文档库 最新最全的文档下载
当前位置:文档库 › 第13讲四边形中常见辅助线

第13讲四边形中常见辅助线

第13讲四边形中常见辅助线
第13讲四边形中常见辅助线

第十三讲 四边形中常见辅助线

学习目标

1.掌握四边形中常见辅助线的作法,并能灵活应用。 2、结合题目,通过作辅助线把复杂的问题简单化。 一、知识回顾 1、平行四边形

四边形ABCD 是平行四边形 ???

??

????.

54321)邻角互补()对角线互相平分;()两组对角分别相等;

()两组对边分别相等;()两组对边分别平行;( 2、平行四边形判定方法的选择

二、 例题辨析

平行四边形中常用辅助线的添法

平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性

质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: (1)连对角线或平移对角线:

(2)过顶点作对边的垂线构造直角三角形

(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。 (5)过顶点作对角线的垂线,构成线段平行或三角形全等.

第一类:连结对角线,把平行四边形转化成两个全等三角形。

A

B

D

O

C

性质

判定

例1如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以

F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段

相等(只需证明一条线段即可)

⑴连结BF ⑵DE BF = ⑶证明:连结DF DB ,,设AC DB ,交于点O

∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==, ∵FC AE = ∴FC OC AE AO -=- 即OF OE = ∴四边形EBFD 为平行四边形 ∴DE BF =

图2

图1

E

C

A

A

B

第二类:平移对角线,把平行四边形转化为梯形。

例2如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC ,

10=BD ,m AB =,那么m 的取值范围是( )

A 111<

B 222<

C 1210<

D 65<

解:将线段DB 沿DC 方向平移,使得CE DB =,BE DC =,则有四边形CDBE 为平行四边形,∵在ACE ?中, 12=AC ,10==BD CE ,m AB AE 22==

∴101221012

+<<-m ,即2222<

第三类:过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。

例3已知:如左下图3,四边形ABCD 为平行四边形

求证:2

22222DA CD BC AB BD AC +++=+

证明:过D A ,分别作BC AE ⊥于点E ,BC DF ⊥的延长线于点F

∴BC BE BC AB BE BC BE AB CE AE AC ?-+=-+-=+=2)(2

2

2

2

2

2

2

2

CF BC BC CD CF BC CF CD BF DF BD ?++=++-=+=2)()(2

2

2

2

2

2

2

2

则BE BC CF BC DA CD BC AB BD AC ?-?++++=+222

22222 ∵四边形ABCD 为平行四边形 ∴AB ∥CD 且CD AB =,BC AD = ∴DCF ABC ∠=∠ ∵0

90=∠=∠DFC AEB ∴DCF ABE ??? ∴CF BE = ∴2

2

2

2

2

2

DA CD BC AB BD AC +++=+

图4

图3

K

D

C

F

B

B

第四类:延长一边中点与顶点连线,把平行四边形转化为三角形。

例4:已知:如右上图4,在正方形ABCD 中,F E ,分别是CD 、DA 的中点,BE 与CF

交于P 点,求证:AB AP =

证明:延长CF 交BA 的延长线于点K ∵四边形ABCD 为正方形

∴AB ∥CD 且CD AB =,AD CD =,0

90=∠=∠=∠D BCD BAD

∴K ∠=∠1 又∵0

90=∠=∠DAK D ,AF DF = ∴CDF ?≌KAF ? ∴AB CD AK == ∵AD DF CD CE 2

1

,21==

∴DF CE = ∵0

90=∠=∠D BCD ∴BCE ?≌CDF ? ∴21∠=∠ ∵0

9031=∠+∠ ∴0

9032=∠+∠ ∴0

90=∠CPB ,则0

90=∠KPB

∴AB AP =

综上所述,平行四边形中常添加辅助线是:连对角线,平移对角线,延长一边中点与顶点连线等,这样可将平行四边形转化为三角形(或特殊三角形)、矩形(梯形)等图形,为证明解决问题创造条件。 课堂练习:

1、在四边形ABCD 中,AB=CD ,E 、F 分别是BC 、AD 的中点,BA 、CD 的延长线分别交

EF 的延长线G 、H 。求证:∠BGE=∠CHE 。

证明:连结BD ,并取BD 的中点为M ,连结ME 、MF , ∵ME 是ΔBCD 的中位线,

ME CD ,∴∠MEF=∠CHE ,

∵MF 是ΔABD 的中位线, ∴

MF

AB ,∴∠MFE=∠BGE ,

∵AB=CD ,∴ME=MF ,∴∠MEF=∠MFE , 从而∠BGE=∠CHE 。

2.如图4,已知ΔABC 中,AB=5,AC=3,连BC 上的中线AD=2,求BC 的长。 解:延长AD 到E ,使DE=AD ,则AE=2AD=2×2=4。 在ΔACD 和ΔEBD 中,

∵AD=ED ,∠ADC=∠EDB ,CD=BD , ∴ΔACD ≌ΔEBD ,∴AC=BE , 从而BE=AC=3。

在ΔABE 中,因AE 2+BE 2=42+32=25=AB 2,故∠E=90°, ∴BD=

=

=

,故

BC=2BD=2

3、已知:梯形ABCD 中,AD//BC ,AD=1,BC=4,BD=3,AC=4,求梯形ABCD 的面积. 解:如图,作DE ∥AC ,交BC 的延长线于E 点. ∵AD ∥BC ∴四边形ACED 是平行四边形 ∴BE=BC+CE=BC+AD=4+1=5,DE=AC=4

∵在△DBE 中, BD=3,DE=4,BE=5

∴∠BDE=90°. 作DH ⊥BC 于H ,则

512

=?=

BE ED BD DH

6251252DH BC)(AD ABCD

=?

=

?+=∴梯形S

三、 归纳总结

归纳:四边形常见辅助线的作法

四、拓展延伸

A B

D C

E

H

例1、如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q 运动到点B时,点P随之停止运动,设运动时间为t(s).

(1)设△BPQ的面积为S,求S与t之间的函数关系;

(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?

解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.

∴PM=DC=12,∵QB=16-t,∴s= ?QB?PM= (16-t)×12=96-6t(0≤t≤ ).

(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况

①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得;

②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2

得(16-2t )2+122=(16-t )2,此方程无解,∴BP≠PQ .

③若PB=PQ ,由PB 2=PQ 2得t 2+122=(16-2t )2+122得 ,t2=16(不合题意,舍去).

综上所述,当

时,以B 、P 、Q 为顶点的三角形是等腰三角形.

变式练习:如图,在梯形ABCD 中,AD ∥BC ,∠B=90°,AB=14cm ,AD=15cm ,BC=21cm ,点M 从点A

开始,沿边AD 向点D 运动,速度为1cm/s ;点N 从点C 开始,沿边CB 向点B 运动,速度为2cm/s 、点M 、

N 分别从点A 、C 出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒.

(1)当t 为何值时,四边形MNCD 是平行四边形? (2)当t 为何值时,四边形MNCD 是等腰梯形? 解:(1)∵MD ∥NC ,当MD=NC ,即15-t=2t ,t=5时,四边形MNCD 是平行四边形;

(2)作DE ⊥BC ,垂足为E ,则CE=21-15=6,当CN-MD=12时,即2t-(15-t )=12,t=9时,四边形MNCD 是等腰梯形 课后作业

1、如图,E 是平行四边形ABCD 的边AB 的中点,AC 与DE 相交于点F ,若平行四边形ABCD 的面积为S ,则图中面积为

S 2

1

的三角形有( ) A .1个 B .2个 C .3个

D .4个

2、顺次连接一个任意四边形四边的中点,得到一个 ___________四边形.

3、如图,AD ,BC 垂直相交于点O ,AB ∥CD ,BC=8,AD=6, 则AB+CD 的长=___________。

4、已知等边三角形ABC 的边长为a , P 是△ABC 内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,点D 、E 、F 分别在 BC 、

AC 、AB 上,猜想:PD +PE+PF=______,并证明你的猜想.

5、平行四边形ABCD 中,H F G E ,,,分别是四条边上的点,且DH BC CF AE ==,,

试说明:EF 与GH 相互平分.

