文档库 最新最全的文档下载
当前位置:文档库 › 磁控溅射原理

磁控溅射原理

磁控溅射原理
磁控溅射原理

Sputter 磁控溅镀原理
Sputter 在辞典中意思为: (植物)溅散。此之所谓溅镀乃指物体以离子撞击时,被溅射飞 散出。 因被溅射飞散的物体附著于目标基板上而制成薄膜。 在日光灯的插座附近常见的变黑现 象,即为身边最赏见之例,此乃因日光灯的电极被溅射出而附著于周围所形成。溅 镀现象, 自 19 世纪被发现以来,就不受欢迎,特别在放电管领域中尤当防止。近年来被引用于薄膜制 作技术效效佳,将成为可用之物。 薄膜制作的应用研究,当初主要为 Bell Lab.及 Western Electric 公司,于 1963 年制成全长 10m 左右的连续溅镀装置。1966 年由 IBM 公司发表高周波溅镀技术,使得绝缘物之薄膜亦可 制作。后经种种研究至今已达“不管基板的材料为何,皆可被覆盖任何材质之薄膜”目的境地。 而若要制作一薄膜,至少需要有装置薄膜的基板及保持真空状况的道具(内部机构) 。这 种道具即为制作一空间,并使用真空泵将其内气体抽出的必要。 一、真空简介: 所谓真空,依 JIS(日本工业标准)定义如下:较大气压力低的压力气体充满的特定的空 间状态。真空区域大致划分及分子运动如下:
真空划分 Pa 低 真 空 中 真 空 高 真 空 超高真空 105~102 102~10-1 10 ~10 〈10
-5 -1 -5

力 Torr 760~1 1~10-3 10-3~10 〈10
-7 -7
分子运动状态 粘滞流 viscous flow 中间流(过渡流) intermediate flow 分子流 molecular flow 分子流 molecular effusion
真空单位相关知识如下:
标准环境条件 气体的标准状态 压力(压强)p 帕斯卡 Pa 托 Torr 标准大气压 atm 毫巴 mbar 温度为 20℃,相对湿度为 65%,大气压力为: 1atm 101325Pa=1013.25mbar=760Torr 温度为 0℃,压力为:101325Pa 气体分子从某一假想平面通过时,沿该平面的正法线方向的动量改变率,除以该平面 面积或气体分子作用于其容器壁表面上的力的法向分量,除以该表面面积。注: “压 力”这一术语只适用于气体处于静止状态的压力或稳定流动时的静态压力 国际单位制压力单位,1Pa=1N/m2 压力单位,1Torr=1/760atm 压力单位,1atm=101325Pa 压力单位,1mbar=102Pa
二、Sputter(磁控溅镀)原理: 1、Sputter 溅镀定义:在一相对稳定真空状态下,阴阳极间产生辉光放电,极间气体分子 被离子化而产生带电电荷, 其中正离子受阴极之负电位加速运动而撞击阴极上之靶材, 将其原 子等粒子溅出,此溅出之原子则沉积于阳极之基板上而形成薄膜,此物理现象即称溅镀。而透 过激发、解离、离子化……等反应面产生的分子、原子、受激态物质、电子、正负离子、自由

基、 光 UV (紫外光)可见光……等物质, 、 而这些物质混合在一起的状态就称之为电浆 (Plasma) 。 下图为 Sputter 溅镀模型(类似打台球模型) :
图一 Sputter 溅镀模型 图一中的母球代表被电离后的气体分子, 而红色各球则代表将被溅镀之靶材 (Si、 ITO&Ti 等) , 图二则代表溅镀后被溅射出的原子、分子等的运动情形;即当被加速的离子与表面撞击后,通 过能量与动量转移过程(如图三) ,低能离子碰撞靶时,不能从固体表面直接溅射出原子,而 是把动量转移给被碰撞的原子, 引起晶格点阵上原子的链锁式碰撞。 这种碰撞将沿着晶体点阵 的各个方向进行。同时,碰撞因在原子最紧密排列的点阵方向上最为有效,结果晶体表面的原 子从邻近原子那里得到愈来愈大的能量, 如果这个能量大于原子的结合能, 原子就从固体表面 从各个方向溅射出来。
气体 固体
图二 Sputter 溅镀后原子分子运动模型
图三 溅射原子弹性碰撞模型
图四为 CPTF 之 Sputter 磁控溅射设备简要模型:电子在交互电场与磁场 E×B 作用下将气体 电离后撞击靶材表面, 使靶材原子或分子等溅射出来并在管面经过吸附、 凝结、 表面扩散迁移、 碰撞结合形成稳定晶核。然后再通过吸附使晶核长大成小岛,岛长大后互相联结聚结,最后形 成连续状薄膜。
N
S
N
图四 Sputter 溅镀简
+

2、Sputter 溅镀物理原理: 2.1、Sputter 溅镀理论根据详解: 洛仑兹力:实验和理论证明,在磁感强度为 B 的磁场中,电荷为 q、运动速度为 粒子,所受的磁场力为 的带电
此力
通常称为洛伦兹力.此公式称为洛伦兹公式。 , 洛伦兹力
根据运动电荷在磁场中的洛伦兹力公式 的大小为: 从公式 和 。 当 当 时, , 时, 。 可以看出,洛伦兹力 的大小有关,而且取决于 和
的大小不仅
之间的夹角的正弦
。 此时, 运动电荷不受磁力作用。 , 。此时,运动电荷受
图五 右手螺旋法则
到最大磁力作用。洛伦兹力的方向为:服从右手螺旋法则。运动电荷带电量 的正负不同,即 使在 当 当 均相同的情况下,洛伦兹力的方向也不同。 时, 时, ,即磁场力的方向服从右手螺旋法则。 ,负号说明磁场力的方向在右手螺旋法则规定的反方向。
始终运动方向垂直,故洛伦兹力对运动电荷永不做功,洛伦兹力公式是安培定律的微观形式。 洛伦兹公式是洛伦兹在 20 世纪初首先根据安培定律导出的,之后从实验上得到了验证。对载 流导体在磁场中所受的力,从微观上看,是导体中作定向运动的电子受磁场力作用的结果。根 据安培定律,和电流强度的微观表示形式, 如右图中电流元受到的安培力可改写为:
式中
是电流元
中参与导电的运动电荷总数。
图六 安培定律微观模型 为此力 通常称为洛伦兹力。当 不
在磁场强度为 B 的磁场中,电荷为 q、运动 速度为 的带电粒子, 所受的磁场力
时,带电粒子同时参与两种运动,将在磁场中作螺旋线运动。粒子速度垂直于磁场方向的 分量 所对应的洛伦兹分力,将使粒子绕磁场作圆周运动,回旋半径:
粒子速度平行于磁场方向的分量 个分运动合成为螺旋线运动。
所对应的洛伦兹分力,将使粒子作匀速直线运动,两

