文档库 最新最全的文档下载
当前位置:文档库 › 断裂强度的裂纹理论格里菲斯裂纹理论为了解释玻璃陶瓷等脆性材料断

断裂强度的裂纹理论格里菲斯裂纹理论为了解释玻璃陶瓷等脆性材料断

断裂强度的裂纹理论格里菲斯裂纹理论为了解释玻璃陶瓷等脆性材料断
断裂强度的裂纹理论格里菲斯裂纹理论为了解释玻璃陶瓷等脆性材料断

断裂强度的裂纹理论(格里菲斯裂纹理论)

为了解释玻璃、陶瓷等脆性材料断裂强度的理论值与实际值的巨大差异,格里菲斯

(A.Giffith)在1921年提出,实际材料中已经存在裂纹,当平均应力还很低时,裂纹尖端的应力集中已经达到很高值(σm ),从而使裂纹快速扩展并导致脆性断裂,他根据能量平衡原理计算出裂纹自动扩展时的应力值,即计算了含裂纹体的强度。能量平衡原理指出,由于裂纹的存在,系统弹性能降低,若要保持系统总能量不变,裂纹释放的弹性能必然要与因存在裂纹而增加的表面能平衡。如果弹性能的降低足以满足表面能的增加的需要,则裂纹的扩展就成为系统能量降低的过程,因而裂纹就会自发扩展引起脆性破

坏。

设有一单位厚度的无限宽薄板,对之施加一拉应力,并使

其固定以隔绝与外界的能量交换。在垂直于板表面方向上可以

自由位移,板处于平面应力状态。如果在此板的中心割开一个

垂直于应力σ,长度为2A 的贯穿裂纹,则原来弹性拉紧的平板

就产生直径为2a 的弹性松弛区,并释放弹性能,如图1所示。

松弛前弹性能的密度等于σ2/2E ,被松弛区的体积为πa 2。根据

弹性理论计算,释放的弹性能为:

裂纹所增加的表面能为

式中,γe 为表面能密度。

于是,整个系统的能量变化为:

Ua 、Ur 及Ua+Ur 和裂纹长度的关系可以用图2表示。如

果裂纹的长度对应于能量Ua+Ur 的极大值,裂纹就可以自发

的扩展(裂纹扩展,系统能量降低),因而裂纹自发扩展的能

量判据可表示为:

(

于是,裂纹自发扩展的临界应力为

对三维介质中钱币形裂纹进行过更精确的计算,也得出类似的结果,

只是数值因素略有

图2 裂纹尺寸与能量的关系

差异:

式(1)和(2)称为格里菲斯公式。它说明裂纹扩展的临界应力σc和裂纹半场度a的平方根成反比。

与格里菲斯公式中σc对应的裂纹半长度a称为格里菲斯裂纹,用a c表示。对于薄板:

上式表明,与一定的应力水平相对应,存在一个临界裂纹2a c,a c也可以作为脆性断裂的断裂依据。

将有裂纹存在的断裂强度和理论断裂强度对比,可求出

上式说明,裂纹在其两端引起的应力集中,将外加应力放大倍,使局部地区达到理论

强度,而导致脆性断裂。

一般脆性材料,如玻璃、硅、锗等,由于少量夹杂物和表面损伤等原因,都会有微裂纹。实验结果表明,用钠蒸汽缀饰法显示出玻璃表面上的确存在这样的裂纹。如果用氢氟酸将损伤的表面层去除后,断裂强度就大为提高。将岩盐晶体浸入温水中溶掉其表面的损伤层,发现其断裂强度从5MPa提高到1600MPa。这些均证实了格里菲斯的预测,,格里菲斯公式只适用于脆性固体,如玻璃、无机晶体材料、超高强钢等,对于许多工程结构材料,如结构钢、高分子材料等,裂纹尖端会产生较大塑性变形,要消耗大量塑性变形功。因此,必须对格里菲斯公式进行修正。

奥罗万(E.Orowan)首先提出裂纹扩展时,裂纹尖端由于应力集中,局部区域内会发生塑性变形。塑性变形消耗的能量成为裂纹扩展所消耗能量的一部分,因此,表面能除了弹性表面能外,还应包括裂纹尖端发生塑性变形所消耗的塑性功γp。格里菲斯公式应当修正为

