文档库 最新最全的文档下载
当前位置:文档库 › 去耦罐供热系统原理

去耦罐供热系统原理

去耦罐供热系统原理
去耦罐供热系统原理

去耦罐供热系统原理

锅炉连接示意图:

去耦罐:

去耦罐也叫混水罐或水力平衡器,是指在使用水系统

采暖中,因各回路之间存在水力耦合,当某一个支路或用户的流量发生变更时,其余支路或用户的流量及锅炉的流量都将受到影响,从而各个循环回路的水力平衡被攻破。利用一个通过创造一个压损近乎为零的区域,让水泵实现各自的循环,互不干扰,热量的无损失传递的装置,进行去耦化处理,该装置叫做去耦罐。

系统连接示意图:

去耦罐的作用:

传统供热系统中,所有的循环管路都连接到一个普通

的收集器中。在这种系统中,水泵的功能会被其他系统中的水泵影响。

去耦罐的目的是将供热系统中不同的循环管路分开。这种情况下所有的循环管路都不会受其他管路影响我们如何量化水利系统中管路的相互影响?

看看下面的例子:

传统供暖系统中水力管路的相互影响:

DP是泵通过锅炉的管路将水从分水器送到集水器需要克服的阻力。

供热系统中去耦罐的应用:

应用去耦罐,分水器和集水器之间的压力差等于去耦罐的阻力,这个阻力基本是可以忽略的。

应用去耦罐,这样在任何工况下:每个水力循环之路间的的相互影响都可以消除。

对于传统系统来说,最大允许的DP是0.4~0.5m,否则会影响泵的几个方面:寿命,压头和流量突然恶化等。

水力耦合器功能:

锅炉侧循环的流量=供热系统侧循环的流量

锅炉侧循环的流量<供热侧循环的流量

锅炉侧循环的流量>供热侧循环的流量

去耦罐组成部件图:

去耦罐应用的理由:

因为冷凝炉的水容量小,所以需要保持恒定的水量以防止损坏热交换器。

再者,二次侧连接多路循环管路会使一次侧压差剧烈变化。特别是增加的压差使水流速增加,那么就会增加噪音和管路消耗,以及泵的磨损。

第三,如果安装一个外部卫生热水水罐,其盘管的换热能力比锅炉功率小,会有损坏燃气阀的危险。例如一个200L的水箱连接一个155KW的壁挂炉串组。当壁挂炉感知到水罐传感器的信号,开始启动,热水离开壁挂炉,流过水罐盘管(却没有显著的降低温度)回到锅炉。锅炉的传感器检测到温差太小就停止加热。但是水罐中的水并没有被加热到足够的温度,水罐中的传感器又会使锅炉启动,如此往复,直到燃气阀损坏为止。

去耦罐的结构尺寸与安装:

1、去耦罐的结构尺寸:

为到达水力系统之间去耦的作用,对去耦罐的结构尺寸有必定请求,重要是为了保障去耦罐中流体纵向的流动速度为系统中流速的1/10,并建议在任何情况均不要超过0.1m/s。通常情形下,去耦罐衔接管中水

流速为0.7-0.9m/s,假如去耦罐的直径为连接收直径的3倍,则去耦罐中的均匀流速不会超过0.1m/s,也可通过计算断定尺寸。

2、去耦罐的安装

去耦罐的安装应留神两点:首先,应竖向安装;其次,在与系统连接时,温度高的管道(如供水管)应接在上部,温度低的管道(如回水管)应接在F部。去耦罐上部安装主动排气阀,部安装排污阀,去耦罐与系同一起保温。

采暖供热系统的应用

采暖供热系统的应用 采暖供热系统的应用 摘要:随着环保要求的提高和电力峰谷差的拉大,燃煤锅炉采暖受到严格限制,而其他采暖形式,如燃气采暖、电动采暖和蓄热的应用,开始受到关注。本文对热电联产、燃气锅炉、电炉、电动热泵以及蓄热的应用前景做初步的分析与探讨。关键词:采暖蓄热应用 中图分类号:F407.61文献标识码:A 文章编号: 一、引言近年来,我国大气污染日益严重,人们要求保护环境、净化天空的呼声日益增高,而北方冬季城市空气污染的重要来源是采暖燃煤锅炉所排放的粉尘和有害气体。与此同时,许多地区电力出现了相对过剩、电力峰谷差不断拉大的现象。例如,东北电网系统的最大峰谷差已是最大负荷的37%,而华北电网已达峰负荷的40%[1]。为解决电力系统的这种供需矛盾,电力系统用户侧和发电侧均采取了一定措施。在发电方面,一大批初投资巨大的抽水蓄能电站、运行费昂贵的燃油燃气尖峰电站相继建成并投入调峰运行,甚至一些高参数的大型火电厂也以被迫降低发电效率为代价而参与电力调峰。同时,电力系统也加强了用户侧管理。例如,采取分时电价,鼓励用户在电力低谷时多用电,在电力高峰时少用电。因此,在环保要求高的城市采暖供热中,燃煤锅炉房或燃煤炉灶将严格限制使用,取而代之的几种可能的采暖形式主要有集中供热的电锅炉、大型电动热泵和燃气锅炉房以及分散在用户房间内的家用燃气炉、电暖器。同时,为减小电力网发电的峰谷差,也可考虑在供热系统中设置蓄热装置,使得在满足采暖要求的同时,对电力负荷起到削峰填谷的作用。为此,本文将对上述采暖系统形式的应用作初步的分析与探讨。 二、各采暖系统应用分析1.传统采暖供热系统 传统的采暖供热系统主要有锅炉采暖系统和热电联产集中供热系统。

(完整版)电容去耦原理(解释十分透彻)

