文档库 最新最全的文档下载
当前位置:文档库 › 奥数第一讲 因式分解(一)

奥数第一讲 因式分解(一)

奥数第一讲 因式分解(一)
奥数第一讲 因式分解(一)

第一讲因式分解(一)

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.

1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;

(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;

(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)

=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]

=-2x n-1y n(x2n-y2)2

=-2x n-1y n(x n-y)2(x n+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:

原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3

的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.

解因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),

所以

说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解 (1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.

解设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析先将两个括号内的多项式分解因式,然后再重新组合.

解原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

练习一

1.分解因式:

(2)x10+x5-2;

(4)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4;

(2)x4-11x2y2+y2;

(3)x3+9x2+26x+24;

(4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1;

(4)(x+3)(x2-1)(x+5)-20.

第一讲因式分解(一)

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.

1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;

(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;

(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)

=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]

=-2x n-1y n(x2n-y2)2

=-2x n-1y n(x n-y)2(x n+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:

原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3

的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.

解因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),

所以

说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解 (1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.

解设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析先将两个括号内的多项式分解因式,然后再重新组合.

解原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

练习一

1.分解因式:

(2)x10+x5-2;

(4)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4;

(2)x4-11x2y2+y2;

(3)x3+9x2+26x+24;

(4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1;

(4)(x+3)(x2-1)(x+5)-20.

[文章来源:教师之家https://www.wendangku.net/doc/8b3994113.html,/转载请保留出处] [相关优质课视频请访问:教学视频网https://www.wendangku.net/doc/8b3994113.html,/]

因式分解-奥数精讲与测试8年级

例1.分解因式: ⑴a6?b6; ⑵a2+b2+c2?2bc+2ca?2ab; ⑶a7?a5b2+a2b5?b7 例2.分解因式: ⑴a3+b3+c3?3abc;⑵x3+y3+3xy?1. 例3.分解因式:(x?1)3+(x?2) 3+(3?2x) 3例4.分解因式:x3?5x+4. 例5.分解因式:x5n+x n+1. 例6.分解因式:(x+1)4+(x2?1)2十(x?1) 4.例7.分解因式:a4+b4+c4?2a2b2?2b2c2?2c2a2 A卷

一、填空题 01.分解因式(a+b)2+(a?b) 2+c(a2+b2)=_________。 02 .计算 () 2 22 200220012003 2002200220012001 -? -?+ 的结果等于_________。 03.已知x3+x2+x+1=0,那么x2008十2x2000+5x1996的值是_________。 04.分解因式(x2+3x?3)(x2十3x+4)?8=_________。 05.将多项式x2?4y2?9z2?12yz分解成因式的积,结果是_________。 06.把(1? x2)(1? y2)+4xy因式分解,结果是_________。 07.已知x?1是多项式x3?3x+k的一个因式,那么这个多项式的其它因式有_________。 08.分解因式(x2?1)(x4+x2+1)? (x3+1)2 =_________。09.分解因式a3b+ab+30b的结果是_________。 10.分解因式(x?2y)x3?(y?2x) y3=_________。 二、解答题 11.分解因式a3+b3+c3?3abc. 12.已知x y ≠,且x3?x=7,y3?y=7,那么x2+xy+y2的值是多少? B卷 一、填空题 01.分解因式ab(c2?d2)?cd(a2?b2)=_________。

初中奥赛因式分解习题大全

))(()()()()(1 22122by ay x b a b a y b a x a b y b a x n n n n +--=---=-+-++2 22212222)31(31)9132(319227131--=+--=+--++x x x x x x x x n n n n n ))(()()(22)()(222222 22222222 222222222222 22222y x c b a y c b a x c b a x c y c abxy x b y a abxy y b x a x c y c ay bx by ax +++=+++++=++-++++=++-++322a a -22129 b a ab c -a ab a -+2ab a 75.0432+a a a 24646-+-ax x a x a +-2233242566816y x y x y x -+-21---+m m m a a a ) ()()(b a a b y b a x ---+-) ()(3223x y y x y x y x -+-) 3)(()35)((y x b a y x b a -+--+因式分解的方法: 1提公因式法 口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。 例:(1)-am+bm+cm=-m(a-b-c); (2)a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b) (3) (4) (5) (6)2n(m-2n)(3m-2n)-3m(2n-3m)(2n-m) =2n(m-2n)(3m-2n)-3m(3m-2n)(m-2n) =(m-2n)(3m-2n)(2n-3m) 专项练习题 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、