实验表明,许多金属的γp要比γe大得多,有的要大103倍,因此,金属材料的断裂强度要高得多。

欧文(G.R.Irwin)提出用能量释放率G描述裂纹扩展单位长度时裂纹表面能的增量:

并提出

因此将格里菲斯公式和奥罗万公式统一为

四年级上册科学《玻璃与塑料》教学设计

四年级上册科学《玻璃与塑料》教学设计 教材分析: 玻璃与塑料是生活中常见的材料,在生活中的应用非常广泛。借助这些常见材料,研究材料的各种性能,认识常见材料的基本性质和用途,使学生认识到人类为了改善生活和环境总在不断地改进材料的性能或是发明新材料。认识到材料的使用会给个人、社会、环境带来正面的积极作用,还会带来负面的消极影响。 学情分析: 在以前的学习生活过程中,学生经常使用各种材料制成的物品,对常见材料己有经验是极为丰富的。因此,本节课无论在教学方法还是在教学内容上,学生都有相应的基础,教师进行简单的指导后,就可以充分放手让学生自己去探究发现玻璃与塑料的特点。 教学目标: 知识目标: 1.能运用对比实验的方法来研究玻璃与塑料的特性。 2.知道材料的使用有益处的同时还存在着负面影响,乐于用学到的知识大胆想象来善我们的生活。 3.了解玻璃与塑料的特点。 能力目标:培养学生的观察能力,探究能力,想象能力。 情感目标:培养学生团结协作的精神及环保意识。 教学重点、难点:能运用对比实验的方法来研究玻璃与塑料的特性。

教具准备:各种玻璃与塑料制品、木锤、玻璃片、塑料片、剪刀等。 教学流程: 一、联系生活、激趣导入 (师生问好) 师:老师的桌子上有一些物品,请同学们看一看都有什么? 生:略 师:谁能用喜欢的方法,按照一定的标准把它们分一分? 生:略 师:你分的很准确。玻璃与塑料在我们的生活中应用很广泛,那么同学们想知道玻璃与塑料有什么特点吗?这节课我们就一起来研究玻璃与塑料(板书:13玻璃与塑料) 二、动手实践、探究新知 1.列举生活实例、丰富感性认识 师:玻璃和塑料这两种材料在生活中很常见,谁能说一说你发现生活中哪些地方用到了玻璃,哪些地方用到了塑料? 生:略 师:玻璃和塑料在生活中的例子举不胜举,老师这里准备了一些玻璃与塑料制品的图片,一起来欣赏一下(多媒体演示) 2.大胆猜想、寻求方法 师:既然玻璃与塑料在我们的生活中随处可见,那么请同学们结合课本大胆猜想一下玻璃和塑料可能有什么特点?用什么方法来研

第二章-材料的断裂强度

第二章 2.1固体的理论结合强度 2.2 材料的断裂强度 2.3 裂纹的起源与快速扩展 2.4 材料的断裂韧性 2.5显微结构对脆性断裂的影响 2.6无机材料强度的统计性质 2.7材料的硬度 第二章 材料的脆性断裂与强度 2.1固体的理论结合强度 无机材料的抗压强度约为抗拉强度的10倍。所以一般集中在抗拉强度上进行研究,也就是研究其最薄弱环节。 要推导材料的理论强度,应从原子间的结合力入手,只有克服了原子间的结合力,材料才能断裂。如果知道原子间结合力的细节,即知道应力-应变曲线的精确形式,就可算出理论结合强度。这在原则上是可行的,就是说固体的强度都能够根据化学组成、晶体结构与强度之间的关系来计算。但不同的材料有不同的组成、不同的结构及不同的键合方式,因此这种理论计算是十分复杂的,而且对各种材料都不一样。 为了能简单、粗略的估计各种情况都适应的理论强度,Orowan 提出了以正弦曲线来近似原子间约束力随原子间距离X 的变化曲线(见图2.1),得出 λ πσσX th 2sin ?= 2-1 式中,σ th 为理论结合强度;λ为正弦曲线的波长。 图2.1 原子间约束力与距离的关系 将材料拉断时,产生两个新表面,因此单位面积的原子平面分开所做的功应等于产生两个单位面积的新表面所需的表面能,材料才能断裂。设分开单位面积原子平面所做的功为w,则