电容退耦原理 采用电容退耦是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。 对于电容退耦,很多资料中都有涉及,但是阐述的角度不同。有些是从局部电荷存储(即储能)的角度来说明,有些是从电源分配系统的阻抗的角度来说明,还有些资料的说明更为混乱,一会提储能,一会提阻抗,因此很多人在看资料的时候感到有些迷惑。其实,这两种提法,本质上是相同的,只不过看待问题的视角不同而已。为了让大家有个清楚的认 识,本文分别介绍一下这两种解释。 4.1 从储能的角度来说明电容退耦原理。 在制作电路板时,通常会在负载芯片周围放置很多电容,这些电容就起到电源退耦作用。其原理可用图 1 说明。 图 1 去耦电路 当负载电流不变时,其电流由稳压电源部分提供,即图中的I0,方向如图所示。此时电容两端电压与负载两端电压一致,电流Ic 为0,电容两端存储相当数量的电荷,其电荷数量和电容量有关。当负载瞬态电流发生变化时,由于负载芯片内部晶体管电平转换速度极快,必须在极短的时间内为负载芯片提供足够的电流。但是稳压电源无法很快响应负载电流的变化,因此,电流I0 不会马上满足负载瞬态电流要求,因此负载芯片电压会降低。但是由于电容电压与负载电压相同,因此电容两端存在电压变化。对于电容来说电压变化必然产生电流,此时电容对负载放电,电流Ic 不再为0,为负载芯片提供电流。根据电容等式: (公式1) 只要电容量 C 足够大,只需很小的电压变化,电容就可以提供足够大的电流,满足负载瞬 态电流的要求。这样就保证了负载芯片电压的变化在容许的范围内。这里,相当于电容预先存储了一部分电能,在负载需要的时候释放出来,即电容是储能元件。储能电容的存在

去耦罐的原理和功能

去耦罐(与二次泵系统的分集水器+平衡管相类似)的原理和功能 (2012-09-18 10:09:40) 转载▼ 标签: 家居 去耦罐俗称混水罐,是指在使用水系统采暖中,因各回路之间存在水力耦合,当某一个支路或用户的流量发生变更时,其余支路或用户的流量及锅炉的流量都将受到影响,从而各个循环回路的水力平衡被攻破。利用一个通过创造一个压损近乎为零的区域,让水泵实现各自的循环,互不干扰,热量的无损失传递的装置,进行去耦化处理,该装置叫做去耦罐。 一、去耦罐的功能和作用 用户使用电动温控阀或手动调节温控阀,达到调节每个房间的使用温度,引起采暖系统中流量和压力发生变化,去耦罐的功能可以平衡壁挂炉系统和采暖系统中压力,对壁挂炉系统流量没有任何影响;另一方面,对于闭式小锅炉采暖系统,去耦罐的应用避免了锅炉的频繁启动造成的能源浪费同时起到保护锅炉的作用;第二、在地暖系统中安装去耦罐,可以实现地暖系统大流量和小温差的技术优势,对于壁挂炉加预制薄型地暖系统是必选方案。 在壁挂锅炉运行体系中,去耦罐将系统分成一次系统跟二次系统两局部。去耦罐的作用是隔离一次侧与二次侧之间的水力耦合,使其水力工况互不影响。去耦罐的构造,如图所示。污物、杂质的积淀。因而,在去耦罐上部安装自动排气阀,下部安装排污阀。应用去耦罐后,原来由一台水泵构成的“大循环”或锅炉加用户,改为各回路独立循环。从名义上看,水泵的数目增长了,增添了一次投资,但每台水泵的功率要比原水泵小很多。同时各支路独立循环,便于管理与调节,防止了调节中有可能呈现的水力失调。当某一支路不工作时,可封闭该支

路的循环泵。使用去耦罐构建系统,有利于管理与节能。 二、去耦罐运行方式 在系统运行时,依据各路轮回流量的不同,去耦罐的工作方式如图所示。当GprGsec时,在去耦罐中,供水的分支直接旁通回锅炉,此时锅炉回水温度升高。表明管路携带的热量基本满足采暖负荷,锅炉此时将停止工作,即实现节能。 三、去耦罐的结构尺寸与安装 1、去耦罐的结构尺寸 为到达水力系统之间去耦的作用,对去耦罐的结构尺寸有必定请求,重要是为了保障去耦罐中流体纵向的流动速度为系统中流速的1/10,并建议在任何情况均不要超过0. 1m/s。通常情形下,去耦罐衔接管中水流速为0. 7- 0. 9m/s,假如去耦罐的直径为连接收直径的3倍,则去耦罐中的均匀流速不会超过0. 1m/s,也可通过计算断定尺寸。 2、去耦罐的安装 去耦罐的安装应留神两点:首先,应竖向安装;其次,在与系统连接时,温度高的管道(如供水管)应接在上部,温度低的管道(如回水管)应接在F部。去耦罐上部安装主动排气阀,部安装排污阀,去耦罐与系同一起保温。