6、如图,平行四边形ABCD 的对角线AC 和BD 交于O ,E 、F 分别为OB 、OD 的中点,过O 任作一直线分 别交AB 、CD 于G 、H . 试说明:GF ∥EH .

7、如图,已知AC AB =,B 是AD 的中点,E 是AB 的中点. 试说明:CE CD 2=

8、如图,E 是梯形ABCD 腰DC 的中点.

试说明:ABCD ABE S S 梯形2

1

=?

9、已知ABC ?是等腰三角形,AB=AC ,D 是BC 边上的任一点,且,AB DE ⊥ AB CH AC DF ⊥⊥,,垂足分别为E 、F 、H , 求 证:CH DF DE =+

B

答案:1、 C 2、平行 3、10 4、a

5、分析:观察图形,EF 与HG 为四边形HEGF 的对角线,若能说明四边形HEGF 是平行四边形,根据平行四边形的对角线互相平分这一性质即可得到EF 与GH 相互平分。

6、分析:观察图形,GF 与EH 为四边形GEHF 的对边,若能说明四边形EHFG 是平行四边形,平行四边形具有对边平行的性质可得GF ∥EH .

7、分析:延长CE 至F ,使EF =CE ,连结AF 、BF ,得四边形AFBC 是平行四边形,利用平行四边形 的性质证明△DBC ≌△FBC 即可。

8、分析:过点E 作MN ∥AB ,交BC 于N ,交AD 的延长线于M ,则四边形ABNM 是平行四边形, △ABE 与四边形ABNM 等底等高,所以S △ABE =2

1

S 平行四边形ABNM ,接下来说明

S 梯形ABCD =S 平行四边形ABNM 即可。

9、 证明:过D 点作DG ⊥CH 于G

又DE ⊥AB 于E ,CH ⊥AB 于H

∴四边形DGHE 为矩形 ∴DE =GH EH ∥DG ∴∠B =∠GDC

又AB =AC ∴∠B =∠ACB ∴∠GDC =∠ACB

又∠DGC =∠DFC =90° CD =DC (公共边) ∴△CDG ≌△DCF (AAS ) ∴DF =CG 又CH =CG +GH

∴CH =DF +DG (等量代换)

四边形辅助线专题训练

一、和平行四边形有关的辅助线作法 1.利用一组对边平行且相等构造平行四边形 例1 如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形. 求证:OE与AD互相平分. 说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形. 2.利用两组对边平行构造平行四边形 例2 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED证:ED+FG=AC. 说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题. 3.利用对角线互相平分构造平行四边形

例3 如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC. 图3 图4 说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法. 二、和菱形有关的辅助线的作法 和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题. 例4 如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点, 且AE=AC,EF 例5 如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF 的最小值等于DE长. 图6 说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线. 三、与矩形有辅助线作法 和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股

数学常见辅助线做法与小结

几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的,下面可小编给大家整理了一些常见的添加辅助线的方法,掌握了对你一定有帮助! 1 三角形中常见辅助线的添加 1. 与角平分线有关的?? (1)可向两边作垂线。?? (2)可作平行线,构造等腰三角形?? (3)在角的两边截取相等的线段,构造全等三角形?? 2. 与线段长度相关的?? (1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可?? (2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可?? (3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。?? (4)遇到中点,考虑中位线或等腰等边中的三线合一。? 3. 与等腰等边三角形相关的??

(1)考虑三线合一?? (2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60?° 2 四边形中常见辅助线的添加 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。下面介绍一些辅助线的添加方法。 1. 和平行四边形有关的辅助线作法? ???? 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。? (1)利用一组对边平行且相等构造平行四边形? (2)利用两组对边平行构造平行四边形? (3)利用对角线互相平分构造平行四边形?? 2. 与矩形有辅助线作法? ? (1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题? (2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少. 3. 和菱形有关的辅助线的作法? ??? ? ?