π λπλλ πσλ πσσλ λ th th th x dx x w ===-?]2cos [2 20 22sin 2-2 设材料形成新表面的表面能为γ(这里是断裂表面能,不是自由表面能),则w=2γ,即 γπλο2=th ,λ πγ σ2= th 2-3 接近平衡位置o 的区域,曲线可以用直线代替,服从虎克定律: E a x E ==εσ 2-4 a 为原子间距。X 很小时 sin λ πλ πx x 22≈ 2-5 将(2.3),(2.4)和(2.5)式代入(2.1)式,得 a E th γ σ = 2-6 式中a 为晶格常数,随材料而异。可见理论结合强度只与弹性模量、表面能和晶格距离等材料常数有关,属于材料的本证性能。(2.6)式虽然是粗略的估计,但对所有固体均能应用而不涉及原子间的具体结合力。通常γ约为aE/100,这样,(2.6)式可写成 10 E th = σ 2-7 更精确的计算说明(2.6)式的估计稍偏高。 一般材料性能的典型数值为:E=300GPa,/1J =γm 2 ,a=3?10-10 m,代入(2.6)式算出 σ th =30GPa ≈10 E 2-8 要得到高强度的固体,就要求E 和γ大,a 小。实际材料中只有一些极细的纤维和晶须其强度接近理论强度值.例如熔融石英纤维的强度可达24.1GPa,约为E/3(E,72Gpa),碳化硅晶须强度 6.47GPa,约为E/70(E,470Gpa),氧化铝晶须强度为15.2GPa,约为E/25(E,380Gpa)。尺寸较大的材料实际强度比理论强度低的多,,约为E/100-E/1000,而且实际材料的强度总在一定范围内波动,即使是用同样的材料在相同的条件下制成的试件,强度值也有波动。一般试件尺寸大,强度偏低。为了解释这种现象,人们提出了各种假说,甚至怀疑理论强度的推导过程等,但都没有抓住断裂的本质。直到1920年,Griffith 为了解释玻璃的理论强度与实际强度的差异,提出了微裂纹理论,才解决了上述问题。后来经过不断的发展和补充,逐渐成为脆性断裂的主要理论基础。 §2.2 材料的断裂强度

金属材料屈服强度的影响因素

材料屈服强度及其影响因素 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很高的均匀变形量。不锈钢的屈服强度不高,但如用冷变形可以成倍地提高。高碳钢丝经过

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

【青岛版】2019版小学科学四上《12玻璃与塑料》教案

(青岛版五年制)四年级科学上册教案 玻璃与塑料 教学目标1.能利用对比实验的方法研究玻璃与塑料的特性;知道探究不同的问题要用不同的探究方法;能区分什么是假设,什么是事实;能对研究过程的结果进行评议,并与他人交换意见。 2.知道材料的使用可以为人类发展带来好处,也可能产生负面影响;乐于用学到知识改善生活;喜欢大胆想象。 3.了解玻璃与塑料的特点。 重、难点重点:比较玻璃与塑料的特点。 难点:充分认识到玻璃与塑料的特点 教具准备各种玻璃、塑料制品,玻璃片、塑料片、小锤、电池、小灯炮、导线、镊子、蜡烛 教学过程一、引入 你知道哪些材料?这些材料都是自然界里原来就有的吗? 二、建立人造材料的概念 1.观察下列物品:玻璃器具、雨鞋、剪刀、棉衣、泡沫塑料盒、木凳子等,这些物品用什么材料做成的? 2.你知道这些材料从哪里来的?(直接在自然界中找到或人类自己造出来) 3.教师小结:人造材料和天然材料。可给学生看看有关图片或课件演示人造材料的制作过程。 4.找找生活中的人造材料和天然材料。 5.理解人造材料的优越性。 三、布料的历程 1.从远古时期到现代,人们在穿着上有一个怎样的发展过程? 2.以小组为单位,利用教师提供的图片和有关资料,研究下列问题: 原始人用什么材料做衣服?分析这种选择的原因。 古代人用什么做衣服?与原始人相比有什么进步?还有什么不满意的地方? 现代人们做衣服的材料有哪些?这种衣服在功能上有什么优势。 人们对布料的展望。