浅谈采暖系统的分类及各种形式的选用

采暖系统就是设在建筑物内部向建筑物输入一定的热量以保持建筑物内部要求的温度,满足生活和各种工作环境对温度的要求的系统。笔者认为在采暖设计中首先需对各种采暖系统的特点比较熟悉,然后在实际工程中才能设计出合理的系统,达到建筑物对室内温度的要求。采暖系统总的来说可分为热水散热器采暖系统,蒸汽散热器采暖系统,辐射采暖系统,热风采暖系统。在这几个大的分类系统中,每个系统又可分为几种形式,每种形式又有各自不同的适应场所。现就对这几种系统形式谈一下自己的认识。 热水散热器采暖系统按系统的循环动力分类,可分为重力(自然)循环系统和机械循环系统。按供水温度分类,可分为高温水采暖系统和低温水采暖系统。高温水采暖系统供水温度高于100℃,低温水采暖系统供水温度低于100℃。按供回水的方式分类,可分为上供下回式,上供上回式,下供下回式,下供上回式,上供中回式等。按散热器的连接方式,可分为垂直式与水平式系统。按连接散热器的管道数量分类可分为单管系统与双管系统。按并联环路水的流程分类,可分为同程式系统与异程式系统。蒸汽采暖系统按照供汽压力可分为高压蒸汽采暖系统、低压蒸汽采暖系统和真空蒸汽采暖系统。根据立管的数量可分为单管蒸汽采暖系统和双管蒸汽采暖系统。根据蒸汽干管的位置可分为上供式、中供式和下供式。根据凝结水回收动力可分为重力回水和机械回水。辐射采暖系统按热媒种类可分为低温热水辐射采暖,中温热水辐射采暖,高温热水辐射采暖,电热式和燃气式。热风采暖可分为集中送风,管道送风,悬挂式和落地式暖风机等形式。 热水散热器采暖系统一般用于民用建筑中。下面就其各种形式特点及适用场所加以一一说明。重力循环系统不需要外来动力,它是靠供回水的密度差产生的压力差作为循环动力,因而作用压头小,所需管径大,但运行时无噪声,管理简单。只适用于没有集中供热热源、对供热质量有特殊要求的小型建筑物中。机械循环的循环动力来自水泵,它适用于大中型集中供热的建筑。高温水采暖系统的散热器表面温度高,易烫伤皮肤,烤焦有机灰尘,卫生条件及舒适度较差,热水容易发生气化,但可节省散热器用量,供回水温差较大,可减少管道系统管径,降低输送热媒所消耗的电能,主要用于对卫生要求不高的工业建筑及其辅助建筑中。低温热水系统优缺点正好与高温水系统相反,主要用于民用建筑。上供下回式系统的供回水干管分别设置于系统最上面和最下面,布置管道方便,排气顺畅,是用的最多的系统形式。上供上回式系统的供回水干管均位于系统最上面,采暖干管不与地面设备及其它管道发生占地矛盾,主要用于设备和工艺管道较多、沿地面布置干管发生困难的工厂车间。下供下回式系统供回水干管均位于系统最下面。这种系统可减轻系统的竖向失调,有利于水力平衡,低层需要设管沟或有地下室以便于布置两根干管,顶棚下无干管比较美观,可以分层施工,分期投入使用。住宅建筑分户采暖系统的干管布置及顶棚下不宜或不能布置干管的建筑一般采用这种形式。下供上回式系统的供水干管在系统最下面,回水干管在系统的最上面,与上供下回式相比,底层散热器平均温度升高,从而减少底层散热器面积。当热媒为高温水时,底层散热器供水温度高,然而水静压力也大,有利于防止水的汽化。上供中回式系统的供水干管布置在系统最上面,回水干管布置在底层散热器的上面,一般用在底层地面上不易布置管道的建筑,此种系统不用再设置地沟。垂直式系统是指不同楼层的各散热器用垂直立管连接的系统;水平式系统是指同一楼层的散热器用水平管线连接的系统。水平式系统一般用于公用建筑的大空间中不易布置采暖立管的场所。在住宅分户采暖系统中各个用户的户内系统一般采用水平式系统。单管系统又分为顺流式和单管跨越式。单管跨越式可调节单

去耦电容的选择、容值计算和布局布线

去耦电容的容值计算和布局布线 有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播, 和将噪声引导到地。 去耦电容的容值计算 去耦的初衷是:不论I C对电流波动的规定和要求如何都要使电压限值维持在规定的允许误差范围之内。 使用表达式: C⊿U=I⊿t 由此可计算出一个I C所要求的去耦电容的电容量C。 ⊿U是实际电源总线电压所允许的降低,单位为V。 I是以A(安培)为单位的最大要求电流; ⊿t是这个要求所维持的时间。 x i l i n x公司推荐的去耦电容容值计算方法: 推荐使用远大于1/m乘以等效开路电容的电容值。 此处m是在I C的电源插针上所允许的电源总线电压变化的最大百分数,一般I C 的数据手册都会给出具体的参数值。 等效开路电容定义为: C=P/(f U^2) 式中: P——I C所耗散的总瓦数; U——I C的最大D C供电电压; f——I C的时钟频率。

一旦决定了等效开关电容,再用远大于1/m的值与它相乘来找出I C所要求的总去耦电容值。然后还要把结果再与连接到相同电源总线电源插针的总数相 除,最后求得安装在每个连接到电源总线的所有电源插针附近的电容值。 去耦电容选择不同容值组合的原因: 在去耦电容的设计上,通常采用几个不同容值(通常相差二到三个数量级,如0.1u F与10u F),基本的出发点是分散串联谐振以获得一个较宽频率范 围内的较低阻抗。 电容谐振频率的解释: 由于焊盘和引脚的原因,每个电容都存在等效串联电感(E S L),因此自身会形成一个串联谐振电路,L C串联谐振电路存在一个谐振频率,随着电力的频 率不同,电容的特性也随之变化,在工作频率低于谐振频率时,电容总体呈容性,在工作频率高于谐振频率时,电容总体呈感性,此时去耦电容就失去了去耦的效 果,如下图所示。因此,要提高串联谐振频率,就要尽可能降低电容的等效串联电感。 电容的容值选择一般取决于电容的谐振频率。 不同封装的电容有不同的谐振频率,下表列出了不同容值不同封装的电容的谐振频率:

电锅炉蓄热采暖系统的工作原理

电锅炉蓄热采暖系统的工作原理 电锅炉蓄热采暖系统是以电锅炉为热源,水为热媒,利用峰谷电价差,在供电低谷时,开启电锅炉将水箱的水加热、保温、储存;在供电高峰及平电时,关闭电锅炉,用蓄热水箱的热水供热。 系统是由电锅炉、蓄热水箱、换热器、水箱循环泵、供热泵、补水泵、定压装置、电动三通阀等设备组成。 电锅炉为热源,蓄热水箱用于蓄热和放热,定压装置用于用户侧定压,热交换器用于热源系统与采暖系统换热。 换热器一次侧由锅炉,蓄热水箱,蓄热泵,板换等组成热源系统。换热器二次侧由系统循环泵,换热器,定压装置,用户等组成了采暖供热系统。在系统中设置了电动三通调节阀,根据室外温度变化, 自动调节换热器二次侧的供水温度。从而节约能源,保证了采暖的舒适性。 系统内的电锅炉、水泵、电动三通阀均由系统控制柜控制,加上电动碟阀可做到无人值守全自动运行,在需要时全部设备也可手动操作运行。 电锅炉蓄热采暖的优越性 1.自动化程度高, 可根据室外温度变化调节采暖供水温度, 运行合理, 节约能源消耗。 2.运行安全可靠,具有过温、过压、过流、短路、断水、缺相等六重自动保护功能,实现了机电一体化。 3.无噪音、无污染、占地少(锅炉本体体积小,设备布置紧凑,不需要烟囱和燃料堆放地,锅炉房可建在地下)。 4.热效率高,运行费用低,可充分利用低谷电。 5.操作方便, 值班人员劳动强度小,节约人工费用。 6.适用范围广,可满足各种环境及条件的要求,可满足宾馆、饭店、机关、学校、厂房、住宅等多种取暖方式和生活热水的需要。 电锅炉蓄热采暖运行方式介绍 蓄热式电锅炉的运行方式,主要分为两种形式: 一种是全部使用低谷电,(23:00~7:00为低谷电价)即低谷时段电锅炉开启运行并蓄热,平电及高峰用电时段(7:00~8:00、11:00~18:00执行平电电价,8:00~11:00、18:00~23:00执行峰电电价)关闭电锅炉,由蓄热水箱中的热水向系统供热。 另一种运行方式是在使用低谷电的同时使用一部分平电,即低谷时段电锅炉开启运行并蓄热;白天关闭电锅炉,由蓄热水箱中的热水向系统供热、同时使用一部分平电蓄热或供热。