平行四边形中常用辅助线的添法

平行四边形中常用辅助线的添法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: 一、连对角线或平移对角线: 例 1 如图1,E是平行四边形ABCD中AB延长线上一点,ED交BC于F,求证: 。 例2 如图2,平行四边形ABCD中,对角线AC、BD交于O,AC=a+b,BD=a+c(),AB=m,求m的取值范围。 二、过顶点作对边的垂线构造直角三角形 例3 如图3,平行四边形ABCD中,∠DBC=,DE⊥DB交BC的延长线于E,AD=a, DE=b,求。 例4 如图4,平行四边形ABCD的周长为40,∠ABC=,E、F是BD上的三等分点,AE的 延长线交BC于M,MF的延长线交AD于N,设,,试求y与x的函数关系。 三、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

例5 如图5,平行四边形ABCD中,N是AB中点,BE=,NE与BD交于F,求的值。 例6 如图6,平行四边形ABCD中,O是对角线交点,F是AB延长线上一点,OF交BC于E,AB=a,BC=b,BF=c。求BE长。 四、连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。 例7 如图7,正方形ABCD中,E、F分别为CD、DA的中点,BE、 CF交于P,求证AP=AB。 例8 如图8,平行四边形ABCD中,E、F分别是DC、DA上一点,AE=CF,AE与CF交于P,求证PB平分∠APC。 五、过顶点作对角线的垂线,构成线段平行或三角形全等 例9 如图9,E是平行四边形ABCD对角线BD上一点,EF⊥BC,EG⊥BA,垂足分别为F、 G,求证:。 例10 如图10,ABCD是正方形,BE∥AC,AE=AC,CF∥AE,求证:∠AEB=2∠BCF。

平行四边形中的辅助线

平行四边形中的辅助线 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: 一、连对角线或平移对角线: 例1 如图1,E是平行四边形ABCD中AD延长线上一点,ED交BC于F,求证: 。 简证:连BD,由图易得(同底等高),(同底等高)所以, 所以,即。 例2 如图2,平行四边形ABCD中,对角线AC、BD交于O,AC=a+b,BD=a+c(),AB=m,求m的取值范围。 简解:要求AB的值,需把AC、BD、AB集中在一个三角形中,过C作CE∥DB交AB 的延长线于E,由图易得DBEC是平行四边形, 所以,

, 即,在△ACE中, , 即。 二、过顶点作对边的垂线构造直角三角形 例3 如图3,平行四边形ABCD中,∠DBC=,DE⊥DB交BC的延长线于E,AD=a,DE=b,求。 简解:过D作DF⊥BE于F,由题意得∠DEB=, 所以DF=,BE=, 则, 所以。 例4 如图4,平行四边形ABCD的周长为40,∠ABC=,E、F是BD上的三等分点,AE的延长线交BC于M,MF的延长线交AD于N,设,,试求y与x 的函数关系。

简解:过A作AH⊥BC于H。 因为,所以, 所以 。 因为AD∥BC, 所以,, 所以,, , 则 。 三、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线 例5 如图5,平行四边形ABCD中,N是AB中点,BE=,NE与BD交于F,求 的值。

沪科版八年级数学下册四边形辅助线常用做法

四边形常用的辅助线做法 1.利用一组对边平行且相等构造平行四边形 例1 如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形. 求证:OE与AD互相平分. 2.利用两组对边平行构造平行四边形 例2 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC. 分析:要证明ED+FG=AC,因为DE//AC,可以经过点E作EH//CD交AC于H得平行四边形,得ED=HC,然后根据三角形全等,证明FG=AH. 3.利用对角线互相平分构造平行四边形 例3 如图,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC. 二、和菱形有关的辅助线的作法 和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题. 例4 如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F,求证:四边形CDEF是菱形.

例5 如图6,四边形ABCD 是菱形,E 为边AB 上一个定点,F 是AC 上一个动点,求证EF+BF 的最小值等于DE 长. 图6 说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线. 与矩形有辅助线作法 和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少. 例6 如图7,已知矩形ABCD 内一点,PA=3,PB=4,PC=5.求 PD 的长. 图7 说明:本题主要是借助矩形的四个角都是直角,通过作平行线构造四个小矩形,然后根据对角线得到直角三角形,利用勾股定理找到PD 与PA 、PB 、PC 之间的关系,进而求到PD 的长. 四、与正方形有关辅助线的作法 正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线. 例7如图8,过正方形ABCD 的顶点B 作BE//AC ,且AE=AC ,又CF//AE.求证:∠BCF=21 ∠AEB.