3.报告小组研究结果,教师组织学生展开讨论,使学生清晰地感受到布料发展的原因和目的。 4.小结。 四、材料与生活 1.说说在生活中使用非常广泛的材料品种。讨论:这些材料对我们生活的影响。2.如果没有这些材料,我们的生活会怎样? 板书设计 玻璃与塑料 轻重重轻软硬硬软脆度脆韧变形难易声音脆闷 课后反思学生是科学学习的主体,科学学习要以探究为核心。在整个的探究活动,学生经历了猜想-设计-操作-结论这个完整的探究过程,教师注意自始至终都是以一种启发者、引导者、帮助者、欣赏者的身份参与到学生的探究活动中。在设计实验的过程中,形象生动的提示同学们高低要有明显的差别,渗透对比试验的知识。注意了提醒学生选择自己的方式进行表达与交流,并让学生以小组为单位汇报,学生的汇报虽然有的不完整,但注意了能对学生的回答适时补充,并善于及时捕捉学生随时闪现的智慧火化,给他们以肯定,给他们以激励。

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

第二章 材料的脆性断裂与强度

第二章材料的脆性断裂与强度 §2.1 脆性断裂现象 一、弹、粘、塑性形变 在第一章中已阐述的一些基本概念。 1.弹性形变 正应力作用下产生弹性形变,剪彩应力作用下产生弹性畸变。随着外力的移去,这两种形变都会完全恢复。 2.塑性形变 是由于晶粒内部的位错滑移产生。晶体部分将选择最易滑移的系统(当然,对陶瓷材料来说,这些系统为数不多),出现晶粒内部的位错滑移,宏观上表现为材料的塑性形变。3.粘性形变 无机材料中的晶界非晶相,以及玻璃、有机高分子材料则会产生另一种变形,称为粘性流动。 塑性形变和粘性形变是不可恢复的永久形变。 4.蠕变: 当材料长期受载,尤其在高温环境中受载,塑性形变及粘性形变将随时间而具有不同的速率,这就是材料的蠕变。蠕变的后当剪应力降低(或温度降低)时,此塑性形变及粘性流动减缓甚至终止。 蠕变的最终结果:①蠕变终止;②蠕变断裂。 二.脆性断裂行为 断裂是材料的主要破坏形式。韧性是材料抵抗断裂的能力。材料的断裂可以根据其断裂前与断裂过程中材料的宏观塑性变形的程度,把断裂分为脆性断裂与韧性断裂。 1.脆性断裂 脆性断裂是材料断裂前基本上不产生明显的宏观塑性变形,没有明显预兆,往往表现为突然发生的快速断裂过程,因而具有很大的危险性。因此,防止脆断一直是人们研究的重点。2.韧性断裂 韧性断裂是材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。韧性断裂时一般裂纹扩展过程较慢,而且要消耗大量塑性变形能。 一些塑性较好的金属材料及高分子材料在室温下的静拉伸断裂具有典型的韧性断裂特征。 3.脆性断裂的原因 在外力作用下,任意一个结构单元上主应力面的拉应力足够大时,尤其在那些高度应力集中的特征点(例如内部和表面的缺陷和裂纹)附近的单元上,所受到的局部拉应力为平均应力的数倍时,此过分集中的拉应力如果超过材料的临界拉应力值时,将会产生裂纹或缺陷的扩展,导致脆性断裂。虽然与此同时,由于外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。因此,断裂源往往出现在材料中应力集中度很高的地方,并选择这种地方的某一个缺陷(或裂纹、伤痕)而开裂。 各种材料的断裂都是其内部裂纹扩展的结果。因而,每种材料抵抗裂纹扩展能力的高低,表示了它们韧性的好坏。韧性好的材料,裂纹扩展困难,不易断裂。脆性材料中裂纹扩展所需能量很小,容易断裂;韧性又分断裂韧性和冲击韧性两大类。断裂韧性是表征材料抵抗其内部裂纹扩展能力的性能指标;冲击韧性则是对材料在高速冲击负荷下韧性的度量。二者间存在着某种内在联系。 三.突发性断裂与裂纹的缓慢生长 裂纹的存在及其扩展行为,决定了材料抵抗断裂的能力。 1.突发性断裂 断裂时,材料的实际平均应力尚低于材料的结合强度(或称理论结合强度)。在临界状态下,断裂源处的裂纹尖端所受的横向拉应力正好等于结合强度时,裂纹产生突发性扩展。一旦扩展,引起周围应力的再分配,导致裂纹的加速扩展,出现突发性断裂,这种断裂往往并无先兆。 2.裂纹的生长