PCB布局时去耦电容摆放经验分享

P C B布局时去耦电容摆放 经验分享 Prepared on 24 November 2020

PCB布局时去耦电容摆放经验分享 对于电容的安装,首先要提到的就是安装距离。容值最小的电容,有最高的谐振频率,去耦半径最小,因此放在最靠近芯片的位置。容值稍大些的可以距离稍远,最外层放置容值最大的。但是,所有对该芯片去耦的电容都尽量靠近芯片。 下面的图1就是一个摆放位置的例子。本例中的电容等级大致遵循10倍等级关系。 还有一点要注意,在放置时,最好均匀分布在芯片的四周,对每一个容值等级都要这样。通常芯片在设计的时候就考虑到了电源和地引脚的排列位置,一般都是均匀分布在芯片的四个边上的。因此,电压扰动在芯片的四周都存在,去耦也必须对整个芯片所在区域均匀去耦。如果把上图中的680pF电容都放在芯片的上部,由于存在去耦半径问题,那么就不能对芯片下部的电压扰动很好的去耦。 电容的安装 在安装电容时,要从焊盘拉出一小段引出线,然后通过过孔和电源平面连接,接地端也是同样。这样流经电容的电流回路为:电源平面->过孔->引出线->焊盘->电容->焊盘->引出线->过孔->地平面,图2直观的显示了电流的回流路径。 放置过孔的基本原则就是让这一环路面积最小,进而使总的寄生电感最小。图3显示了几种过孔放置方法第一种方法从焊盘引出很长的引出线然后连接过孔,这会引入很大的寄生电感,一定要避免这样做,这是最糟糕的安装方式。 第二种方法在焊盘的两个端点紧邻焊盘打孔,比第一种方法路面积小得多,寄生电感也较小,可以接受。第三种在焊盘侧面打孔,进一步减小了回路面积,寄生电感比第二种更小,是比较好的方法。 第四种在焊盘两侧都打孔,和第三种方法相比,相当于电容每一端都是通过过孔的并联接入电源平面和地平面,比第三种寄生电感更小,只要空间允许,尽量用这种方法。 最后一种方法在焊盘上直接打孔,寄生电感最小,但是焊接是可能会出现问题,是否使用要看加工能力和方式。 推荐使用第三种和第四种方法。 需要强调一点:有些工程师为了节省空间,有时让多个电容使用公共过孔,任何情况下都不要这样做。最好想办法优化电容组合的设计,减少电容数量。 由于印制线越宽,电感越小,从焊盘到过孔的引出线尽量加宽,如果可能,尽量和焊盘宽度相同。这样即使是0402封装的电容,你也可以使用20mil宽的引出线。引出线和过孔安装如图4所示,注意图中的各种尺寸。 对于大尺寸的电容,比如板级滤波所用的钽电容,推荐用图5中的安装方法。

太阳能采暖工作原理

太阳能供热采暖系统工作原理(参考北京地区的阳光指数) 系统包括太阳能集热系统、储热膨胀水箱,生活热水系统、辅助热源系统、末端供暖系统和控制系统。 太阳能集热系统采用多台供热采暖两用太阳热水器并联运行。太阳能可置于任何受光位置。以水为工质,温度控制运行状态。蓄热水箱同时具有膨胀水箱功能。太阳能水箱具有换热、供给热水、供暖和温差发电功能。辅助热源采用电采暖炉,整个系统运行状态无需人工操作。 太阳能供热采暖系统特点 ①采用高效供热采暖两用太阳热水器,使用寿命长,运行安全可靠,全年综合得热量高。 ②太阳能循环系统采用家用暖通循环系统,安装方法与土暖气相似。 ③太阳能的安装位置不受地理的限制,实现太阳能系统与建筑完美结合。 ④太阳能水箱具有常压承压两个压力状态,保证系统长寿命和在恶劣情况下无故障运行。 ⑤生活热水与采暖水相互隔离,保证了水质。 ⑥系统实现全自动运行,保证在停电、停水等意外工况的系统安全。 ⑦辅助热源用户可自选,利用电采暖炉作辅助热源有利于系统的全自动。

系统参数:(假设采暖面积为100平米的家用采暖) ①采暖面积:100㎡ ②集热面积45-50㎡,采暖面积选用58*1800真空管。 ③蓄热膨胀水箱0.5-1t ④电加热功率6KW 散热设备采用超导散热器或集成地暖。系统节能效益系统使用寿命15年以上。太阳能系统初投资400-600元/㎡左右。每年可节电2000KW·h,采暖季节煤3650kg. 系统运行情况地板采暖供水温度40-50℃,室内温度20℃以上。用户多采用经济运行方法,即调节散热器阀门或地暖分水器阀门,控制房间温度。达到最佳节能状态。 对于上述采暖技术描述,根据您所处的地域以及实际采暖现状要求(鉴于河北地区冬季阳光辐射量较少),600平米的采暖面积需要使用58*1800真空管集热面积在300平米左右,一吨集热器的采暖面积为16.2平米,所以为了保证使用效果需要采用集热器共20吨才能满足冬季采暖要求。