图七 V 不 2.2、Sputter 溅镀物理原理:
时,带电粒子在磁场中的运动
磁控溅射的工作原理如下图所示;电子在电场 E 作用下,在飞向基板过程中与氩原子发生碰撞,使其 电离出 Ar+和一个新的电子,电子飞向基片,Ar+在电场作用下加速飞向阴极靶,并以高能量轰击靶表面, 使靶材发生溅射。在溅射粒子中,中性的靶原子或分子则淀积在基片上形成薄膜。二次电子 el 一旦离开靶 面,就同时受到电场和磁场的作用。为了便于说明电子的运动情况,可以近似认为:二次电子在阴极
暗区时,只受电场作用;一旦进入负辉区就只受磁场作用。于是,从靶面发出的二次电子,首 先在阴极暗区受到电场加速,飞向负辉区。进入负辉区的电子具有一定速度,并且是垂直于磁 力线运动的。在这种情况下,电子由于受到磁场 B 洛仑兹力的作用,而绕磁力线旋转。电子 旋转半圈之后,重新进入阴极暗区,受到电场减速。当电子接近靶面时,速度即可降到零。以 后,电子又在电场的作用下,再次飞离靶面,开始一个新的运动周期。电子就这样周而复始, 跳跃式地朝着 E(电场)×B(磁场)所指的方向漂移(见下图)。简称 E×B 漂移。
电子在正交电磁场作用下的运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面 作圆周运动。二次电子在环状磁场的控制下,运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区 域内,在该区中电离出大量的 Ar+离子用来轰击靶材,从而实现了磁控溅射淀积速率高的特点。随着碰撞 次数的增加,电子 e1 的能量消耗殆尽,逐步远离靶面。并在电场 E 的作用下最终沉积在基片上。由于该电 子的能量很低,传给基片的能量很小,致使基片温升较低。另外,对于 e2 类电子来说,由于磁极轴线处的

电场与磁场平行,电子 e2 将直接飞向基片,但是在磁极轴线处离子密度很低,所以 e2 电子很少,对基片 温升作用极微。 综上所述,磁控溅射的基本原理,就是以磁场来改变电子的运动方向,并束缚和延长电子的运动轨 迹,从而提高了电子对工作气体的电离几率和有效地利用了电子的能量。因此,使正离子对靶材轰击所引 起的靶材溅射更加有效。同时,受正交电磁场束缚的电子,又只能在其能量要耗尽时才沉积在基片上。这 就是磁控溅射具有“低温”“高速”两大特点的道理。具体应用于 Sputter 磁控溅射中之情形如下图 ,
所示。
图八 磁控溅射工作原理 3、Magnetron、Magnetron Sputtering& Plasma 简解: 3.1、What is Magnetron:
图九 What is magnetron(磁场) 3.2、What is Magnetron Sputtering:
图十 What is Magnetron Sputter(磁控溅镀)

3.3、What is plasma:
图十一 电浆中原子被电子碰撞后转换成离子情形: 2+e-→O2++2e O
图十二 电子在电场和磁场中的运动 如图十三为真空状态下,Sputter 溅镀辉光放电(Glow Discharge)在真空状况发光情形。
图十三 Plasma(电浆)发光情形

磁控溅射技术进展及应用

摘要:近年来磁控溅射技术的应用日趋广泛,在工业生产和科学研究领域发挥巨大作用。随着对具有各种新型功能的薄膜需求的增加,相应的磁控溅射技术也获得进一步的发展。本文将介绍磁控溅射技术的发展,以及闭合磁场非平衡溅射、高速率溅射及自溅射、中频及脉冲溅射等各种新技术及特点,阐述磁控溅射技术在电子、光学、表面功能薄膜、薄膜发光材料等许多方面的应用。 关键词:磁控管溅射率非平衡磁控溅射闭合场非平衡磁控溅射自溅射 引言 磁控溅射技术作为一种十分有效的薄膜沉积方法,被普遍和成功地应用于许多方面 1~8,特别是在微电子、光学薄膜和材料表面处理领域中,用于薄膜沉积和表面覆盖层制备。1852年Grove首次描述溅射这种物理现象,20世纪40年代溅射技术作为一种沉积镀膜方法开始得到应用和发展。60年代后随着半导体工业的迅速崛起,这种技术在集成电路生产工艺中,用于沉积集成电路中晶体管的金属电极层,才真正得以普及和广泛的应用。磁控溅射技术出现和发展,以及80年代用于制作CD的反射层之后,磁控溅射技术应用的领域得到极大地扩展,逐步成为制造许多产品的一种常用手段,并在最近十几年,发展出一系列新的溅射技术。 一、磁控溅射镀膜原理及其特点 1.1、磁控溅射沉积镀膜机理磁控溅射系统是在基本的二极溅射系统发展而来,解决二极溅射镀膜速度比蒸镀慢很多、等离子体的离化率低和基片的热效应明显的问题。磁控溅射系统在阴极靶材的背后放置100~1000Gauss强力磁铁,真空室充入011~10Pa压力的惰性气体(Ar),作为气体放电的载体。在高压作用下Ar原子电离成为Ar+离子和电子,产生等离子辉光放电,电子在加速飞向基片的过程中,受到垂直于电场的磁场影响,使电子产生偏转,被束缚在靠近靶表面的等离子体区域内,电子以摆线的方式沿着靶表面前进,在运动过程中不断与Ar原子发生碰撞,电离出大量的Ar+离子,与没有磁控管的结构的溅射相比,离化率迅速增加10~100倍,因此该区域内等离子体密度很高。经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室内壁及靶源阳极上。而Ar+离子在高压电场加速作用下,与靶材的撞击并释放出能量,导致靶材表面的原子吸收Ar+离子的动能而脱离原晶格束缚,呈中性的靶原子逸出靶材的表面飞向基片,并在基片上沉积形成薄膜。溅射系统沉积镀膜粒子能量通常为1~10eV,溅射镀膜理论密度可达98%。比较蒸镀011~