专题二平行四边形常用辅助线的作法精排版

专题讲义 平行四边形+几何辅助线的作法 一、知识点 1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°. 2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°. 3.平行四边形的性质: 四边形ABCD 是平行四边形 ?????????. 54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 4、平行四边形判定方法的选择 5、和平行四边形有关的辅助线作法 (1)利用一组对边平行且相等构造平行四边形 例1、如图,已知点O 是平行四边形ABCD 的对角线AC 的中点,四边形OCDE 是平行四边形 求证: OE 与AD 互相平分. (2)利用两组对边平行构造平行四边形 例2、如图,在△ABC 中,E 、F 为AB 上两点,AE=BF ,ED//AC ,FG//AC 交BC 分别为D ,G. 求证: ED+FG=AC. (3)利用对角线互相平分构造平行四边形 例3、如图,已知AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF.求证BF=AC. A B C D 1234A B C D A B D O C 性质 判定 说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可说明:当图形中涉及到一组对边平 行时,可通过作平行线构造另一组说明:本题通过利用对角线互相平分构造平行 四边形,实际上是采用了平移法构造平行四边 形.当已知中点或中线应思考这种方法.

(4)连结对角线,把平行四边形转化成两个全等三角形。 例4、如图,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点, 和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可) (5)平移对角线,把平行四边形转化为梯形。 例5、如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,那么m 的取值范围是( ) A 、111<

初中数学特殊四边形的辅助线做法及口决

特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形. 在解决一些和四边形有关的问题时往往需要添加辅助线. 下面介绍一些辅助线的添加方法. 一、和平行四边形有关的辅助线作法 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形. 1.利用一组对边平行且相等构造平行四边形 例1 、如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形. 求证:OE与AD互相平分. 分析: 因为四边形OCDE是平行四边形,所以OC//ED,OC=DE,又由O是AC的中点,得出AO//ED,AO=ED,则四边形AODE是平行四边形,问题得证. 证明:连结AE、OD,因为是四边形OCDE是平行四边形, 所以OC//DE,OC=DE,因为0是AC的中点, 所以A0//ED,AO=ED, 所以四边形AODE是平行四边形,所以AD与OE互相平分. 说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形. 2.利用两组对边平行构造平行四边形 例2、如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.

分析:要证明ED+FG=AC,因为DE//AC,可以经过点E作EH//CD交AC于H得平行四边形,得ED=HC,然后根据三角形全等,证明FG=AH. 证明:过点E作EH//BC,交AC于H,因为ED//AC,所以四边形CDEH是平行四边形,所以ED=HC,又FG//AC,EH//BC,所以∠AEH=∠B,∠A=∠BFG,又AE=BF,所以△AEH≌△FBG, 所以AH=FG,所以FG+DE=AH+HC=AC. 说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题. 3.利用对角线互相平分构造平行四边形 例3 、如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC. 分析:要证明BF=AC,一种方法是将BF和AC变换到同一个三角形中,利用等边对等角;另一种方法是通过等量代换,寻找和BF、AC相等的相段代换.寻找相等的线段的方法一般是构造平行四边形. 证明:延长AD到G,使DG=AD,连结BG,CG, 因为BD=CD,所以四边形ABGC是平行四边形, 所以AC=BG, AC//BG,所以∠1=∠4,因为AE=EF, 所以∠1=∠2,又∠2=∠3,所以∠1=∠4, 所以BF=BG=AC. 图3 图4 说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法.