去耦电容的选取

高速电路板上使用最多的是什么东西?去耦电容! 关键词:去耦(decouple)、旁路(Bypass)、等效串联电感(ESL)、等效串联电阻(ESR)、高速电路设计、电源完整性(PI)、信号完整性(SI) 高手和前辈们总是告诉我们这样的经验法则:“在电路板的电源接入端放置一个1~10μF的电容,滤除低频噪声;在电路板上每个器件的电源与地线之间放置一个0.01~0.1μF的电容,滤除高频噪声。”在书店里能够得到的大多数的高速PCB设计、高速数字电路设计的经典教程中也不厌其烦的引用该首选法则(老外俗称Rule of Thumb)。但是为什么要这样使用呢?各位看官,如果你是电路设计高手,你可以去干点别的更重要的事情了,因为以下的内容仅是针对我等入门级甚至是门外级菜鸟。 做电路的人都知道需要在芯片附近放一些小电容,至于放多大?放多少?怎么放?将该问题讲清除的文章很多,只是比较零散的分布于一些前辈的大作中。鄙人试着采用拾人牙慧的方法将几个问题放在一起讨论,希望能加深对该问题的理解;如果很不幸,这些对你的学习和工作正好稍有帮助,那我不胜荣幸的屁颠屁颠的了。 首先就我的理解介绍两个常用的简单概念。

什么是旁路?旁路(Bypass),是指给信号中的某些有害部分提供一条低阻抗的通路。电源中高频干扰是典型的无用成分,需要将其在进入目标芯片之前提前干掉,一般我们采用电容到达该目的。用于该目的的电容就是所谓的旁路电容(Bypass Capacitor),它利用了电容的频率阻抗特性(理想电容的频率特性随频率的升高,阻抗降低,这个地球人都知道),可以看出旁路电容主要针对高频干扰(高是相对的,一般认为20MHz以上为高频干扰,20MHz以下为低频纹波)。 什么是退耦?退耦(Decouple),最早用于多级电路中,为保证前后级间传递信号而不互相影响各级静态工作点的而采取的措施。在电源中退耦表示,当芯片内部进行开关动作或输出发生变化时,需要瞬时从电源线上抽取较大电流,该瞬时的大电流可能导致电源线上电压的降低,从而引起对自身和其他器件的干扰。为了减少这种干扰,需要在芯片附近设置一个储电的“小水池”以提供这种瞬时的大电流能力。 在电源电路中,旁路和退耦都是为了减少电源噪声。旁路主要是为了减少电源上的噪声对器件本身的干扰(自我保护);退耦是为了减少器件产生的噪声对电源的干扰(家丑不外扬)。有人说退耦是针对低频、旁路是针对高频,我认为这样说是不准确的,高速芯片内部开关操作可能高达上GHz,由此引起对电源线的干扰明显已经不属于

供热空调水系统各种阀门的工作原理

供热空调水系统各种阀门的工作原理 供热空调水系统各种阀门的工作原理-上海阀门知识 阀门在供热空调水系统中被广泛应用于控制水的压力、流量和流向。供热空调水系统阀门的种类和工作原理:供热空调水系统中常用的阀门按阀体结构形式和功能可分为闸阀、蝶阀、截止阀、球阀、旋塞阀、止回阀、减压阀、安全阀、疏水阀、平衡阀等类。按照驱动方式分为手动、电动、液动、气动等四种方式。按照公称压力分高压、中压、低压三类。供热空调水系统常用的鸿丰阀门的工作原理及特点如下: 闸阀是指关闭件(阐板)沿介质通道轴线的垂直方向移动的阀门。其优点是流阻系数小,启、闭所需力矩较小,介质流向不受限制。缺点是结构尺寸大,启闭时间长,密封面易损伤,结构复杂。把闸阀分为不同类型,最常见的形式是平行式和楔式闸阀,根据阀杆的结构,还可分成明杆闸阀。闸阀按结构形式可分为以下四种: 闸阀 (1)平行式闸阀:指两个密封面相互平行的闸阀。适用于低压,中、小口径(DN50-400mm)的管道。 (2)楔式闸阀:指两个密封面成楔形的闸阀。分为双阐板、单阐板和弹性阐板。 (3)明杆闸阀:由于能较直观显示其启闭程度,所以多年来中小通径被广泛应用,通常DN 小于等于80mm选用明杆闸阀。 (4)暗杆闸阀:其阀杆螺母在阀体内与介质直接接触。适用于大口径阀门和安装空间受限制的管路,如地下管线。 蝶阀 其名称来源于翼状结构的蝶板。在管道上它主要用于切断和节流,当蝶阀用于切断时,多用弹性密封,材料选橡胶、塑料等,当用于节流时,多用金属硬密封。鸿丰蝶阀的优点是体积小,重量轻,结构简单,启闭迅速,调节和密封性能良好,流体阻力和操作力矩较小。蝶阀按结构可分为杠杆式(双摇杆)、中心对称门 指关闭体(阀瓣)沿阀座中心线移动的阀门。它在管道中一般只作切断用,而不用于节流,通常公称通径都限制在DN250mm以下。缺点是压力损失大。截止阀种类很多,按照结构一般分为直通式、确式和直流式。角式截止阀在制冷系统中较多采用,其进口通道呈90度直角,会产生压力降,最大优点是安装在管路系统的拐角处,既省90度弯头,又便于操作。球阀 球阀是由旋塞阀演变而来的,它在管道上主要用于切断、分配和改变介质流向。它的特点是流体阻力最小,其阻力系数与同长度的管段相等,启闭快,密封可靠,结构紧凑,易于操作和维修,因而广泛用于许多场合。球阀按球体的结构形式可分为以下三种: (1)浮动球球阀:其结构简单,密封性能良好,由于球所承受的工作介质载荷全部传给了出口端阀座密封圈,因而这种结构只适用于中、低压场合,其缺点是组装困难,制作精度要