磁控溅射原理

百科名片 磁控溅射原理:电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,呈中性的靶原子(或分子)沉积在基片上成膜。二次电子在加速飞向基片的过程中受到磁场洛仑磁力的影响,被束缚在靠近靶面的等离子体区域内,该区域内等离子体密度很高,二次电子在磁场的作用下围绕靶面作圆周运动,该电子的运动路径很长, 在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在基片上。磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。电子的归宿不仅仅是基片,真空室内壁及靶源阳极也是电子归宿。但一般基片与真空室及阳极在同一电势。磁场与电场的交互作用( E X B drift)使单个电子轨迹呈三维螺旋状,而不是仅仅在靶面圆周运动。至于靶面圆周型的溅射轮廓,那是靶源磁场磁力线呈圆周形状形状。磁力线分布方向不同会对成膜有很大关系。在E X B shift机理下工作的不光磁控溅射,多弧镀靶源,离子源,等离子源等都在次原理下工作。所不同的是电场方向,电压电流大小而已。磁控溅射的基本原理是利用 Ar一02混合气体中的等离子体在电场和交变磁场的作用下,被加速的高能粒子轰击靶材表面,能量交换后,靶材表面的原子脱离原晶格而逸出,转移到基体表面而成膜。磁控溅射的特点是成膜速率高,基片温度低,膜的粘附性好,可实现大面积镀膜。该技术可以分为直流磁控溅射法和射频磁控溅射法。磁控溅射(magnetron-sputtering)是70年代迅速发展起来的一种“高速低温溅射技术”。磁控溅射是在阴极靶的表面上方形成一个正交电磁场。当溅射产生的二次电子在阴极位降区内被加速为高能电子后,并不直接飞向阳极,而是在正交电磁场作用下作来回振荡的近似摆线的运动。高能电子不断与气体分子发生碰撞并向后者转移能量,使之电离而本身变成低能电子。这些低能电子最终沿磁力线漂移到阴极附近的辅助阳极而被吸收,避免高能电子对极板的强烈轰击,消除了二极溅射中极板被轰击加热和被电子辐照引起损伤的根源,体现磁控溅射中极板“低温”的特点。由于外加磁场的存在,电子的复杂运动增加了电离率,实现了高速溅射。磁控溅射的技术特点是要在阴极靶面附件产生与电场方向垂直的磁场,一般采用永久磁铁实现。如果靶材是磁性材料,磁力线被靶材屏蔽,磁力线难以穿透靶材在靶材表面上方形成磁场,磁控的作用将大大降低。因此,溅射磁性材料时,一方面要求磁控靶的磁场要强一些,另一方面靶材也要制备的薄一些,以便磁力线能穿过靶材,在靶面上方产生磁控作用。磁控溅射设备一般根据所采用的电源的不同又可分为直流溅射和射频溅射两种。直流磁控溅射的特点是在阳极基片和阴极靶之间加一个直流电压,阳离子在电场的作用下轰击靶材,它的溅射速率一般都比较大。但是直流溅射一般只能用于金属靶材,因为如果是绝缘体靶材,则由于阳粒子在靶表面积累,造成所谓的“靶中毒”,溅射率越来越低。目前国内企业很少拥有这项技术。

磁控溅射技术原理、现状、发展及应用实例

磁控溅射技术原理、现状、发展及应用实例(薄膜物理大作业论文) 班级:1035101班 学号:1101900508 姓名:孙静

一、前言 镀膜玻璃是一种在玻璃表面上镀一层或多层金属氧化物薄膜,使其具有一种或多种功能的玻璃深加工产品。自七十年代开始,在世界发达国家和地区,传统的单一采光材料—普通建气琳璃,已逐步为具有节能、控光、调温、改变墙体结构以及具有艺术装饰效果的多功能玻璃新产品所替代,如茶色玻璃、中空玻璃、镀膜玻璃等,其中又以镀膜玻璃尤汐引人注目,发展也颇为迅速,如欧洲共同体国家在1985年建筑玻璃总量的三分之二用的是镀膜玻璃,美国镀膜玻璃的市场在八十年代就已达5000万平方米/年,在香港、新加坡、台湾等经济崛起的东南亚国家和地区,镀膜玻璃的使用也日渐盛行。镀膜玻璃作为一种新型的建筑装饰材料已得到了人们普遍的肯定和喜爱。 目前生产镀膜玻璃所采用的方法大体上可分为浸渍法、化学气相沉积法、真空蒸发法、磁控溅射法以及在线镀膜等五种方法。 浸渍法是将玻璃浸人盛有金属有机化合物溶液的槽中,取出后送人炉中加热,去除有机物,从而形成了金属氧化物膜层。由于浸渍法使玻璃两边涂膜,且低边部膜层较厚,同时可供水解盐类不多,因而在国内未得到很好推广。 化学气相沉积法是将金属化合物加热成蒸汽状,然后涂到加热后的玻璃表面上。这种方法由于受到所镀物质的限制,且在大板上也难 真空蒸发法是在真空条件下,通过电加热使镀膜材料蒸发,由固相转化为气相,从而沉积在玻璃表面上,形成稳定的薄膜。此法的不足之处是所镀膜层不太均匀、有疵点、易脱落。只能生产单层金属镀膜玻璃,颜色也难以控制。 磁控溅射法是在真空条件下电离惰性气休,气体离子在电场的作用下,轰击金属靶材使金属原子沉积到玻璃表面上。 在线镀膜一般是在浮法玻璃生产线上进行,如电浮法、热喷涂等方法,目前我国较少使用。 在这些方法中,磁控溅射镀膜法是七十年代末期发展起来的一种先进的工艺方法,它的膜层由多层金属或金属氧化层组成,允许任意调节能量通过率、能量反射率,具有良好的外观美学效果,它克服了其它几种生产方法存在的一些缺点,因而目前国际上广泛采用这一方法。磁控溅射镀膜玻璃已越来越多地被运用于现代建筑并逐渐在民用住宅、汽车、电子等域使用,具有广阔的发展前景。 二、磁控溅射镀膜工艺 (一)工艺原理及特点 磁控溅射是一种新型的高速、低温溅射镀膜方法,它是在专门的真空设备中,借助于高压直线溅射装置进行的。磁控溅射镀膜工艺的原理是:将玻璃送人设有磁控阴极和溅射气体(氮气、氮气或氧气)的真空室内,阴极加负电压,在真空室内辉光放电,产生等离子体,由于金属靶材带负电,等离子体中带正电的气体离子被加速,并以相当于靶极位降U的能量撞击靶面,将金属靶的原子轰出来,使之沉淀在玻璃表面上而形成金属膜。工艺原理如下图所示:

磁控溅射

磁控溅射 1、磁控溅射 磁控溅射是一个磁控运行模式的二极溅射。它与二~四极溅射的主要不同点:一是,在溅射的阴极靶后面设置了永久磁钢或电磁铁。在靶面上产生水平分量的磁场或垂直分量的磁场(例如对向靶),由气体放电产生的电子被束缚在靶面附近的等离子区内的特定轨道内运转;受电场力和磁场力的复合作用,沿一定的跑道作旋轮转圈。靶面磁场对荷电粒子具有约束作用,磁场愈强束缚的愈紧。由于电磁场对电子的束缚和加速,电子在到达基片和阳极前,其运动的路径也大为延长,使局部Ar气的碰撞电离几率大大增加,氩离子Ar+在电场作用下加速,轰击作为阴极的靶材。把靶材表面的分子、原子及离子及电子等溅射出来,提高了靶材的飞溅脱离率。被溅射出来的粒子带有一定的动能,沿着一定的方向射向基体,最后沉积在基体上成膜。经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室内壁及靶电源阳极上。 工作气体电离几率的增加和靶材离化率的提高,使真空气体放电时内阻减小,故磁控靶发生溅射沉积时的工作电压较低(多数在4-600V之间),有的工作电压略高(例如>700V),有的工作电压较低(例如300V左右)。磁控溅射发生时,其溅射工作电压主要降落在磁控靶的阴极位降区上。 由于磁控溅射沉积的膜层均匀、致密、针孔少,纯度高,附着力强,可以在低温、低损伤的条件下实现高速沉积各种材料薄膜,已经成为当今真空镀膜中的一种成熟技术与工业化的生产方式。磁控溅射技术在科学研究与各行业工业化生产中得到了迅速发展和广泛应用。

总之,磁控溅射技术就是利用电磁场来控制真空腔体内气体“异常辉光放电”中离子、电子的运动轨迹及分布状况的溅射镀膜的工艺过程。 2、产生磁控溅射的三个条件 磁控气体放电进而引起溅射,必须满足三个必要而充分的条件: (1)第一,具有合适的放电气体压强P:直流或脉冲中频磁控放电,大约在0. 1 Pa~10Pa 左右),典型值为5×10-1Pa;射频磁控放电大约在10-1~10-2Pa。 (2)第二,磁控靶面具有一定的水平(或等效水平)磁场强度B(大约10mT~100mT),典型值为30~50mT,最低也要达到10~20 mT(100~200高斯)。 (3)第三,真空腔体内,具有与磁场正交(或等效正交)的电场V,典型值500~700V。 我们通称以上三条为P-B-V条件。 3、磁控溅射离子镀 (1)在基体和工件上是否施加(直流或脉冲)负偏压,利用负偏压对离子的吸引和加速作用,是离子镀与其它镀膜类型的一个主要区别。蒸发镀时基体和工件上加有负偏压就是蒸发离子镀;多弧镀时基体和工件上加有负偏压就是多弧离子镀;磁控溅射时基体和工件上加有负偏压就是磁控溅射离子镀,这是磁控溅射离子镀技术的一个重要特点。 (2)磁控溅射离子镀是把磁控溅射和离子镀结合起来的技术。在同一个真空腔体内既可实现氩离子对磁控靶材的稳定溅射,又实现了高能靶材离子在基片负偏压作用下到达基片进

磁控溅射技术的基本原理

张继成吴卫东许华唐晓红 中国工程物理研究院激光聚变研究中心绵阳 材料导报, 2004, 18(4): 56-59 介绍磁控溅射技术的基本原理、装置及近年出现的新技术。 1 基本原理 磁控溅射技术是在普通直流(射频)溅射技术的基础上发展起来的。早期的直流(射频)溅射技术是利用辉光放电产生的离子轰击靶材来实现薄膜沉积的。但这种溅射技术的成膜速率较低,工作气压高(2~10Pa)。为了提高成膜速率和降低工作气压,在靶材的背面加上了磁场,这就是最初的磁控溅射技术。 磁控溅射法在阴极位极区加上与电场垂直的磁场后,电子在既与电场垂直又与磁场垂直的方向上做回旋运动,其轨迹是一圆滚线,这样增加了电子和带电粒子以及气体分子相撞的几率,提高了气体的离化率,降低了工作气压,同时,电子又被约束在靶表面附近,不会达到阴(阳)极,从而减小了电子对基片的轰击,降低了由于电子轰击而引起基片温度的升高。 2 基本装置 (1) 电源 采用直流磁控溅射时,对于制备金属薄膜没有多大的问题,但对于绝缘材料,会出现电弧放电和“微液滴溅射”现象,严重影响了系统的稳定性和膜层质量。为了解决这一问题,人们采用了射频磁控溅射技术,这样靶材和基底在射频磁控溅射过程中相当于一个电容的充放电过程,从而克服了由于电荷积累而引起的电弧放电和“微液滴溅射”现象的发生。 (2) 靶的冷却 在磁控溅射过程中,靶不断受到带电粒子的轰击,温度较高,其冷却是一个很重要的问题,一般采用水冷管间接冷却的方法。但对于传热性能较差的材料,则要在靶材与水冷系统的连接上多加考虑,同时需要考虑不同材料的热膨胀系数的差异,这对于复合靶尤为重要(可能会破裂损坏)。 (3) 磁短路现象 利用磁控溅射技术溅射高导磁率的材料时,磁力线会直接通过靶的内部,发生刺短路现象,从而使磁控放电难以进行,这时需要在装置的某些部分做些改动以产生空间凝

