结构方面是直接而且准确的方法,也是精确测量磁场的重要方法之一。 虽然产生核磁共振的原理是相同的,但对核磁共振现象的观察与研究的试验方法却有很多,其中连续波的方法易于操作和观察[1],结果直观易得,故本实验采用这种方法。关于实验原理,本实验并不深究。本实验重点在于观察核磁共振现象,并验证核磁共振原理的若干相关推论,而后对实验中的一些现象作一些分析和讨论,探明这些现象的原因。 1 实验部分 1.1 使用试剂 本实验主要探究H原子核,即质子,在不同化学环境中的共振现象,以及F核在原子状态下的核磁共振现象。关于H核,实验试剂选择了五种:1%的Mn Cl2溶液、1%的CuSO4溶液、1%的FeCl3溶液三种试剂属于弱酸性,且酸性依次增强;纯水呈中性;丙三醇属于有机物。关于F核,实验选择以原子状态存在的F为研究对象。 2.2 实验方法 本实验采用连续波的方法。首先有用此帖产生一个恒定匀强磁场B01,再由扫场线圈在B01上叠加一个旋进磁场B02= Asinω0t叠加后的匀强磁场为B0=B01+Asinω0t,即其在一定范围内做正弦运动。有信号检测器在探头内产生一个与B0垂直的正弦运动的磁场B1=2Asinω0t 其中B1的角频率ω可调。设Bω=ω/γ,则每当B1在运动过程中扫过Bω时,产生一次共振。故共振现象随扫场频率周期性发生。由示波器可观察共振信号。 1.3 设备与规格 ZKY-HG-Ⅱ型专业级边限振荡器核磁共振实验仪:包括边限振荡器、频率计、扫场电源部分、信号检测器以及匀强磁场等部分构成。其中边限振荡器用以产生横向磁场B1;频率计用以调节和显示信号检测器振荡线圈中的信号频率大小和信号幅度;扫场电源部分用以在匀强磁场B01上叠加一个旋进磁场B02,用以控制共振周期性发生,从而减小饱和对信号强度的影响;信号检测器是对振荡线圈频率控制和对试剂共振信号的检测和处理的装置;匀强磁场由两块永磁铁产生。 数字双踪示波器,用以观测共振信号。 1.4实验过程 1.4.1 观察硫酸铜中H核的共振图像

磁共振成像MRI质量控制手册ACR--中文版

磁共振成像(MRI)质量控制手册――英文版前言 美国放射学院(ACR)磁共振成像成像(MRI)质量保证委员会成立的目的,就是为了保证各指定医院磁共振成像性能质量。委员会的任命是为了保证患者、相关的医生和其它研究的完成。而这些研究是在指定医院,由训练有素、高技能的人员正确使用MRI 设备下进行的。 美国放射学院指定的MRI机构已同意持续进行MRI设备质量控制计划。美国放射学院MRI质量保证委员会已收到很多提问,如“组成一个恰当的MRI设备质量控制计划的内容是什么?”、“各科室不同的医疗卫生专业人员的恰当角色应当是怎样的?”等等。 本手册旨在帮助医院检测和维护自己的MRI设备,这和美国放射学院制定的《MRI 设备医学、诊断、物理、性能标准》[Res.19—1999]中的公开原则是一致的。委员会已把这些原则用于阐述哪些人应对哪项具体工作负有责任的具体内容,并提供了使用美国放射学院MRI体模检测和评价设备性能的许多方法。 美国放射学院MRI质量保证委员会成员,无偿地贡献出自己的时间和经验来完成《美国放射学院MRI质量控制手册》,特别是Geoffrey Clarke 博士编写了本手册的重要部分,并花费了大量时间检测本手册所写的程序。委员会之外的人员也参与其中,提供了非常有价值的内容和建议,在这里向他们表示衷心的感谢!他们是:William G..Bradley,Fr.,M.D.,Edward F.Jackson,Ph.D.,Joel P.Felmlee,Ph.D.,and Wlad Sobol,Ph.D.,and Jonathan T ucker,Ph.D., 后四位专家专门编写了“MRI物理师/技术专家篇”。我们也向美国放射学院秘书长Jeff Hayden,R.T.(R)(MR)表示感谢!向Pamela Wilcox Buchalla, Marie Zinninger,美国放射学院两位副执行官,以及几年来一直关注这项计划和美国放射学院其它计划认定的同仁,一并表示感谢! 我们使用本手册进行实验性检测来判断它的兼容性,美国放射学院向以下在实验性检测中主动提供宝贵的反馈意见的人员致谢!他们是:T om Callahan,MPS,R.T.(R)(MR),Glyn Johnson,Ph.D.,Viswanathan Venkataraman,M.S.,Edmond Knopp,M.D., Laura Foster B.S. R.T.(R)(QM)(M). Jeffrey C.Weinreb,M.D. 美国放射学院MRI质量保证委员会主席 2001年1月 磁共振成像(MRI)质量控制手册――中文版序言 1978年第一台头部磁共振成像(MRI)设备、1980年第一台全身磁共振成像设备投入临床应用,标志着放射诊断学进入了医学影像学的发展阶段。27年来,磁共振成像技术越发展现出在医学诊断领域中独特的价值!而且,磁共振成像主机设备及其成像功能正以超出人们想像的速度发展着。