8下四边形中常见辅助线

四边形中常用的辅助线 四边形中添辅助线的目的一般都是造就线段平行或垂直,构造全等三角形、直角三角形、平行四边形等,把难以解决的问题转化成常见的三角形、平行四边形等问题处理,其常用方法有以下几种: (1)连结对角线或平移对角线. (2)把图形中的一部分旋转,构造全等三角形. (3)涉及面积问题的,常构造直角三角形. (4)已有一组平行线或对角线互相平分的,常构造平行四边形. (5)涉及线段中点或平行四边形对角线交点的,常构造三角形的中位线. 经典例题 1.如图,在四边形ABCD中,R,P分别是BC,CD上的点.E,F分别是AP,RP的中点,当点P在CD上从点C向点D移动而点R不动时,下列结论成立的是( ) A. 线段EF的长逐渐增大 B. 线段EF的长逐渐减少 C. 线段EF的长不变 D. 线段EF的长与点P的位置有关 2.如图,四边形ABCD放在一组距离相等的平行线中,已知BD=6 cm,四边形ABCD的面积为24 cm2,则两条平行线间的距离为( ) A. 2 cm B. 3 cm C. 4 cm D. 1 cm 3.如图,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连结PG,PC.若∠ABC=∠BEF=60°,则等于( )

A. B. C. D. 4.已知P是正方形ABCD内一点,PB=,PC=1,∠BPC=135°,则AP的长为. 5.如图,已知正方形ABCD的边长为1,连结AC,BD相交于点O,CE平分∠ACD,交BD于点E,则DE的长为________. 6.如图,P为?ABCD内一点,△PAB,△PCD的面积分别记为S1,S2,?ABCD的面积记为S,试探究S +S2与S之间的关系. 1 7.如图,在四边形ABCD中,∠B=∠D=90°,∠A∶∠C=1∶2,AB=2,CD=1.求: (1)∠A,∠C的度数. (2)AD,BC的长度. (3)四边形ABCD的面积.

四边形辅助线常用做法

四边形常用的辅助线做法 作辅助线的方法 一:中点、中位线,延线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。 四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。” 五:面积找底高,多边变三边。 如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。 如遇多边形,想法割补成三角形;反之,亦成立。 四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为△和□。 平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 添加辅助线解特殊四边形题 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法. 和平行四边形有关的辅助线作法 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形. 平行四边形中常用辅助线的添法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: (1)连对角线或平移对角线: (2)过顶点作对边的垂线构造直角三角形 (3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线 (4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。 (5)过顶点作对角线的垂线,构成线段平行或三角形全等.

初三数学平行四边形中常用辅助线的添法专题辅导

平行四边形中常用辅助线的添法 徐卫东 刘建英 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: 一、连对角线或平移对角线: 例1 如图1,E 是平行四边形ABCD 中AD 延长线上一点,ED 交BC 于F ,求证:CEF ABF S S △△=。 简证:连BD ,由图易得BCE BDE S S △△=(同底等高) ,BDF ABF S S =△(同底等高) 所以BEF BCE BEF BDE S S S S △△△△-=-, 所以ECF BDF S S △△=,即CEF ABF S S △△=。 例2 如图2,平行四边形ABCD 中,对角线AC 、BD 交于O ,AC=a+b ,BD=a+c (c b >), AB=m ,求m 的取值范围。 简解:要求AB 的值,需把AC 、BD 、AB 集中在一个三角形中,过C 作CE ∥DB 交AB 的延长线于E ,由图易得DBEC 是平行四边形, 所以c a DB CE +==, m AB DC BE ===, 即m 2AE =,在△ACE 中, CE AC AE CE AC +<<-, 即 ()()c b a 22 1m c b 21 ++<<-。 二、过顶点作对边的垂线构造直角三角形 例3 如图3,平行四边形ABCD 中,∠DBC=?30,DE ⊥DB 交BC 的延长线于E ,AD=a ,DE=b ,求DCE S △。

与平行四边形有关的常用辅助线作法归类

与平行四边形有关的常用辅助线作法归类解析 第一类:连结对角线,把平行四边形转化成两个全等三角形。 例1如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可) ⑴连结BF ⑵DE BF = ⑶证明:连结DF DB ,,设AC DB ,交于点O ∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==, ∵FC AE = ∴FC OC AE AO -=- 即OF OE = ∴四边形EBFD 为平行四边形 ∴DE BF = 图2 图1 E C A A B 第二类:平移对角线,把平行四边形转化为梯形。 例2如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,那么m 的取值范围是( ) A 111<