磁控溅射

磁控反应溅射。就是用金属靶,加入氩气和反应气体如氮气或氧气。当金属靶材撞向零件时由于能量转化,与反应气体化合生成氮化物或氧化物。若磁铁静止,其磁场特性决定一般靶材利用率小于30%。为增大靶材利用率,可采用旋转磁场。但旋转磁场需要旋转机构,同时溅射速率要减小。冷却水管。 旋转磁场多用于大型或贵重靶。如半导体膜溅射。用磁控靶源溅射金属和合金很容易,点火和溅射很方便。这是因为靶(阴极),等离子体,和被溅零件/真空腔体可形成回路。但若溅射绝缘体如陶瓷则回路断了。于是人们采用高频电源,回路中加入很强的电容。这样在绝缘回路中靶材成了一个电容。但高频磁控溅射电源昂贵,溅射速率很小,同时接地技术很复杂,因而难大规模采用。为解决此问题,发明了 磁控溅射 磁控溅射是为了在低气压下进行高速溅射,必须有效地提高气体的离化率。通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率的方法。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar 和新的电子;新电子飞向基片,Ar在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于 一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。磁控溅射是入射粒子和靶的碰撞过程。入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。

磁控溅射技术研究进展

磁控溅射技术研究进展 薄膜技术不仅可改变工件表面性能,提高工件的耐磨损、抗氧化、耐腐蚀等性能,延长工件使用寿命,还能满足特殊使用条件和功能对新材料的要求。磁控溅射技术具有溅射率高、基片温升低、膜基结合力好、装置性能稳定、操作控制方便等优点,因此,被认为是镀膜技术中最具发展前景的一项新技术,同时也成为镀膜工业应用领域(特别是建筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对大面积的均匀性有特别苛刻要求的连续镀膜场合)的首选方案[1-8]。 1 磁控溅射技术原理 溅射是指具有一定能量的粒子轰击固体表面,使得固体分子或原子离开固体从表面射出的现象。溅射镀膜是指利用粒子轰击靶材产生的溅射效应,使得靶材原子或分子从固体表面射出,在基片上沉积形成薄膜的过程。磁控溅射是在辉光放电的两极之间引入磁场,电子受电场加速作用的同时受到磁场的束缚作用,运动轨迹成摆线增加了电子和带电粒子以及气体分子相碰撞的几率,提高了气体的离化率,降低了工作气压。而Ar+离子在高压电场加速作用下与靶材撞击,并释放能量使靶材表面的靶原子逸出靶材,飞向基板并沉积在基板上形成薄膜。图1所示为平面圆形靶磁控溅射原理。 磁控溅射技术得以广泛的应用是由该技术的特点所决定的。可制备成靶材的各种材料均可作为薄膜材料,包括各种金属、半导体、铁磁材料、以及绝缘的氧化物陶瓷、聚合物等物质。磁控溅射可制备多种薄膜不同功能的薄膜,还可沉积组分混合的混合物化合物薄膜。在溅射过程中基板温升低和能实现高速溅射,溅射产生二次电子被加速为高能电子后,在正交磁场作用下作摆线运动,不断与气体分子发生碰撞,把能量传递给气体分子本身变为低能粒子也就不会使基板过热。随着磁控溅射技术的发展,发展起了反应磁控

反应磁控溅射技术的发展情况及趋势

书山有路勤为径,学海无涯苦作舟 反应磁控溅射技术的发展情况及趋势 综述了反应磁控溅射技术的发展情况。分析了模拟反应磁控溅射的Berg 经典模型;详述了反应磁控溅射过程中迟滞效应和打火现象的产生原理及过程;分析了消除迟滞效应和打火现象的各种方法并提出个人的观点;展望了反应磁控溅射技术的发展趋势。 反应磁控溅射是具有一定能量的离子(Ar+)溅射金属或合金靶表面,被溅射出的金属原子和反应气体发生化学反应在基体上形成化合物薄膜。反应磁控溅射技术是目前科研和生产中制备化合物薄膜最常用的方法,能沉积不同种类的化合物,如:氧化物、氮化物、碳化物、氟化物和砷化物等。反应磁控溅射技术的优点是:借助精密的监控设备能快速沉积所需化学配比的化合物薄膜;金靶容易提纯和加工,因此靶材的成本低且所得薄膜的纯度高;金属靶具有良好的热传导性,因此靶的冷却效果较好,即靶能承受较高功率的溅射;反应磁控溅射沉积薄膜时,基体的温度较低(小于3e)。理想的反应溅射应该是在基体上沉积化合物,但是在实际溅射过程中,不仅在基体上沉积了化合物薄膜,同时靶材表面也会和反应气体发生化合反应形成化合物覆盖层,即所说的靶中毒。如反应溅射过程中的不稳定性是较复杂的非线性关系,为了预知和减少前期工艺优化的工作量,于1987 年由Berg 带头的课题组提出了一个依反应气体平衡为依据的模拟反应溅射过程的模型。该模型简单可靠,后来Berg 课题组还有其他国家的研究人员对该模型进行了深入的研究和发展,使模拟结果更趋近于实际的溅射过程。本文详述了反应磁控溅射过程中迟滞效应和打火现象的产生原理,分析了消除迟滞效应和打火现象的各种方法并提出个人的观点,分析了Berg 模型,展望了反应磁控溅射技术的发展趋势。