核磁共振的稳态吸收实验

电子信息与机电工程 学院 现代物理实验 实验报告 年级 班 号 实验日期: 姓名: 老师评定: 核磁共振的稳态吸收 一、实验目的 1、了解核磁共振原理 2、利用核磁共振方法确定样品的旋磁比γ、朗德因子g N 和原子核的磁矩μI 3、用核磁共振测磁场强度 二、实验原理 1. 单个核的磁共振 通常将原子核的总磁矩在其角动量P 方向上的投影μ 称为核磁矩,它们之间的关系通常写成 P m e g P P N ??=?=2μγμ或 式中P N m e g 2? =γ称为旋磁比;e 为电子电荷;m 为质子质量;N g 为朗德因子。对氢核来说,5851.5=N g 按照量子力学,原子核角动量的大小由下式决定 ()h I I P 1+= 式中π2h h =,h 为普朗克常数。I 为核的自旋量子数,可以取 ,2 3 ,1,21,0=I 对氢核来说2 1= I 把氢核放入外磁场B 中,可以取坐标轴z方向为B 的方向。核的角动量在B 方向上的投影值由下式决定

电子信息与机电工程 学院 现代物理实验 实验报告 年级 班 号 实验日期: 姓名: 老师评定: h m P B = (2—3) 式中m 称为磁量子数,可以取I I I I m ----=),1(,1, 。核磁矩在B 方向上的投影为 m m eh g P m e g P N B P N B )2(2==μ 将它写为 m g N N B μμ= (2—4) 式中2715.0578710N JT μ--=?称为核磁子,是核磁矩的单位。 磁矩为μ 的原子核在恒定磁场B 中具有的势能为 mB g B B E N N B μμμ-=-=?-= 任何两个能级之间的能量差为 )(2121m m B g E E E N N m m --=-=?μ (2—5) 考虑最简单情况,对氢核而言,自旋量子数2 1 = I ,所以磁量子数m 只能取两个值,即2 1 21-== 和m 。磁矩在外磁场方向上的投影也只能取两个值,如图2—1中的(a )所示,与此相对应的能级如图2—1中(b )所示。

核磁共振实验报告

核 磁 共 振 实验仪器 FD-CNMR-I 型核磁共振实验仪,包括永久磁铁、射频边限振荡器、探头、样品、频率计、示波器 实验原理 FD-CNMR-I 型核磁共振实验仪采用永磁铁,0B 是定值,所以对不同的样品,通过扫频法调节射频场的频率使之达到共振频率0ν,满足共振条件,核即从低能态跃迁至高能态,同时吸收射频场的能量,使得线圈的Q 值降低产生共振信号。 由于示波器只能观察交变信号,所以必须使核磁共振信号交替出现,FD-CNMR-I 型核磁共振实验仪采用扫场法满足这一要求。在稳恒磁场0B 上叠加一个低频调制磁场 )sin(t B m ?'ω,这个调制磁场实际是由一对亥姆霍兹线圈产生,此时样品所在区域的实际 磁场为)sin(0t B B m ?'+ω。 图1 扫场法检测共振吸收信号 (a) 由于调制场的幅值m B 很小,总磁场的方向保持不变,只是磁场的幅值按调制频率发生周期性变化,拉摩尔进动频率ω也相应地发生周期性变化,即 ))sin((0t B B m ?'+?=ωγω (1) 这时只要射频场的角频率调在ω变化范围之内,同时调制磁场扫过共振区域,即 m m B B B B B +≤≤-000,则共振条件在调制场的一个周期内被满足两次,所以在示波器 上观察到如图(b )所示的共振吸收信号。此时若调节射频场的频率,则吸收曲线上的吸收