陶瓷材料抗压、抗折强度测试[1]

陶瓷机械强度测定 陶瓷是一种脆性材料,在捡选、加工、搬运和使用的过程中容易破损。因此,测定陶瓷的机械强度对陶瓷材料的科学研究、生产质量控制及使用都有重要的意义。测定陶瓷强度的负荷形式,一般用弯曲、拉伸或压缩。 一、实验目的 (1)了解影响陶瓷材料机械强度的各种因素; (2)掌握陶瓷强度的测试原理与测试方法。 二、实验器材 1、电子万能试验机 2、实验夹具 3、卡尺 4、磨片机 三、陶瓷强度的测定 (一)陶瓷抗压强度的测定 1、实验原理 陶瓷抗压强度的测定一般采用轴心受压的形式。陶瓷材料的破裂往往从表面开始,因此试样大小和形状对测量结果有较大的影响。试样的尺寸增大,存在缺陷的概率也增大,测得的抗压强度值偏低。因此,试样的尺寸应当小一点。以降低缺陷的概率,减少“环箍效应”对测试结果的影响。 试验证明,圆柱体试样的抗压强度略高于立方体的试样的抗压强度。这是因为,在制取试样时,圆柱体试样的一致性优于立方体。圆柱体的内部应力较立方体均匀。在对试样施加压力时,圆柱体受压方向确定,而立方体受压方向难于统一确定,不同方向的抗压强度有差异。 此外,试样的高度与抗压强度有关,抗压强度随试样高度的降低而增高。因此,采用径高比为1:1的圆柱体试样比较合适。 2、试样制备 (1)按生产工艺条件烧制直径(D)为(20土2)mm ,高度(H)为(20土2)mm 的规整样10件。试样上下两面在磨片机上用100号金刚砂磨料磨平整,试样上下两面的不平行度小于0.010mm /cm ,试样中心线与底面的垂直度不小于0.0220mm /cm 。 (2)将试样清洗干净,剔除有可见缺陷的试样,干后待用。 3、实验步骤 (1)测量试样受压面的尺寸,计算出面积。每组试样不少于5个。 (2)将试样放置在试验机压板的中心部位,以2×102N/s 的速度施加负荷,直至试样破坏,读 出试样破坏时的最大负荷。高气孔率试样没有明显破坏现象时,试样以高度变化10%作为试样破坏点。 (3)将测试结果代入下式计算压缩强度: S P R C 式中:C R ——压缩强度,MPa ; P ——破坏负荷,N ; S ——试样受力面积。 (二)抗折强度的测定 抗折强度极限是试样受到弯曲力作用到破坏时的最大应力。它是用试样破坏时所受弯曲力矩M 与被折断处的断面模数z 之比来表示。陶瓷制品的抗折强度还取决于坯料组成、生产方法、制造工艺的符点(坯料制备、成形、干燥、焙烧条件等)。同一种配方的制品,随着颗粒组成和生产工艺不同,其抗折强度有时相差很大。同配方不同工艺制备的试样(如研制成形的圆柱体试样和压制成形的长方形试样),其抗折强度是不同的,所以测定时一定要各种条件相同,这样才能进行比较。

功能陶瓷材料概述

功能陶瓷材料概述 功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。 标签: 功能陶瓷;性质;应用 1 前言 功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。 2 功能陶瓷基本性质 功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。 功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。 3 功能陶瓷种类及其应用 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。 3.1 绝缘陶瓷

材料力学性能课后习题答案

材料力学性能课后答案(整理版) 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 3、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。5、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论 的局限性。