磁控溅射

2.2.1.溅射原理 溅射法沉积薄膜是物理气相沉积的一种,它利用荷电的离子在电场中加速后具有一定动能的特点,将离子引向预溅射的靶电极,在入射离子能量合适的情况下,将靶表面的原子溅射出来。这些被溅射出来的原子将带有一定的动能,并且会沿着一定的方向射向衬底,从而实现在衬底上沉积薄膜。溅射有两条最基本的特点:一是由辉光放电提供的高能离子或中性原子碰撞靶材表面,将其动量传递给靶材;二是动量传递导致某些粒子从靶表面溅射出来。离子轰击靶表面时除了会击出靶材原子外还会击出电子,即二次电子,这些电子在电场中加速后,与气体原子或分子碰撞,使其电离,从而使等离子体得以维持。在溅射的过程中通入少量的活性气体,使它与溅射出的靶原子在衬底上反应形成化合物薄膜,称为反应溅射。对于一般的溅射沉积方法具有两个缺点:第一,薄膜的沉积速率较低;第二,溅射所需的工作气压较高,如果工作气压低于1.3 Pa,电子的平均自由程太长,没有足够的离化碰撞,自持放电很难维持。作为薄膜沉积的一种技术,自持放电最严重的缺陷是用于产生放电的惰性气体对所沉积薄膜构成的污染。 一般溅射的效率一般不高,为了提高溅射效率,就需要增加气体的离化效率。因为溅射用于轰击靶材的离子来源于等离子体,提高溅射镀膜速率的关键在于如何提高等离子体的密度或电离度,以降低气体放电的阻抗从而在相同的放电功率下获得更大的电流,即获得更多的离子以轰击靶材。提高等离子体的密度或电离度的关键在于如何充分利用电子的能量,使其最大限度地用于电离。 图2.1磁控溅射系统示意图 在普通溅射系统的基础上增加一个发射电子的热阴极和一个辅助阳极,构成三极(或称四极)溅射系统。由于热阴极发射电子的能力较强,因而放电气压可以维持在较低的水平上,这对于提高沉积速率、减少气体杂质污染都是有利的。但是这种三极(或称四极)溅射的缺点是难以获得大面积且分布均匀的等离子体,且其提高薄膜沉积速率的能力有限,因而这一方法未获得广泛使用。利用高频放电装置,在交变电场中振荡的电子具有足够高的能量产生离化碰撞,可将气体离化率提高到一个较高的水平,在低气压下也能实现自持放电,即射频溅射。提高离化率也可以通过施加磁场的方式来实现,磁场的作用是使电子不是做平行直线运动,而是围绕磁力线做螺旋运动,这就意味着电子的运动路径由于磁场的作用而大幅度增加,从而有效地提高在直线运动距离内的气体离化效率,即磁控溅射。 2.2.2.磁控溅射 在靶材表面加上一平行的磁场,就可以将电子的运动限制在靶的表面区域,从而增加气体的离化效率,这种方法称为磁控溅射。图2.1是磁控溅射系统的示意图,在磁控溅射装置中增设了和电场正交的磁场,阳极置于磁控靶的周围,衬底并不放在阳极上而是在靶对面的处于悬浮电位的衬底架上。磁控溅射是利用溅射产生的二次电子在电场和磁场的共同作用下,沿电场方向加速,同时绕磁场方向螺旋前进的复杂轨迹,如图2.2所示。这样,二次电子到达阳极的路程大大增加了,因此碰撞气体并使气体电离的几率也大大提高了。而且由于二次电子主要是落在阳极上,所以并不轰击衬底使其发热,所以磁控溅射是一种高速、低温溅射技术。磁控溅射源按磁场形成的方式可以分为电磁型溅射源和永磁型溅射源。其中永磁型溅射源的结构简单,造价便宜,磁场分布可以调节,但是磁场较弱,磁场大小无法改变,如果要求在溅射过程中需要调整磁场的大小而且靶材是铁磁材料时,则应采用电磁型溅射源。采用磁控溅射,工作气压可降低到0.1 Pa-1 Pa,这样不仅降低了薄膜受污染的倾向,而且也提高了入射到衬底表面原子的能量,从而能改善薄膜的质量。另外,由于电子的电离率提高和溅射原子被散射的几率减小,所以磁控溅射的沉积速率可以比其他溅射方法提高一个数量级。

磁控溅射原理

Sputter 磁控溅镀原理
Sputter 在辞典中意思为: (植物)溅散。此之所谓溅镀乃指物体以离子撞击时,被溅射飞 散出。 因被溅射飞散的物体附著于目标基板上而制成薄膜。 在日光灯的插座附近常见的变黑现 象,即为身边最赏见之例,此乃因日光灯的电极被溅射出而附著于周围所形成。溅 镀现象, 自 19 世纪被发现以来,就不受欢迎,特别在放电管领域中尤当防止。近年来被引用于薄膜制 作技术效效佳,将成为可用之物。 薄膜制作的应用研究,当初主要为 Bell Lab.及 Western Electric 公司,于 1963 年制成全长 10m 左右的连续溅镀装置。1966 年由 IBM 公司发表高周波溅镀技术,使得绝缘物之薄膜亦可 制作。后经种种研究至今已达“不管基板的材料为何,皆可被覆盖任何材质之薄膜”目的境地。 而若要制作一薄膜,至少需要有装置薄膜的基板及保持真空状况的道具(内部机构) 。这 种道具即为制作一空间,并使用真空泵将其内气体抽出的必要。 一、真空简介: 所谓真空,依 JIS(日本工业标准)定义如下:较大气压力低的压力气体充满的特定的空 间状态。真空区域大致划分及分子运动如下:
真空划分 Pa 低 真 空 中 真 空 高 真 空 超高真空 105~102 102~10-1 10 ~10 〈10
-5 -1 -5