去耦电容摆放

相信刚毕业的大学生,刚进单位犯错误是在所难免的,可能每个人都会有一个老师去带,如果你遇到了一个认真并且对你负责的老师带你,那我恭喜你,你的运气很好,因为一开始他对你的严格往往会使你受益终身。当然被别人批评永远是我们不愿意听到的,如果你既不想被老师批评,又想自己今后进步的很快,唯一的路径就是努力学习了。 前面说了一些自己经历的感受,下面我们开始说正题了。 相信对做硬件的工程师,毕业开始进公司时,在设计PCB时,老工程师都会对他说,PCB走线不要走直角,走线一定要短,电容一定要就近摆放等等。但是一开始我们可能都不了解为什么这样做,就凭他们的几句经验对我们来说是远远不够的哦,当然如果你没有注意这些细节问题,今后又犯了,可能又会被他们骂,“都说了多少遍了电容一定要就近摆放,放远了起不到效果等等”,往往经验告诉我们其实那些老工程师也是只有一部分人才真正掌握其中的奥妙,我们一开始不会也不用难过,多看看资料很快就能掌握的。直到被骂好几次后我们回去找相关资料,为什么设计PCB电容要就近摆放呢,等看了资料后就能了解一些,可是网上的资料很杂散,很少能找到一个很全方面讲解的。工作两年后,我看到了相关人士讲的相关文章。下面这篇文章是我转载于博士的一片关于电容去耦半径的讲解,相信你看了之后可以很牛x的回答和避免类似问题的发生。 老师问:为什么去耦电容就近摆放呢? 学生答:因为它有有效半径哦,放的远了失效的。 电容去耦的一个重要问题是电容的去耦半径。大多数资料中都会提到电容摆放要尽量靠近芯片,多数资料都是从减小回路电感的角度来谈这个摆放距离问题。确实,减小电感是一个重要原因,但是还有一个重要的原因大多数资料都没有提及,那就是电容去耦半径问题。如果电容摆放离芯片过远,超出了它的去耦半径,电容将失去它的去耦的作用。 理解去耦半径最好的办法就是考察噪声源和电容补偿电流之间的相位关系。当芯片对电流的需求发生变化时,会在电源平面的一个很小的局部区域内产生电压扰动,电容要补偿这一电流(或电压),就必须先感知到这个电压扰动。信号在介质中传播需要一定的时间,因此从发生局部电压扰动到电容感知到这一扰动之间有一个时间延迟。同样,电容的补偿电流到达扰动区也需要一个延迟。因此必然造成噪声源和电容补偿电流之间的相位上的不一致。 特定的电容,对与它自谐振频率相同的噪声补偿效果最好,我们以这个频率来衡量这种相位关系。设自谐振频率为f,对应波长为,补偿电流表达式可写为: 其中,A是电流幅度,R为需要补偿的区域到电容的距离,C为信号传播速度。 当扰动区到电容的距离达到时,补偿电流的相位为,和噪声源相位刚好差180度,即完全反相。此时补偿电流不再起作用,去耦作用失效,补偿的能量无法及时送达。为了能有效传递补偿能量,应使噪声源和补偿电流的相位差尽可能的小,最好是同相位的。距离越近,相位差越小,补偿能量传递越多,如果距离为0,则补偿能量百分之百传递到扰动区。这就要求噪声源距离电容尽可能的近,要远小于。实际应用中,这一距离最好控制在之间,这是一个经验数据。 例如:0.001uF陶瓷电容,如果安装到电路板上后总的寄生电感为1.6nH,那么其安装后的谐振频率为125.8MHz,谐振周期为7.95ps。假设信号在电路板上的传播速度为166ps/inch,则波长为47.9英寸。电容去耦半径为47.9/50=0.958英寸,大约等于2.4厘米。

采暖系统的压力计算原理

采暖系统的压力计算原理 一、流体力学基础 1,流体的压强p:单位帕斯卡(Pa) 1Pa=1N/㎡。单位面积所受的压力。流体压强产生源于它的流动性,因此流体微元对各个方向的压强大小相等。水的压强公式:p=ρgh 只与水柱高度有关,这也是为什么人们常用水柱高度(m)来表达压强。 2,流体的能量(单位均为焦耳):压力能P、位能(重力势能)Z=ρgz、动能ρν2/2。 (1)压力能与压强的区别:压力能P是能量,单位是焦耳;压强p是压力,单位是帕斯卡。要注意区别。两者关系:p=P/ρg。 (2)水的压强公式中h和位能公式中z的区别:h是水柱本身的高度,z是水柱的重心距离0参考面的距离。如下图所示: 3,伯努利方程 流体在单位体积下: Z1+P1+ρν12/2=Z2+P2+ρν22/2+ΔQ (单位:焦耳)ΔQ ——由阻力产生的能量损耗伯努利方程是特定情况下的能量守恒定律。 z1+p1+ν12/2g=z2+p2+ν22/2g+ΔH (单位:mH2o)ΔH——阻力损耗此公式是伯努利方程的变形,用压强的形式间接表达了能量守恒定律。也可表示为: Z1/ρg+P1/ρg+ν12/2g=Z2/ρg+P2/ρg+ν22/2g+ΔH 这个式子,是用水柱高度(即水头)表达的伯努利方程。Z1/ρg为位置水头,P1/ρg为压强水头,ν12/2g为速度水头。 经此变形,可知,伯努利方程可以用压力来表达能量,压力的变化即能量的变化。 二、循环流体