初二年级奥数因式分解测试题及答案

初二年级奥数因式分解测试题及答案1.下列式子是因式分解的是(C) A.x(x-1)=x2-1 B.x2-x=x(x+1) C.x2+x=x(x+1) D.x2-x=(x+1)(x-1) 2.把多项式x2+ax+b分解因式,得(x+1)(x-3)则a,b的值分别是(B) A.a=2,b=3 B.a=-2,b=-3 C.a=-2,b=3 D.a=2,b=-3 知识点2 提公因式法因式分解 3.多项式8m2n+2mn的公因式是(A) A.2mn B.mn C.2 D.8m2n 4.多项式a2-4a分解因式,结果准确的是(A) A.a(a-4) B.(a+2)(a-2) C.a(a+2)(a-2) D.(a-2)2-4 5.把多项式m2(a-2)+m(2-a)因式分解,结果准确的是(C) A.(a-2)(m2-m) B.m(a-2)(m+1) C.m(a-2)(m-1) D.m(2-a)(m-1) 6.用提公因式法因式分解: (1)3x3+6x4;

解:原式=3x3(1+2x). (2)4a3b2-10ab3c; 解:原式=2ab2(2a2-5bc). (3)-3ma3+6ma2-12ma; 解:原式=-3ma(a2-2a+4). (4)6p(p+q)-4q(p+q). 解:原式=2(p+q)(3p-2q). 7.若m-n=-1,则(m-n)2-2m+2n的值是(A) A.3 B.2 C.1 D.-1 8.小玉同学在计算34.3×17.1+82.5×17.1-26.8×17.1+ 10×17.1=17.1×(34.3+82.5-26.8+10)=1_710. 9.把多项式x2+mx+5因式分解得(x+5)(x+n),则m=6,n=1. 10.两位同学将一个二次三项式分解因式,一位同学因看错了一 次项系数而分解成(x-1)(x-9),另一位同学因看错了常数项而分解 成(x-2)(x-4),则这个二次三项式为x2-6x+9. 11.将下列各式分解因式: (1)x4+x3+x; 解:原式=x(x3+x2+1). (2)x(x-y)+y(y-x); 解:原式=x(x-y)-y(x-y) =(x-y)(x-y) =(x-y)2.

因式分解-奥数精讲与测试8年级

例1.分解因式: ⑴a6-b6; ⑵a2+b2+c2-2bc+2ca-2ab; ⑶a7-a5b2+a2b5-b7 例2.分解因式: ⑴a3+b3+c3-3abc;⑵x3+y3+3xy-1. 例3.分解因式:(x-1)3+(x-2) 3+(3-2x) 3例4.分解因式:x3-5x+4. 例5.分解因式:x5n+x n+1. 例6.分解因式:(x+1)4+(x2-1)2十(x-1) 4.例7.分解因式:a4+b4+c4-2a2b2-2b2c2-2c2a2 A卷

一、填空题 01.分解因式(a+b)2+(a-b) 2+c(a2+b2)=_________。 02 .计算 2 22 200220012003 2002200220012001 的结果等于_________。 03.已知x3+x2+x+1=0,那么x2008十2x2000+5x1996的值是_________。 04.分解因式(x2+3x-3)(x2十3x+4)-8=_________。 05.将多项式x2-4y2-9z2-12yz分解成因式的积,结果是_________。 06.把(1- x2)(1- y2)+4xy因式分解,结果是_________。 07.已知x-1是多项式x3-3x+k的一个因式,那么这个多项式的其它因式有_________。 08.分解因式(x2-1)(x4+x2+1)- (x3+1)2 =_________。09.分解因式a3b+ab+30b的结果是_________。 10.分解因式(x-2y)x3-(y-2x) y3=_________。 二、解答题 11.分解因式a3+b3+c3-3abc. 12.已知x y,且x3-x=7,y3-y=7,那么x2+xy+y2的值是多少? B卷 一、填空题 01.分解因式ab(c2-d2)-cd(a2-b2)=_________。