力 Torr 760~1 1~10-3 10-3~10 〈10
-7 -7
分子运动状态 粘滞流 viscous flow 中间流(过渡流) intermediate flow 分子流 molecular flow 分子流 molecular effusion
真空单位相关知识如下:
标准环境条件 气体的标准状态 压力(压强)p 帕斯卡 Pa 托 Torr 标准大气压 atm 毫巴 mbar 温度为 20℃,相对湿度为 65%,大气压力为: 1atm 101325Pa=1013.25mbar=760Torr 温度为 0℃,压力为:101325Pa 气体分子从某一假想平面通过时,沿该平面的正法线方向的动量改变率,除以该平面 面积或气体分子作用于其容器壁表面上的力的法向分量,除以该表面面积。注: “压 力”这一术语只适用于气体处于静止状态的压力或稳定流动时的静态压力 国际单位制压力单位,1Pa=1N/m2 压力单位,1Torr=1/760atm 压力单位,1atm=101325Pa 压力单位,1mbar=102Pa
二、Sputter(磁控溅镀)原理: 1、Sputter 溅镀定义:在一相对稳定真空状态下,阴阳极间产生辉光放电,极间气体分子 被离子化而产生带电电荷, 其中正离子受阴极之负电位加速运动而撞击阴极上之靶材, 将其原 子等粒子溅出,此溅出之原子则沉积于阳极之基板上而形成薄膜,此物理现象即称溅镀。而透 过激发、解离、离子化……等反应面产生的分子、原子、受激态物质、电子、正负离子、自由

磁控溅射法

溅射法是薄膜物理气相沉积的一种方法,他利用带有电荷的离子在电场中加速后具有一定动能的特点,将离子引向欲被溅射的靶电极。在离子能量合适的情况下,入射的离子将在与靶表面的原子碰撞过程中使后者溅射出来。这些被溅射出来的原子将带有一定的动能,并且会沿着一定的方向射向衬底,从而实现在衬底上薄膜的沉积。 物质的磁控溅射现象:溅射是一个离子轰击物质表面,并在碰撞过程中发生能量能动量的转换,从而最终将物质表面原子激发出来的复杂过程。它与入射离子能量,入射离子种类和被溅射物质种类以及离子入射角度有关。一般来说,只有当入射离子的能量超过一定的阀值以后,才会出现被溅射物质的溅射。大部分的金属的溅射阀值在10~40ev之间,每种物质的溅射阀值与入射离子的种类关系不大,但与被溅射物质的升华热有一定的比例关系。随着入射离子能量的增加,溅射出来的原子数与入射离子之比(溅射产额)先是提高,其后在离子能量达到10kev左右的时候趋于平缓。当离子能量继续增加时,溅射产额反而下降。 在一定加速电压和一定离子入射情况下,各种元素的溅射产额随元素外层d电子数的增加而增加,因而Cu,Ag,Au等元素的溅射产额明显高于Ti,Zr,Nb,Mo,W等元素的溅射产额。使用惰性气体作为入射离子时,溅射产额较高。由于经济性上的原因,在大多数情况下,均采用Ar离子作为溅射沉积时的入射离子。 磁控溅射:溅射法使用的靶材可根据材质分为纯金属,合金及各种化合物。主要溅射方法有直流溅射、射频溅射、磁控溅射、反应溅射。这里主要介绍磁控溅射方法。 速度为v的电子在电场E和磁感应强度为B的磁场中将受到洛伦兹的作用:F=-q(E+v*B)其中q为电子电量。 当电场与磁场同时存在的时候,若E,B,v三者互相平行,则电子的轨迹仍是一条直线:但若v具有与B垂直的分量的话,电子的运动轨迹将是沿电场方向加速,同时绕磁场方向螺旋前进的复杂曲线。即磁场的存在将延长电子在等离子体中的运动轨迹,提高了他参与原子碰撞和电离过程的几率,因而在同样的电流和气压下可以显著地提高溅射的效率和沉寂的速率。靶材与磁场的布置形式如上图所示。这种设置特点是在靶材的部分表面上方是磁场与电场方向垂直,从而进一步将电子的轨迹到靶面附近,提高电子碰撞和电离的效率,从而不让它去轰击阳极的衬底。实际的做法可将永久磁体和电磁线圈放置在靶的后方,从而造成磁力线先穿出靶面,然后变成与电场方向垂直,最终返回靶面的分布,即如图所示的磁力线方向那样。 在溅射过程中,由阴极发射出来的电子在电场的作用下具有像阳极运动的趋势。但是,在垂直磁场的作用下,它的运动轨迹被其弯曲而重新返回靶面。即在相互垂直的电磁场空间中,电子在E*B的方向上做漂移运动。而且这种漂移运动形成无终端的闭合轨迹,由此来维持放电。从而,在图中画出的靶面上将出现一条电子密度和原子电离极高,同时离子溅射几率极高的溅射带。 薄膜制备:下图是JGP450型多靶磁控溅射仪器装置示意图 1,将半导体或绝缘体靶放在永磁靶位或将磁性金属靶放在电磁靶位上。将清洗后的石英或单晶硅基片放在样品架上,根据实验要求调整基片温度。 2,开分子泵和电源水龙头;启动机械泵预抽真空,当真空度<10pa时,开分子泵抽高真空。 3,当真空室的真空达到10*-5后,开充气阀v1,和v3(或v4)如上图所示,向真空室中冲入溅射气体(如:Ar,O2或N2等),如用两种气体溅射,须经v3和v4把两种气体充入混气室混合后,再经v1充入到真空室中。通过流量计调节流量,调节工作压强,一般不超过10pa。 4,打开溅射电源;进行溅射。当靶材是绝缘体或半导体时用射频溅射,当靶材是金属或其它导体时用直流或射频溅射时都可以。

磁控溅射镀膜原理及工艺

磁控溅射镀膜原理及工艺 摘要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀。这里主要讲一下由溅射镀 膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究。 关键词:溅射;溅射变量;工作气压;沉积率。 绪论 溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。常用二极溅射设备如右图。 通常将欲沉积的材料制成板材-靶,固定在阴 极上。基片置于正对靶面的阳极上,距靶一定距离。 系统抽至高真空后充入(10~1)帕的气体(通常 为氩气),在阴极和阳极间加几千伏电压,两极间 即产生辉光放电。放电产生的正离子在电场作用下 飞向阴极,与靶表面原子碰撞,受碰撞从靶面逸出 的靶原子称为溅射原子,其能量在1至几十电子伏 范围内。溅射原子在基片表面沉积成膜。其中磁控 溅射可以被认为是镀膜技术中最突出的成就之一。 它以溅射率高、基片温升低、膜-基结合力好、装 置性能稳定、操作控制方便等优点,成为镀膜工业 应用领域(特别是建筑镀膜玻璃、透明导电膜玻璃、 柔性基材卷绕镀等对大面积的均匀性有特别苛刻 要求的连续镀膜场合)的首选方案。 1磁控溅射原理 溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)中的一种。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar正离子来轰击靶材,从而实现了高的沉积速率。随着碰