陶瓷力学性能检测之断裂韧性检测

陶瓷力学性能检测之断裂韧性检测 一、概述 陶瓷材料及制品在人们的生产生活中发挥着重要的作用,因其重要性,陶瓷检测也显得重要。下面就陶瓷的化学性能、力学性能等方面做一下简单介绍,供企业个人做为参考。 陶瓷材料的检测性能包括物理性能、化学性能、热学性能、电学性能等方面,其中物理性能、化学性能和力学性能是其主要的检测重点。物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,下文主要以科标检测为例来介绍下陶瓷力学性能中弯曲强度检测的相关原理,科标检测专业提供相应的陶瓷材料检测,检测结果精准,出具报告,因此有一定的参考价值!二、断裂韧性 应力集中是导致材料脆性断裂的主要原因之一,而反映材料抵抗应力集中而发生断裂的指标是断裂韧性,用应力强度因子(K)表示。尖端呈张开型(I型)的裂纹最危险,其应力强度因子用K I表示,恰好使材料产生脆性断裂的K I称为临界应力强度因子,用K IC表示。金属材料的K IC一般用带边裂纹的三点弯曲实验测定,但在陶瓷材料中由于试样中预制裂纹比较困难,因此人们通常用维氏硬度法来测量陶瓷材料的断裂韧性。

陶瓷等脆性材料在断裂前几乎不产生塑性变形,因此当外界的压力达到断裂应力时,就会产生裂纹。以维氏硬度压头压入这些材料时,在足够大的外力下,压痕的对角线的方向上就会产生裂纹,如图2-1所示。裂纹的扩展长度与材料的断裂韧性K IC 存在一定的关系,因此 可以通过测量裂纹的长度来测定K IC 。其突出的优点在于快速、简单、 可使用非常小的试样。如果以P C 作为可使压痕产生雷文的临界负荷, 那么图中显示了不同负荷下的裂纹情况。 由于硬度法突出的优点,人们对它进行了大量的理论和实验研究。推导出了各种半经验的理论公式。其中Blendell 结合理论分析和实验数据拟合,给出下列方程: ??? ???=???? ??????? ??c a E H Ha K IC 4.8lg 055.052 21φφ 图2-1 P <P C (左)和P >P C (右)时压痕 K IC 是I 型应力强度因子,也就是断裂韧性;φ为一常数,约等于 3;HV 是维氏硬度;a 为压痕对角线长度的一半;c 为表面裂纹长度的一半,见图2-1。经过大量的研究表明,该公式至少在下列范围内是使用的:硬度(HV )=1~30GPa ,断裂韧性(K IC )=0.9~16MPa ·m 1/22a 2c

各种许用应力与抗拉强度、屈服强度的关系

各种许用应力与抗拉强度、屈服强度的关系 我们在设计的时候常取许用剪切应力,在不同的情况下安全系数不同,许用剪切应力就不一样。校核各种许用应力常常与许用拉应力有联系,而许用材料的屈服强度(刚度)与各种应力关系如下: <一> 许用(拉伸)应力 钢材的许用拉应力[δ]与抗拉强度极限、屈服强度极限的关系: 1.对于塑性材料[δ]= δs /n 2.对于脆性材料[δ]= δb /n δb ---抗拉强度极限 δs ---屈服强度极限 n---安全系数 轧、锻件n=1.2-2.2 起重机械n=1.7 人力钢丝绳n=4.5 土建工程n=1.5 载人用的钢丝n=9 螺纹连接n=1.2-1.7 铸件n=1.6-2.5 一般钢材n=1.6-2.5 注:脆性材料:如淬硬的工具钢、陶瓷等。 塑性材料:如低碳钢、非淬硬中炭钢、退火球墨铸铁、铜和铝等。 <二> 剪切 许用剪应力与许用拉应力的关系: 1.对于塑性材料[τ]=0.6-0.8[δ] 2.对于脆性材料[τ]=0.8-1.0[δ] <三> 挤压 许用挤压应力与许用拉应力的关系 1.对于塑性材料[δj]=1.5- 2.5[δ]