初二年级奥数因式分解练习题

初二年级奥数因式分解练习题 性质: 1、因式分解与解高次方程有密切的关系。对于一元一次方程和一元二 次方程,初中已有相对固定和容易的方法。在数学上能够证明,对于 一元三次方程和一元四次方程,也有固定的公式能够求解。仅仅因为 公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式 和四次多项式也有固定的分解方法,仅仅比较复杂。对于五次以上的 一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元 方程也没有固定解法。 2 、所有的三次和三次以上的一元多项式在实数范围内都能够因式分解,所有的二次或二次以上的一元多项式在复数范围内都能够因式分解。这看起来或许有点不可思议。比如X4+1,这是一个一元四次多项式,看起来似乎不能因式分解。但是它的次数高于3,所以一定能够因式分解。如果有兴趣,你也能够用待定系数法将其分解,仅仅分解出来的 式子并不整洁。(这是因为,由代数基本定理可知n次一元多项式总是 有n个根,也就是说,n次一元多项式总是能够分解为n个一次因式的乘积。并且还有一条定理:实系数多项式的虚数根两两共轭的,将每 对共轭的虚数根对应的一次因式相乘,能够得到二次的实系数因式, 从而这条结论也就成立了。) 3 、因式分解虽然没有固定方法,但是求两个多项式的公因式却有固 定方法。因式分解很多时候就是用来提公因式的。寻找公因式能够用 辗转相除法来求得。标准的辗转相除技能对于中学生来说难度颇高, 但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式 的除法也能够但比较笨,不过能有效地解决找公因式的问题。 概念:

因式分解的定义和主要方法常规因式分解主要公式定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。例如:(m+n)(m-n)=m2-n2 【方法】 因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、使用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。 注意四原则: 1.分解要彻底(是否有公因式,是否可用公式) 2.最后结果只有小括号 3.最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=-x(2+3y+4z) 归纳方法: 1.提公因式法。 2.使用公式法。 3.拼凑法。 提取公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式,公因式能够是单项式,也能够是多项式。 如果一个多项式的各项有公因式,能够把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。

奥数-因式分解-1上海师

第 讲 因式分解1 知识点睛 把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式。分解因式最基本方法有: (1)提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面。 (2)运用公式法: 平方差:22 ()()a b a b a b -=+- 完全平方:2222()a ab b a b ±+=± 立方和:3322()()a b a b a ab b +=+-+ 立方差:3322()()a b a b a ab b -=-++ 2222222()a b c ab ac bc a b c +++++=++ 3332223()()a b c abc a b c a b c ab bc ac ++-=++++--- (3)分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法。 (4)十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成 12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解 系数a ,b ,c ,使得: 12a a a = 12c c c = 1221a c a c b += 分解因式的步骤:如果多项式的各项有公因式,应先提公因式;如果各项没有公因式,再看能否直接运用公式或十字相乘法分解,如还不能,就试用分组分解法或其他方法。 分解因式时,必须进行到每一个多项式因式都不能再分解为止,结果一定是乘积的形式,每一个因式都是整式,相同的因式的积要写成幂的形式。 经典例题 【例 1】 提取公因数法 1. 2. 3.

16因式分解奥数专题

八年级奥数专题 第一讲:勾股定理及应用----李 第二讲:实数的性质-------李 第三讲:二次根式(1) 第四讲:二次根式(2) 第五讲:一次函数的图像和性质 第六讲:待定系数法------李 第七讲:一次函数的应用- 第八讲:二元一次方程组和不定方程 第九讲:三元一次方程组与不定方程组 第十讲:二元一次方程组的应用 第十一讲:等腰三角形与等边三角形-------张琼方 第十二讲:线段的垂直平分线 第十三讲:角平分线 第十四讲:一元一次不等式与一元一次不等式组 第十五讲:一元一次不等式与一元一次不等式组的应用(1) 第十六讲:一元一次不等式与一元一次不等式组的应用(2)------方案设计------罗第十七讲:因式分解(1) 第十八讲:因式分解(2) 第十九讲:因式分解(3) 第二十讲:因式分解(4) 第二十一讲:因式分解(5)-----刘 第二十二讲:分式 第二十三讲:分式的运算 第二十四讲:含字母系数的方程和分式方程 第二十五讲:分式方程的应用 第二十六讲:平行四边形性质与判定---杨洁 第二十七讲:矩形 第二十八讲:菱形 第二十九讲:正方形 第三十讲:三角形的中位线 第三十一讲:梯形 第三十二讲:梯形的中位线------张皓 注意:文字用宋体五号字