平行四边形有关的常用辅助线

PART A 知识讲解 六类与平行四边形有关的常见辅助线,供借鉴: 第一类:连结对角线,把平行四边形转化成两个全等三角形。 例1如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可) ⑴连结BF ⑵DE BF = ⑶证明:连结DF DB ,,设AC DB ,交于点O ∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==, ∵FC AE = ∴FC OC AE AO -=- 即OF OE = ∴四边形EBFD 为平行四边形 ∴DE BF = 图2 图1 E C A A B 第二类:平移对角线,把平行四边形转化为梯形。 例2如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,那么m 的取值范围是( ) A 111<

四边形辅助线专题

平行四边形有关的辅助线作法 1.利用一组对边平行且相等构造平行四边形 例1 如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形.求证:OE与AD互相平分. 2.利用两组对边平行构造平行四边形 例2 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC. 3.利用对角线互相平分构造平行四边形 例3 如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC. 图3 图4 二、和菱形有关的辅助线的作法 和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理 解决问题.

1. 如图,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且 AE=AC,EF//BC交AD于点F,求证:四边形CDEF是菱形. 2. 如图,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF 的最小值等于DE长. 三、与矩形有辅助线作法 和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少. 如图,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求 PD的长. 四、与正方形有关辅助线的作法 正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.

专题二:平行四边形常用辅助线的作法(精排版)

专题讲义平行四边形+几何辅助 线的作法 、知识点 1 ?四边形的内角和与外角和定理: (1) 四边形的内角和等于360°; (2) 四边形的外角和等于360° . 2. 多边形的内角和与外角和定理: (1) n 边形的内角和等于(n-2)180 ° (2) 任意多边形的外角和等于 360° 3. 平行四边形的性质: 4、平行四边形判定方法的选择 ..”■ 已知条件 选择的狎定方法 i 边 1. 一鲫边幘 L .... 讹⑵沁⑶ 一组对边平行 定文{方法1),方送⑶ 一纽对命相等 方法《5〉 方搓⑷ 5、和平行四边形有关的辅助线作法 (1)利用一组对边平行且相等构造平行四边形 例1、如图,已知点O 是平行四边形ABCD 勺对角线AC 的中点,四边形OCD 是平行四边形? 求 证:OE 与AD 互相平分. 说明:当已知条件中涉及到平行,且要求 证的结论中和平行四边形 的性质有关, 可 试通过添加辅助线构造平行四边形—: 性质 四边形ABCD 是平行四边形 判定 (1) 两组对边分别平行; (2) 两组对边分别相等; (3) 两组对角分别相等; (4) 对角线互相平分; (5) 邻角互补. B C C

(2)利用两组对边平行构造平行四边形 例2、如图,在△ ABC中,E、F为AB上两点,AE=BF ED//AC, FG//AC交BC分别为D, G. 说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组 对边平行,得到平行四边形解决问 (3)利用对角线互相平分构造平行四边形 例3、如图,已知AD S^ ABC的中线,BE交AC于E,交AD于F,且AE=EF求证BF=AC. 说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了 平移法构造平行四边形.当已知中点或中线应思考这种方法?

四边形辅助线做法

四边形复习提高 例1:如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可) 图2 图1 O O E C C A B D A B D E F 例2:如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC ,10=BD ,m AB =,那么m 的取值范围是( ) A 111<

平行四边形题型和辅助线(完美打印版)

一、平行四边形的性质: 四边形ABCD 是平行四边形 ?????????. 54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;( 二、平行四边形判定方法的选择 三、平行四边形方法、考点归纳总结: 平行四边形常见考法: (1)利用平行四边形的性质,求角度、线段长、周长; (2)求平行四边形某边的取值范围; (3)考查一些综合计算问题; (4)利用平行四边形性质证明角相等、线段相等和直线平行; (5)利用判定定理证明四边形是平行四边形。 平行四边形中常用辅助线的添法 1、连对角线或平移对角线 2、过顶点作对边的垂线构造直角三角形 3、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线 4、连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。 5、过顶点作对角线的垂线,构成线段平行或三角形全等。 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理。 A B D O C 性质 判定