2.对于脆性材料[δj]=0.9-1.5[δ] 注:[δj]=1.7-2[δ](部分教科书常用) <四> 扭转 许用扭转应力与许用拉应力的关系: 1.对于塑性材料[δn]=0.5-0.6[δ] 2.对于脆性材料[δn]=0.8-1.0[δ] 轴的扭转变形用每米长的扭转角来衡量。对于一般传动可取[φ]=0.5°--1°/m;对于精密件,可取[φ]=0.25°-0.5°/m;对于要求不严格的轴,可取[φ]大于1°/m计算。 <五> 弯曲 许用弯曲应力与许用拉应力的关系: 1.对于薄壁型钢一般采取用轴向拉伸应力的许用值 2.对于实心型钢可以略高一点,具体数值可参见有关规范。

小学五年级上册科学《玻璃与塑料》教学设计

青岛版小学五年级上册科学《玻璃与塑料》教学设计 【教学目标】 1.能独立利用对比实验的方法研究玻璃和塑料的特性并做实验记录,能用恰当的语言表述研究过程和结果。 2.在实验探究过程中,知道探究不同的问题需要运用不同的探究方法,体验合作的愉快。 3.知道玻璃和塑料的特点及用途;了解材料的使用可以为人类发展带来好处,也可能产生负面影响;能将所学知识应用到实际生活。 【教学重难点】 教学重点:知道玻璃和塑料的特点及用途。 教学难点:独立利用对比实验的方法研究玻璃和塑料的特性并做实验记录,能将所学知识应用到实际生活。 【教具、学具】 1.学生准备: 每组:生活中常见的一些玻璃、塑料制品、玻璃塑料的相关资料和信息等。 2.教师准备:一些玻璃、塑料制品、火机、锤子、物体导电实验材料、镊子,相关的视频或图片资料等。 【教学过程】 一、创设情景,提出问题 1.谈话导入:课前老师让同学们收集了一些材料,哪个小组来说一下你们都搜集到了哪些物品? 小组交流搜集的物品。 2.这么多物品,同学们能给他们分分类吗?开始! 哪个小组来说一说,你们的分类情况。你们的分类标准是什么? 3.小结:同学们分得很准确,厉害。这节课我们一起来研究生活中的塑料和玻璃的有关问题。 板书课题:18、玻璃和塑料 二、小组学习,自主探究 (一)生活中的玻璃和塑料制品。

1.教师引导:请同学们说一下,我们的生活中哪些地方用到了玻璃与塑料? 2.学生交流自己收集到的玻璃和塑料用品,进行举例说明。 3.小结:看来,玻璃与塑料在生活中的应用十分广泛,老师这儿还有两个物品,你认为他们是什么材料做成的?(生回答)要能准确的识别他们,我们还必须了解玻璃与塑料的特点(板书特点)(二)探究玻璃和塑料的特点。 1.猜想玻璃和塑料的特点。 (1)同学们,根据平时的生活经验,你们猜一猜玻璃、塑料它们各有什么特点呢? (2)学生汇报自己的猜测结果。 2.制定实验方案。 (!)谈话:同学们猜想了玻璃和塑料的这么多特点,到底同学们猜想的对不对呢?想不想验证一下?要想验证他们的特点,还得借助一些实验材料。请组长拿出材料袋,谁来介绍一下实验材料?(火机、锤子、物体导电实验材料、镊子等)。 教师在学生质疑导体试验材料的时候,介绍实验材料的使用方法。 怎么做实验呢?请小组内进行讨论。 (2)汇报实验方案。 哪个小组先来说说你们的实验方案?哪个小组来补充?还有想说的吗? (教师及时引导,参与小组的验证方案中。) 让学生说说本组的实验方案。 3.探究实验。 在实验过程中应该注意什么呢?谁来说一说?在实验前,老师也要给大家一点提示。 (1)折一折时,注意安全。小心不要划破手。 (2)敲击玻璃时,要轻一点,同学要远离,避免伤到自己。 (3)注意使用电路的方法。 (4)小组分工合作,认真操作,注意观察实验现象,及时总结,记录员及