第一讲 勾股定理及应用 1、勾股定理及逆定理:△ABC 中 ∠C =Rt ∠?a 2+b 2=c 2 2、勾股定理及逆定理的应用 ① 作已知线段a 的2,3, 5……倍 ② 计算图形的长度,面积,并用计算方法解几何题 ③ 证明线段的平方关系等。 3勾股数的定义:如果三个正整数a,b,c 满足等式a 2+b 2=c 2 ,那么这三个正整数a,b,c 叫做 一组勾股数. 4勾股数的推算公式 a) 罗士琳法则(罗士琳是我国清代的数学家1789――1853) 任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2 是一组勾股数。 b) 如果k 是大于1的奇数,那么k, 2 12-k ,21 2 +k 是一组勾股数。 c) 如果k 是大于2的偶数,那么k, 122 -??? ??K ,122 +?? ? ??K 是一组勾股数。 d) 如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。 5、 熟悉勾股数可提高计算速度,顺利地判定直角三角形。简单的勾股数有:3,4,5; 5, 12,13; 7,24,25; 8,15,17; 9,40,41。 【例1】.折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知,AB=8cm ,BC=10cm,求 CF 和 EC . 【巩固】.如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠, 使点B 与点D 重合,C 落在C '处,若21::=BE AE ,则折痕 EF 的长为 。 拓展与提升 知识梳理

奥数-因式分解-2(师)

第十四讲 因式分解2 第一部分:知识要点 以下的几种方法是因式分解中常用的: 1、 换元法:将一个较复杂的代数式中的某一部分看作一个整体,用一个新字母代替它,从 而简化运算过程,分解以后要注意将新字母还原。 2、 双十字相乘法:对于某些二元二次六项式2 2 ax bxy cy dx ey f +++++可以看作关于x 的多项式2 2 ()()ax by d x cy ey f +++++,先用十字相乘法将“常数项”2 cy ey f ++分解,再次利用十字相乘法将关于x 的二次三项式分解。 3、 待定系数法:若能断定多项式可分解为某几个确定次数因式的乘积,而这几个因式中的 某些系数尚未确定,就可以用一些字母来表示待定的系数。将这几个因式相乘以后,与多项式的系数进行比较,就可以求出待定的系数。 4、 利用因式定理分解 因式定理:如果x=a 时,多项式1 110()...n n n n f x a x a x a x a --=++++的值为0,那么 x-a 是该多项式的一个因式。 【余数定理】n 次多项式()f x 除以x a -,其商式()q x 为x 的1n -次多项式,余数记为r ,并且有恒等式:()()()f x x a q x r =-?+ 5、 在上式中,当x a =时,得()f a r =,由此可得余数定理。 6、 添项、拆项法:将多项式中的某一项拆成两项或多项,或者在多项式中添上两个符号相 反的项。使得便于用分组分解法进行分解因式。 6. 因式分解这一章在整个初中代数中占有重要的地位及作用,应该注意以下几点: ①因式分解的对象是多项式,如果不是多项式,即使写成乘积的形式也不是因式分解。 ②结果一定是乘积的形式。 ③每个因式必须是整式。 ④分解要彻底。 ⑤一般而言,把一个多项式分解因式时,可按下列步骤进行: 多项式各项有公因式时,因先提取公因式; 各项没有公因式时,看能否用公式法分解; 对于二次三项式可考虑用完全平方公式或十字相乘法分解; 如果运用上述方法不能分解时,再看能否用分组分解法分解。