1,循环流体的特点:1)管径变化不大的情况下,动能的变化是很小的,因此一般是可以忽略不计的; 2)循环水泵只负责补充由于摩擦阻力和局部阻力产生的能量损耗,因此,循环水泵运行时的扬程是系统的总阻力损耗,而对压力能P、位能(重力势能)Z=ρgz、动能ρν2/2是没有影响的,水泵扬程只等于ΔH。(当采用热水自然循环系统时,热水供回水的密度差承担了循环水泵的功能) 3)由于动能的忽略不计,水柱的总能量一般只考虑压力能P、位能(重力势能)Z=ρgz两部分,(即伯努利方程中的前两项Z1/ρg+P1/ρg),称为测压管水头H c=Z1/ρg+P1/ρg。系统每一点的测压管水头连接成线,即是水压图: 2,资用压差:测压管水头H c=Z1/ρg+P1/ρg 是管道内水柱的总能量体现。因此,在循环水系统中,H c即是某一点水系统能提供的总压力,即“资用压力”,那么供回水之间资用压力的差值(即“资用压差”)就是该供回水管段之间所有连接的末端设备可以损耗的能量的总能量。如采暖入口的资用压差为50KPa,那整个系统的阻力损失最多只能是50KPa,否则,系统将不能正常运行。资用压差=系统阻力损失。 3,静压:流体静止时对容器壁的压强。p=ρgh 4,工作压力:流体工作时对容器壁的压强。由于工作时水泵的加压作用,测压管水头H c 大于静止时的值。而系统任意点的位置水头Z1/ρg是固定的,不因系统静止或运行而改变(因为距离基准点的距离是不变的)因此,测压管水头H c增加的部分都转化为压强水头P1/ρg,

水力分压器(流量罐)原理及应用

国家示范性中等职业学校建设项目水力分压器(流量罐)原 理及应用 制作人:杨 倩

水力分压器(流量罐)原理及应用

水力分压器(流量罐)原理及作用: ?水力分压器又称为“去耦罐”。其作用 是将一次循环系统分配成二次循环系统。二次循环系统的特征为有一个交点的两个循环环路,并分别有各自独立的水泵(循环动能)。我们所说的水力分压器或去耦罐就是二次循环环路的“交点”。 ? 通过水力分压器或去耦罐,我们可以将循环环路分配成二次系统。两个循环环路的动能可以相同或不同。水力分压器或去耦罐可以起到“分压”或“去耦”的作用。 ? 由于热源(如锅炉或热泵)与末端(如散热器或地暖)工况的不匹配,有时甚至是冲突,传统的一次循环系统无法保证系统的合理匹配和正常运行。水力分压器或去耦罐是解决系统工况不匹配的有效方法。力分压器或去耦罐的二次循环系统可以保证热源侧和末端侧根据自己的需要匹配动能来满足不同的循环温度、温差及流量。

水力分压器会导致的温度变化: ?我们强调:水力分压器内部有明显的混水作用 ?比如说,锅炉供应的‘热’水(在到达末端之前)可能被末端流回的‘冷’水‘降温’。在这种情况下,末端的设计应该考虑这类温降,而不是根据通常的惯例以锅炉出水的最高水温为基础 ?也有可能是,末端流回的‘冷’水(在回到锅炉之前)可能被锅炉供应的‘热’水‘升温’。这种情况下(尤其是地板采暖系统),锅炉回水的升温可以利用起来避免锅炉烟雾冷凝。

水力分压器应用中的三种工况 ?一次循环水量等于二次循环水量?一次循环水量小于二次循环水量?一次循环水量大于二次循环水量

?这是传统系统典型的情况,因为一次 循环水泵流量通常与二次循环水泵流 量相同。 ?这种情况下,可以近似推出一次水温 与二次水温关系如下: ?T1=T3 ?T2=T4 ? 因此可以认为分压器不会改变水温, 设计末端(在普通的系统中)以锅炉 出水的最高温度为基础。1、一次循环水量等于二次循环水量

旁路电容和去耦电容

旁路电容和去耦电容 定义: 可将混有高频电流和低频电流的交流信号中的高频成分旁路滤掉的电容,称做“旁路电容”。 旁路电容的主要功能是产生一个交流分路,从而消去进入易感区的那些不需要的能量,即当混有高频和低频的信号经过放大器被放大时,要求通过某一级时只允许低频信号输入到下一级,而不需要高频信号进入,则在该级的输入端加一个适当大小的接地电容,使较高频率的信号很容易通过此电容被旁路掉(这是因为电容对高频阻抗小),而低频信号由于电容对它的阻抗较大而被输送到下一级放大 对于同一个电路来说,旁路电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(也称退耦)电容是把输出信号的干扰作为作为滤除对象。 电源去耦电容电路有两个作用: 一方面是集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容值是0.1μF。这个电容的分布电感的典型值是5nH。0.1μF的去耦电容有5nH 的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用钽电容或聚碳酸酯电容。去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取0.01μF。 旁路电容和去耦电容的区别和作用: 旁路电容不是理论概念,而是一个经常使用的实用方法,电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件。例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的电容,这就叫旁路电容。一般来说,容量为uf级的电容,像电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰旁路是把前级或电源携带的高频杂波或信号滤除;去藕是为保证输出端的稳定输出(主要是针对器件的工作)而设的“小水塘”,在其他大电流工作时保证电源的波动范围不会影响该电路的工作;补充一点就是所谓的藕合:是在前后级间传递信号而不互相影响各级静态工作点的元件有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。从电路来说,总是存在驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。去耦电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。旁路电容实际也是

最新1-1-1-1自然循环热水供暖系统工作原理及系统形式

项目一:室内热水供暖工程施工 模块一:识读、绘制室内热水供暖系统施工图 单元1 热水供暖系统形式 1-1-1-1自然循环热水供暖系统工作原理及系统形式 1.自然循环热水供暖系统的工作原理 图 1-1-1为自然循环热水供暖系统的工作原理图。图中假设系统有一个加热中心(锅炉)和一个冷却中心(散热器),用供、回水管路把散热器和锅炉连接起来。在系统的最高处连接一个膨胀水箱,用来容纳水受热膨胀而增加的体积。 运行前,先将系统内充满水,水在锅炉中被加热后,密度减小,水向上浮升,经供水管道流入散热器。在散热器内热水被冷却,密度增加,水再沿回水管道返回锅炉。 在水的循环流动过程中,供水和回水由于温度差的存在,产生了密度差,系统就是靠供、回水的密度差作为循环动力的。这种系统称为自然(重力)循环热水供暖系统。 图1-1-1 自然循环热水供暖系统工作原理图 1-热水锅炉 2-供水管路 3-膨胀水箱 4-散热器 5-回水管路 2.自然循环热水供暖系统的形式特点 图1-1-2是自然循环热水供暖系统的两种主要形式,左侧立管为双管上供下回式系统;右侧立管为单管上供下回式(顺流式)系统。上供下回式系统的供水干管敷设在所有散热器之上,回水干管敷设在所有散热器之下。