实验4磁控溅射法制备薄膜材料

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流气 体放电体系,在阴阳两极之间由电 动势为的直流电源提供电压和电 流,并以电阻作为限流电阻。在电 路中,各参数之间应满足下述关系: V=E-IR 使真空容器中Ar气的压力保持 一定,并逐渐提高两个电极之间的 电压。在开始时,电极之间几乎没 有电流通过,因为这时气体原子大 多仍处于中性状态,只有极少量的 电离粒子在电场的作用下做定向运 动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。

图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。 当电压继续升高时,离子与阴极之间以及电子与气体分子之间的碰撞变得重要起来。在碰撞趋于频繁的同时,外电路转移给电子与离子的能量也在逐渐增加。一方面,离子对于阴极的碰撞将使其产生二次电子的发射,而电子能量也增加到足够高的水平,它们与气体分子的碰撞开始导致后者发生电离,如图(a)所示。这些过程均产生新的离子和电子,即碰撞过程使得离子和电子的数目迅速增加。这时,随着放电电流的迅速增加,电压的变化却不大。这一放电阶段称为汤生放电。 在汤生放电阶段的后期,放电开始进入电晕放电阶段。这时,在电场强度较高的电极尖端部位开始出现一些跳跃的电晕光斑。因此,这一阶段称为电晕放电。 在汤生放电阶段之后,气体会突然发生放电击穿现象。这时,气体开始具备了相当的导电能力,我们将这种具备了一定的导电能力的气体称为等离子体。此时,电路中的电流大幅度增加,同时放电电压却有所下降。这是由于这时的气体被击穿,因而气体的电阻将随着气体电离度的增加而显著下降,放电区由原来只集中于阴极边缘和不规则处变成向整个电极表面扩展。在这一阶段,气体中导电粒子的数目大量增加,粒子碰撞过程伴随的能量转移也足够地大,因此放电气体会发出明显的辉光。 电流的继续增加将使得辉光区域扩展到整个放电长度上,同时,辉光的亮度不断提高。当辉光区域充满了两极之间的整个空间之后,在放电电流继续增加的同时,放电电压又开始上升。上述的两个不同的辉光放电阶段常被称为正常辉光放电和异常辉光放电阶段。异常辉光放电是一般薄膜溅射或其他薄膜制备方法经常采用的放电形式,因为它可以提供面积较大、分布较为均匀的等离子体,有利于实现大面积的均匀溅射和薄膜沉积。 2. 磁控溅射: 平面磁控溅射靶采用静止电磁场,磁场为曲线形。其工作原理如下图所示。电子在电场作用下,加速飞向基片的过程中与氩原子发生碰撞。若电子具有足够的能量(约为30eV)。时,则电离出Ar+并产生电子。电子飞向基片,Ar+在电场作用下加速

磁控溅射膜常见故障的排除

磁控溅射膜常见故障的排除 膜层灰暗及发黑 (1)真空度低于0.67Pa。应将真空度提高到0.13-0.4Pa。 (2)氩气纯度低于99.9%。应换用纯度为99.99%的氩气。 (3)充气系统漏气。应检查充气系统,排除漏气现象。 (4)底漆未充分固化。应适当延长底漆的固化时间。 (5)镀件放气量太大。应进行干燥和封孔处理 膜层表面光泽暗淡 (1)底漆固化不良或变质。应适当延长底漆的固化时间或更换底漆。 (2)溅射时间太长。应适当缩短。 (3)溅射成膜速度太快。应适当降低溅射电流或电压 膜层色泽不均 (1)底漆喷涂得不均匀。应改进底漆的施涂方法。 (2)膜层太薄。应适当提高溅射速度或延长溅射时间。 (3)夹具设计不合理。应改进夹具设计。 (4)镀件的几何形状太复杂。应适当提高镀件的旋转速度 膜层发皱、龟裂 (1)底漆喷涂得太厚。应控制在7—lOtan厚度范围内。 (2)涂料的粘度太高。应适当降低。 (3)蒸发速度太快。应适当减慢。 (4)膜层太厚。应适当缩短溅射时间。 (5)镀件温度太高。应适当缩短对镀件的加温时间 膜层表面有水迹、指纹及灰粒 (1)镀件清洗后未充分干燥。应加强镀前处理。 (2)镀件表面溅上水珠或唾液。应加强文明生产,操作者应带口罩。 (3)涂底漆后手接触过镀件,表面留下指纹。应严禁用手接触镀件表面。 (4)涂料中有颗粒物。应过滤涂料或更换涂料。 (5)静电除尘失效或喷涂和固化环境中有颗粒灰尘。应更换除尘器,并保持工作环境的清洁膜层附着力不良 (1)镀件除油脱脂不彻底。应加强镀前处理。 (2)真空室内不清洁。应清洗真空室。值得注意的是,在装靶和拆靶的过程中,严禁用手或不干净的物体与磁控源接触,以保证磁控源具有较高的清洁度,这是提高膜层结合力的重要措施之一。 (3)夹具不清洁。应清洗夹具。 (4)底涂料选用不当。应更换涂料。 (5)溅射工艺条件控制不当。应改进溅射工艺条件 圆柱形平面式磁控溅射靶的特点与设计原理 摘要:介绍了一种根据矩形平面靶的结构原理设计圆柱形、平面式磁控溅射靶的方法.并对如何发挥圆柱形、平面式磁控溅射靶的优点进行了分析. 关键词:磁控溅射;靶;真空镀膜 1磁控溅射技术 磁控溅射技术是70年代发展起来的一种新型溅射技术,目前已在科研和生产中实际应

相关文档