奥数因式分解讲课教案

一、常用公式: 二、常用因式分解方法 1、提取公因式法 2、运用公式法 3、分组分解法 4、十字相乘法 5、拆项、添项法

三、例题讲解 1、提取公因式法 例1 x(a-b)2n+y(b-a)2n+1提示:(b-a)2n=(a-b)2n, (b-a)2n+1=-(a-b)2n+1 解:原式=(a-b)2n[x-y(a-b)]=(a-b)2n(x-ay+by) 例2 (ax+by)2+(ay-bx)2+c2y2+c2x2提示:先展开再合并同类项 解:原式=a2x2+2abxy+b2y2+a2y2-2abxy+b2x2+c2y2+c2x2(原式展开) =(a2+b2+c2)x2+(a2+b2+c2)y2(合并同类项) =(a2+b2+c2)(x2+y2) (提取公因式) 2、运用公式 例1 x7y-xy7提示:先取公因式,然后用公式。用公式时注意尽量将指数降到最低(2或3最佳)解:原式=xy(x6-y6) (提取公因式) =xy[(x3)2-(y3)2] (公式2:平方差公式) =xy(x3-y3)(x3+y3) (公式6:立方和/差公式) =xy(x-y)(x2+xy+y2)(x+y)(x2-xy+y2) 例2 (a+2b+c)3-(a+b)3-(b+c)3提示:第一个多项式为另外两个多项式之和 原式=(a+2b+c)3-[(a+b)3+(b+c)3] (添括号形成立方和的形式)=(a+2b+c)3-(a+2b+c)[(a+b)2-(a+b)(b+c)+ (b+c)2] (应用立方和公式展开) =(a+2b+c){[(a+2b+c)2-(a+b)2]+(a+b)(b+c)- (b+c)2} (提取公因式a+2b+c形成平方差公式)=(a+2b+c)[(2a+3b+c)(b+c)+(a+b)(b+c)- (b+c)2] (提取公因式b+c) =(a+2b+c)(b+c)[(2a+3b+c)+(a+b)- (b+c)] (合并化简) = 3(a+b) (b+c) (a+2b+c) 例3 若x=,y=,则x6+y6的值是: 解:x6+y6=(x2)3+(y2)3 =(x2+y2)[(x2)2-x2y2+(y2)2] (应用立方和公式) =(x2+y2)[(x2+y2)2-3x2y2] (应用完全平方公式) ∵x2+y2=()2+()2=4, 3x2y2=3×()2×()2=6 ∴x6+y6=4×(42-6)=40 3、分组分解法 提示:合理适当地分组产生公因式。关键之处在合理分组,多尝试不同地分组以触动灵感。 1)按系数分组 例2ax-10ay+5by-bx = (2ax-10ay)+(5by-bx) =2a(x-5y)-b(x-5y) =(2a-b) (x-5y) 2)按字母分组 例x3(a+1)-xy(x-y)(a-b)+y3(b+1) =ax3+x3-axy(x-y)+bxy(x-y)+by3+y3(去括号) =[ ax3 -axy(x-y)]+[bxy(x-y)+by3]+[x3+y3] (适当分组) =(ax3-ax2y+axy2)+(bx2y-bxy2+by3)+(x3+y3) (去括号化简) =ax(x2-xy+y2)+by(x2-xy+y2)+(x+y)(x2-xy+y2) (提取公因式及应用立方和公式)

(完整)初中数学竞赛因式分解专题

初中数学竞赛专题——因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

八年级上册数学奥数题

八年级上册数学奥数题 性质: 1、因式分解与解高次方程有密切的关系。对于一元一次方程和一 元二次方程,初中已有相对固定和容易的方法。在数学上能够证明, 对于一元三次方程和一元四次方程,也有固定的公式能够求解。仅仅 因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多 项式和四次多项式也有固定的分解方法,仅仅比较复杂。对于五次以 上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的 一元方程也没有固定解法。 2 、所有的三次和三次以上的一元多项式在实数范围内都能够因 式分解,所有的二次或二次以上的一元多项式在复数范围内都能够因 式分解。这看起来或许有点不可思议。比如X4+1,这是一个一元四次多项式,看起来似乎不能因式分解。但是它的次数高于3,所以一定能够因式分解。如果有兴趣,你也能够用待定系数法将其分解,仅仅分解 出来的式子并不整洁。(这是因为,由代数基本定理可知n次一元多项 式总是有n个根,也就是说,n次一元多项式总是能够分解为n个一次因式的乘积。并且还有一条定理:实系数多项式的虚数根两两共轭的,将每对共轭的虚数根对应的一次因式相乘,能够得到二次的实系数因式,从而这条结论也就成立了。) 3 、因式分解虽然没有固定方法,但是求两个多项式的公因式却 有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式能 够用辗转相除法来求得。标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多 项式的除法也能够但比较笨,不过能有效地解决找公因式的问题。 概念:

因式分解的定义和主要方法常规因式分解主要公式定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。例如:(m+n)(m-n)=m2-n2 【方法】 因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、使用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。 注意四原则: 1.分解要彻底(是否有公因式,是否可用公式) 2.最后结果只有小括号 3.最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=-x(2+3y+4z) 归纳方法: 1.提公因式法。 2.使用公式法。 3.拼凑法。 提取公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式,公因式能够是单项式,也能够是多项式。 如果一个多项式的各项有公因式,能够把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。