峰将左右移动。当这些吸收峰间距相等时,如图(a )所示,则说明在这个频率下的共振磁场为0B 。 如果扫场速度很快,也就是通过共振点的时间比弛豫时间小得多,这时共振吸收信号的形状会发生很大的变化。在通过共振点后,会出现衰减振荡,这个衰减的振荡称为“尾波”,尾波越大,说明磁场越均匀。 实验步骤 (一) 熟悉各仪器的性能并用相关线连接 实验中,FD-CNMR-I 型核磁共振仪主要应用五部分:磁铁、磁场扫描电源、边限振荡器(其上装有探头,探头内装样品)、频率计和示波器。仪器连线 (1) 首先将探头旋进边限振荡器后面板指定位置,并将测量样品插入探头内; (2) 将磁场扫描电源上“扫描输出”的两个输出端接磁铁面板中的一组接线柱(磁铁面板上共有四组,是等同的,实验中可以任选一组),并将磁场扫描电源机箱后面板上的接头与边限振荡器后面板上的接头用相关线连接; (3) 将边限振荡器的“共振信号输出”用Q9线接示波器“CH1通道”或者“CH2通道”,“频率输出”用Q9线接频率计的A 通道(频率计的通道选择:A 通道,即MHz Hz 1001--;FUNCTION 选择:FA ;GATE TIME 选择:1S ); (4) 移动边限振荡器将探头连同样品放入磁场中,并调节边限振荡器机箱底部四个调节螺丝,使探头放置的位置保证使内部线圈产生的射频磁场方向与稳恒磁场方向垂直; (5) 打开磁场扫描电源、边线振荡器、频率计和示波器的电源,准备后面的仪器调试。 (二) 核磁共振信号的调节 FD-CNMR-I 型核磁共振仪配备了六种样品:1——硫酸铜、2——三氯化铁、3——氟碳、4——丙三醇、5——纯水、6——硫酸锰。 (1)将磁场扫描电源的“扫描输出”旋钮顺时针调节至接近最大(旋至最大后,再往回旋半圈,因为最大时电位器电阻为零,输出短路,因而对仪器有一定的损伤),这样可以加大捕捉信号的范围;

核磁共振实验报告

应物0903班 核磁共振实 验报告 王文广U200910198 苏海瑞U200910218

核磁共振实验报告 一、实验目的 1.了解核样共振的基本原理 2.学习利用核磁共振测量磁场强度和原子核的g 因子的方法 二、实验内容 1.在加不同大小扫场情况下仔细观察水样品的核磁共振现象,记录每种情况下的共振峰形和对应的频率 2.仔细观察和判断扫场变化对共振峰形的影响,从中确定真正能应永久磁铁磁场0B 的共振频率,并以此频率和质子的公认旋磁比值 ()267.52MHz /T γ=计算样品所在位置的磁场0B 3.根据记录的数据计算扫场的幅度 4.研究射频磁场的强弱对共振信号强度的影响 5.观察聚四氟乙烯样品的核磁共振现象,并计算氟核的g 因子 三、实验原理 1.核磁共振现象与共振条件 原子的总磁矩j μr 和总角动量j P r 存在如下关系 22B j j j j e e B e g P g P P m h e e m πμμγμγ=-==r r r r 为朗德因子,、是电子电荷和质量,称为玻尔磁子,为原子的旋磁比 对于自旋不为零的原子核,核磁矩j μr 和自旋角动量j P r 也存在如下 关系

22N I N I N I I p e g P g P P m h πμμγ=-==r r r r 按照量子理论,存在核自旋和核磁矩的量子力学体系,在外磁场 0B 中能级将发生赛曼分裂,相邻能级间具有能量差E ?,当有外界条 件提供与E ?相同的磁能时,将引起相邻赛曼能级之间的磁偶极跃迁,比如赛曼能级的能量差为02B h E γπ ?= 的氢核发射能量为h ν的光子,当0= 2B h h γνπ 时,氢核将吸收这个光子由低塞曼能级跃迁到高塞曼能级,这种共振吸收跃迁现象称为“核磁共振” 由上可知,核磁共振发生和条件是电磁波的圆频率为 00B ωγ= 2.用扫场法产生核磁共振 在实验中要使0= 2B h h γνπ 得到满足不是容易的,因为磁场不是容易控制,因此我们在一个永磁铁0B 上叠加一个低频交谈磁场 sin m B B t ω=,使氢质子能级能量差 ()0sin 2m h B B t γωπ +有一个变化的区域,调节射频场的频率ν,使射频场的能量h ν能进入这个区域,这样在某一瞬间等式 ()0sin 2m h B B t γωπ +总能成立。如图, 由图可知,当共振信号非等间距时共振点处 ()0sin 2m h B B t γωπ +,

相关文档