图1-1-2 自然循环热水供暖系统 1-回水立管 2-散热器回水支管 3-膨胀水箱连接管 4-供水干管 5-散热器供水支管 6-供水立管 7-回水干管 8-充水管(接上水管) 9-止回阀 10-泄水管(接下水道) 11-总立管 (1)自然循环双管上供下回式系统,其特点是:各层散热器都并联在供、回水立管上,热水直接流经供水干管、立管进入各层散热器,冷却后的回水经回水立管、干管直接流回锅炉,如果不考虑水在管道中的冷却,则进入各层散热器的水温相同。分析该系统循环作用压力时,因假设锅炉是加热中心,散热器是冷却中心,可以忽略水在管路中流动时管壁散热产生的水冷却,认为水温只是在锅炉和散热器处发生变化。 (2)自然循环单管上供下回式系统,其特点是:热水进入立管后,由上向下顺序流过各层散热器,水温逐层降低,各组散热器串联在立管上。每根立管(包括立管上各组散热器)与锅炉、供回水干管形成一个循环环路,各立管环路是并联关系。 3. 热水供暖系统的排空气问题 无论是自然循环还是机械循环热水供暖系统,都应考虑系统充水时,如果未能将空气完全排净,随着水温的升高或水在流动中压力的降低,水中溶解的空气会逐渐析出,空气会在管道的某些高点处形成气塞,阻碍水的循环流动。空气如果积存于散热器中,散热器就会不热。另外,氧气还会加剧管路系统的腐蚀。所以,热水供暖系统应考虑排空气的问题。 4. 自然循环上供下回式热水供暖系统排空气及供回水干管的坡度设置 在自然循环系统中,水的循环作用压力较小,流速较低,水平干管中水的流速小于0.2m /s,而干管中空气气泡的浮升速度为0.1~0.2 m/ s ,立管中约为0.25 m / s ,一般超过了水的流动速度。此外,自然循环上供下回式热水供暖系统的供水干管应设沿水流方向下降的坡度,坡度值为0.5%~1.0%。散热器支管也应沿水流方向设下降坡度,坡度值为1%,因此空气能够逆着水流方向向高处聚集。自然循环上供下回式热水供暖系统可通过设在供水总 立管最上部的膨胀水箱排空气。

供热采暖系统管理规范详细版

文件编号:GD/FS-7330 (管理制度范本系列) 供热采暖系统管理规范详 细版 The Daily Operation Mode, It Includes All Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify The Management Process. 编辑:_________________ 单位:_________________ 日期:_________________

供热采暖系统管理规范详细版 提示语:本管理制度文件适合使用于日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1范围 本标准规定了供热企业(单位)的岗位职责、规章制度建设和标准化管理、运行管理、维修管理、质量管理、安全管理、服务管理、经营管理和档案信息管理等工作的要求。 本标准适用与锅炉房、热力站、室外供热管线和室内采暖系统的管理。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否

使用这些文件的最新版本。凡是不注日期的引用为文件,其最新版本适用于本标准。 GB/T16811工业锅炉水处理设施运行效果与监测 CJJ/T88城镇供热系统安全技术规程 JB/T10354工业锅炉运行规程 DB11/097低硫散煤及制品 DB11/139锅炉污染物综合排放标准 DB11/381既有居住建筑节能改造技术规程 DB11/T466供热采暖系统维修管理规范 3管理工作总体目标 3.1供热企业(单位)应在保障供热质量的同时,规范对采暖用户的服务。 3.2供热企业(单位)应采用节能技术措施,实现供热系统的节能减排,保障各项环保指标达标。

去耦电容

在电子设计竞赛培训过程中,在使用IC芯片制作各电路模块时,同学们对去耦电容器的使用感到十分困惑,为什么要使用去耦电容器,去耦电容器有什么作用?使用几个去耦电容器?是使用相同容量的电容器并联?还是使用几个不同容量的电容器并联?去耦电容器安装在什么地方?等等。本人收集了一些资料,写了一个有关去耦电容器使用方法介绍,供同学们参考。 1.电源和IC电路之间的去耦电路 如图1所示,各类电容器和EMI降噪滤波器在连接IC电源端和配电网(PDN)的连接处,形成去耦电路,可以增加电路的电源完整性(PI)[murata Inc.c39c[1]数字IC电源静噪和去耦应用手册.https://www.wendangku.net/doc/8a4049388.html,]。 2011年7月15日08:18:44上传下载附件(58.38KB) 图1电源和数字IC之间的去耦电路 去耦电路实现的功能(电路中以IC1为主)如下:

①抑制由IC产生噪声或进入IC的噪声; ②提供与IC工作和维持电压有关的瞬态电流; ③变为信号通道的一部分(形成信号返回通道)。 当去耦电路不起作用时,可能会出现以下问题: ①由于存在噪声泄漏,与其他电路相干扰(例如IC3),或增加设备的噪声辐射; ②噪声从外源侵入,导致IC工作出现问题; ③产生电源电压波动,干扰IC工作,降低信号完整性,增加信号上叠加的噪声; ④由于信号电流的回路不足,降低信号完整性。 因此,采用适当的去耦电路对抑制噪声和保证电路正常工作来说十分重要。 2.不同位置的去耦电容器 如图2所示,去耦电容器按其位置可以分为体电容器(大容量电容器)、PCB电容器(板电容器)、封装上去耦电容器(On-Package DecouplingCapacitor)和片上去耦电容(On-Chip Decoupling Capacitor)等几种类型。实际电路中,由于PCB一封装连接和封装一芯片连接所引入的寄生电感导致功率不能及时有效地传输。在功率不能及时传输时,通常就需要用去耦电容器提供瞬时电流。从去耦速度的角度来看,去耦电容器越靠近芯片内部电路去耦速度越快。这就是在高速器件引入封装去耦电容器和片上去耦电容的根本原因。去耦网络的设计是整个PDN设计的重点和难点。

相关文档
相关文档 最新文档