材料的常用力学性能有哪些

材料的常用力学性能有哪些 材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。1强度 强度是指材料在外力作用下抵抗塑性变形或断裂的能力。强度用应力表示,其符号是σ,单位为MPa,常用的强度指标有屈服强度和抗拉强度,通过拉伸试验测定。 2塑性 塑性是指材料在断裂前产生永久变形而不被破坏的能力。材料塑性好坏的力学性能指标主要有伸长率和收缩率,值越大,材料的塑性就越好,通过拉伸试验可测定。 3硬度 硬度是指金属材料抵抗硬物压入其表面的能力。材料的硬度越高,其耐磨性越好。常用的硬度指标有布氏硬度(HBS)和洛氏硬度(HRC)。 1)布氏硬度 表示方法:布氏硬度用HBS(W)表示,S表示钢球压头,W表示硬质合金球压头。规定布氏硬度表示为:在符号HBS或HBW前写出硬度值,符号后面依

次用相应数字注明压头直径(mm)、试验力(N)和保持时间(s)。如120 HBS 10/1000/30。 适用范围:HBS适用于测量硬度值小于450的材料,主要用来测定灰铸铁、有色金属和经退火、正火及调质处理的钢材。 根据经验,布氏硬度与抗拉强度之间有一定的近似关系: 对于低碳钢,有σ=0.36HBS; 对于高碳钢:有σ=0.34HBS。 2)洛氏硬度 表示方法:常用HRA、HRB、HRC三种,其中HRC最为常用。洛氏硬度的表示方法为:在符号前面写出硬度值。如62HRC。 适用范围:HRC在20-70范围内有效,常用来测定淬火钢和工具钢、模具钢等材料,1HRC相当于10HBS。 4冲击韧性 冲击韧性是指材料抵抗冲击载荷而不被破坏的能力,材料的韧性越好,在受冲击时越不容易断裂。 5疲劳强度 疲劳强度是指材料经过无数次应力循环仍不断裂的最大应力。

功能陶瓷材料的分类及发展前景

功能陶瓷材料的分类及发展前景 功能陶瓷是指在应用时主要利用其非力学性能的材料,这类材料通常具有一种或多种功能。如电、磁、光、热、化学、生物等功能,以及耦合功能,如压电、压磁、热电、电光、声光、磁光等功能。功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等领域得到广泛应用。 1.电子陶瓷 电子陶瓷包括绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、热释电陶瓷、敏感陶瓷、磁性材料及导电、超导陶瓷。根据电容器陶瓷的介电特性将其分为6类:高频温度补偿型介电陶瓷、高频温度稳定型介电陶瓷、低频高介电系数型介电陶瓷、半导体型介电陶瓷、叠层电容器陶瓷、微波介电陶瓷。其中微波介电陶瓷具有高介电常数、低介电损耗、谐振频率系数小等特点,广泛应用于微波通信、移动通信、卫星通信、广播电视、雷达等领域。 2.热、光学功能陶瓷 耐热陶瓷、隔热陶瓷、导热陶瓷是陶瓷在热学方面的主要应用。其中,耐热陶瓷主要有Al2O3、MgO、SiC等,由于它们具有高温稳定性好,可作为耐火材料应用到冶金行业及其他行业。隔热陶瓷具有很好的隔热效果,被广泛应用于各个领域。 陶瓷材料在光学方面包括吸收陶瓷、陶瓷光信号发生器和光导纤维,利用陶瓷光系数特性在生活中随处可见,如涂料、陶瓷釉。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面广泛应用。陶瓷还是固体激光发生器的重要材料,有红宝石激光器和钇榴石激光器。光导纤维是现代通信信号的主要传输媒介,具有信号损耗低、高保真性、容量大等特性优于金属信号运输线。 透明氧化铝陶瓷是光学陶瓷的典型代表,在透明氧化铝的制造过程中,关键是氧化铝的体积扩散为烧结机制的晶粒长大过程,在原料中加入适当的添加剂如氧化镁,可抑制晶粒的长大。其可用作熔制玻璃的坩埚,红外检测窗材料,照明灯具,还可用于制造电子工业中的集成电路基片等。 3.生物、抗菌陶瓷 生物陶瓷材料可分为生物惰性陶瓷和生物活性陶瓷,生物陶瓷除了用于测量、诊断、治疗外,主要是用作生物硬质组织的代用品,可应用于骨科、整形外科、口腔外科、心血管外科、眼科及普通外科等方面。抗菌材料主要应用于家庭用品、家用电器、玩具及其他领域,

相关文档
相关文档 最新文档