小学奥数:因式分解a.01

一、基本概念 因式分解:把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项 式分解因式. 因式分解与整式乘法互为逆变形: ()m a b c ma mb mc ++++ 整式的乘积因式分解 式中m 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式 因式分解的常用方法: 提取公因式法、运用公式法、分组分解法、十字相乘法. 分解因式的一般步骤: 如果多项式的各项有公因式,应先提公因式;如果各项没有公因式,再看能否直接运用公式 十字相乘法分解,如还不能,就试用分组分解法或其它方法. 注意事项:①若不特别说明,分解因式的结果必须是每个因式在有理数范围内不能再分解为止; ②结果一定是乘积的形式; ③每一个因式都是整式; ④相同的因式的积要写成幂的形式. 在分解因式时,结果的形式要求: 例题精讲 中考要求 因式分解的基本方法

①没有大括号和中括号; ②每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解; ③单项式因式写在多项式因式的前面; ④每个因式第一项系数一般不为负数; ⑤形式相同的因式写成幂的形式. 二、提公因式法 提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面. 确定公因式的方法: 系数——取多项式各项系数的最大公约数; 字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂. 三、公式法 平方差公式:22()()a b a b a b -=+- ①公式左边形式上是一个二项式,且两项的符号相反; ②每一项都可以化成某个数或式的平方形式; ③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积. 完全平方公式:2222()a ab b a b ++=+ 2222()a ab b a b -+=- ①左边相当于一个二次三项式; ②左边首末两项符号相同且均能写成某个数或式的完全平方式; ③左边中间一项是这两个数或式的积的2倍,符号可正可负; ④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定. 一些需要了解的公式: 3322()()a b a b a ab b +=+-+ 332 2()()a b a b a a b b -=-++ 33223()33a b a a b ab b +=+++ 33223()33a b a a b a b b -=-+- 2222()222a b c a b c ab ac bc ++=+++++ 一、提公因式 【例 1】判断下列各式从左到右的变形是否是分解因式,并说明理由. ⑴ 22()()x y x y x y +-=-; ⑵322()x x x x x x +-=+ ⑶ 232(3)2x x x x +-=+-; ⑷1(1)(1)xy x y x y +++=++ 【例 2】多项式24ax a -与多项式244x x -+的公因式是 . 【例 3】分解因式:

初中数学因式分解(含答案)竞赛题精选1

初中数学因式分解(一) 因式分解是代数式恒等变形的基本形式,是解决数学问题的有力工具.是掌握因式分解对于培养学生解题技能,思维能力,有独特作用. 1.运用公式法 整式乘法公式,反向使用,即为因式分解 (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 分解因式,根据多项式字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.

例2 分解因式:a3+b3+c3-3abc. 例3 分解因式:x15+x14+x13+…+x2+x+1.

2.拆项、添项法 因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解. 例4 分解因式:x3-9x+8. 例5 分解因式: (1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn; (3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.

奥数因式分解

奥数因式分解 Prepared on 24 November 2020

公式1练习: 1、提取公因式法 2、运用公式法 3、分组分解法 4、十字相乘法 5、拆项、添项法 三、例题讲解

1、提取公因式法 例1 x(a-b)2n+y(b-a)2n+1提示:(b-a)2n=(a-b)2n, (b-a)2n+1=-(a-b)2n+1 解:原式=(a-b)2n[x-y(a-b)]=(a-b)2n(x-ay+by) 例2 (ax+by)2+(ay-bx)2+c2y2+c2x2提示:先展开再合并同类项 解:原式=a2x2+2abxy+b2y2+a2y2-2abxy+b2x2+c2y2+c2x2(原式展开)=(a2+b2+c2)x2+(a2+b2+c2)y2(合并同类项) =(a2+b2+c2)(x2+y2) (提取公因式) 2、运用公式 例1 x7y-xy7提示:先取公因式,然后用公式。用公式时注意尽量将指数降到最低(2或3最佳) 解:原式=xy(x6-y6) (提取公因式) =xy[(x3)2-(y3)2] (公式2:平方差公式) =xy(x3-y3)(x3+y3) (公式6:立方和/差公式) =xy(x-y)(x2+xy+y2)(x+y)(x2-xy+y2) 例2 (a+2b+c)3-(a+b)3-(b+c)3提示:第一个多项式为另外两个多项式之和 原式=(a+2b+c)3-[(a+b)3+(b+c)3] (添括号形成立方和的形式) =(a+2b+c)3-(a+2b+c)[(a+b)2-(a+b)(b+c)+ (b+c)2] (应用立方和公式展开) =(a+2b+c){[(a+2b+c)2-(a+b)2]+(a+b)(b+c)- (b+c)2} (提取公因式 a+2b+c形成平方差公式)