一、连对角线或平移对角线: 例1 如图1,E 是平行四边形ABCD 中AB 延长线上一点,ED 交BC 于F ,求证: 。 例2 如图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,求m 的取值范围。 二、过顶点作对边的垂线构造直角三角形 例3 如图3,平行四边形ABCD 中,∠DBC= ,DE ⊥DB 交BC 的延长线于E ,AD=a ,DE=b ,求 。

三角形和四边形中常见的辅助线的作法和类型(绝对经典)

D C B A E D F C B A 三角形和四边形中常见的辅助线的作法和类型(绝对 经典) 一、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. E D C B A 二、截长补短 1、如图,ABC ?中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC C D B A

C C B A 2、如图,AD ∥BC,EB,EA 分别平分∠CBA,∠DAB ,CD 过点E ,求证;AB =AD+BC 注意:三角形中位线与梯形中位线 3、如图,已知在ABC V 内,0 60BAC ∠=,0 40C ∠=,P ,Q 分别在BC ,CA 上,并且AP , BQ 分别是BAC ∠,ABC ∠的角平分线。求证:BQ+AQ=AB+BP 4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0 180=∠+∠C A

P 21 C B A 5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC 三、平移变换 例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P . 例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.

专题二平行四边形常用辅助线的作法精排版修订版

专题二平行四边形常用辅助线的作法精排版修 订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

专题讲义 平行四边形+几何辅助线的作法 一、知识点 1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°. 2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°. 3.平行四边形的性质: 四边形ABCD 是平行四边形 ????? ????. 54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 4、平行四边形判定方法的选择 5、和平行四边形有关的辅助线作法 (1)利用一组对边平行且相等构造平行四边形 例1、如图,已知点O 是平行四边形ABCD 的对角线AC 的中点,四边形OCDE 是平行四边形. A B C D 1234 A B C D A B D O C

求证: OE 与AD 互相平分. (2)利用两组对边平行构造平行四边形 例2、如图,在△ABC 中,E 、F 为AB 上两点,AE=BF ,ED//AC ,FG//AC 交BC 分别为D ,G. 求证: ED+FG=AC. (3)利用对角线互相平分构造平行四边形 例3、如图,已知AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF.求证BF=AC. (4)连结对角线,把平行四边形转化成两个全等三角形。 例4、如图,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点, 和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可) (5)平移对角线,把平行四边形转化为梯形。 例5、如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,那么m 的取值范围是( ) A 、111<

四边形中常见辅助线的作法

儒洋教育学科教师辅导讲义 作辅助线的方法 一:中点、中位线,延线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。 四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。” 托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表) 五:面积找底高,多边变三边。 如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。 如遇多边形,想法割补成三角形;反之,亦成立。 另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。 四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为△和□。 平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 添加辅助线解特殊四边形题 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.

特殊四边形中常添加的辅助线

特殊四边形---作辅助线 添加辅助线解特殊四边形 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和 四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法. 知识点一:平行四边形有关的辅助线作法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有 某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的 平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三 角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: (1)连对角线或平移对角线: (2)过顶点作对边的垂线构造直角三角形 (3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造 线段平行或中位线 (4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等 积三角形。 (5)过顶点作对角线的垂线,构成线段平行或三角形全等. 第一类:连结对角线,把平行四边形转化成两个全等三角形。 例1 、 如图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =, 请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明 它和图中已有的某一条线段相等(只需证明一条线段即可) ⑴连结BF ⑵DE BF = ⑶证明:连结DF DB ,,设AC DB ,交于点O ∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==, ∵FC AE = ∴FC OC AE AO -=- 即OF OE = ∴四边形EBFD 为平行四边形 ∴DE BF = 图2图1 E C A A B 第二类:平移对角线,把平行四边形转化为梯形。 例2、如图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果 12=AC ,10=BD ,m AB =,那么m 的取值范围是( ) A 111<

相关文档
相关文档 最新文档