801.因式分解(一)-奥数精讲与测试8年级

分数的运算-1姓名分数 4.分解因式: x3- 5x+ 4. 例1分解因式: ⑴ a6- b6; 5.分解因式: x5n+ x n+ 1. ⑵ a2+ b2+ c2-2bc+ 2ca- 2ab ; ⑶ a7- a5b2+ a2b5- b 例6.分解因式:(x + 1)4+ (x2- 1)2十(x- 1) 4. 例2.分解因式: ⑵ x3+ y3+ 3xy- 1. ⑴ a3+ b3+ c3- 3abc; 例7.分解因式:a4+ b4+ c4- 2a2b2- 2b2c2- 2c2a2例3.分解因式: (x- 1)3+ (x- 2) 3+ (3- 2x)

A卷一、填空题01.分解因式(a+ b)2+ (a- b) 2+ c(a2+ b2) = ___________ 08.分解因式(x2- 1)(x4+ x2+ 1) - (x3+ 1)2 = _____________ 02 09.分解因式ab + ab+ 30b的结果是___________ ?计算 20022-2001 2003 20022-2002 2001 2001 的结果等于 10.分解因式(x- 2y)x3- (y- 2x) y3= ___________ 3 . 2 2008 2000 1996 石/ 03.已知x + x + x+仁0,那么x 十2x + 5x 的值是________________________ 04.分解因式(x2+ 3x- 3)(x2十3x + 4)- 8= ___________ 二、解答题 11 ?分解因式a3+ b3+ c3- 3abc. 05.将多项式x2- 4y2- 9z2- 12yz分解成因式的积,结果是______________ 06.把(1- x2)(1 - y2) + 4xy因式分解,结果是 ____________ 12.已知x= y,且x3- x=7 , y3- y=7,那么x2+ xy + y2的值是多少? 07.已知x- 1是多项式x3- 3x+ k的一个因式,那么这个多项式的其它因式有 ___________ 。

奥数第一讲 因式分解(一)

第一讲因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2]

初中奥数讲义_因式分解的应用附答案

1 因式分解的应用 在一定的条件下,把一个代数式变换成另一个与它恒等的代数式称为代数式的恒等变形,是研究代数式、方程和函数的基础. 因式分解是代数变形的重要工具.在后续的学习中,因式分解是学习分式、一元二次方程等知识的基础,现阶段.因式分解在数值计算,代数式的化简求值,不定方程(组)、代数等式的证明等方面有广泛的应用.同时,通过因式分解的训练和应用,能使我们的观察能力、运算能力、变形能力、逻辑思维能力、探究能力得以提高. 因此,有人说因式分解是学好代数的基础之一. 例题求解 【例1】若142=++y xy x 282=++x xy y ,则y x +的值为 . (全国初中数学联赛题) 思路点拨 恰当处理两个等式,分解关于y x +的二次三项式. 注: 在信息技术飞速发展的今天,信息已经成为人类生活中最重要的因素.在军事、政治、商业、生活等领域中,信息的保密工作显得格外重要.现代保密技术的一个基本思想,在编制密码的工作中,许多密码方法,就来自于因数分解、因式分解技术的应用. 代数式求值的常用方法是: (1)代入字母的值求值; (2)通过变形,寻找字母间的关系,代入关系求值; (3)整体代入求值. 【例2】已知 a 、b 、c 是一个三角形的三边,则222222444222a c c b b a c b a ---++的值( ) A .恒正 B .恒负 C .可正可负 D .非负 (大原市竞赛题) 思路点拨 从变形给定的代数式入手,解题的关键是由式于的特点联想到熟悉的结果,注意几何定理的约束. 【例3】计算下列各题: (1) )219961993()2107)(285)(263)(241()219971994()2118)(296)(274)(222(+?+?+?+?+?+?+?+?+?+? ; (2)2001200020001998 2000220002323-+-?- 思路点拨 观察分子、分母数字间的特点,用字母表示数,从一般情形考虑,通过分解变形,寻找复杂数值下隐含的规律. 【例4】已知 n 是正整数,且n 4—16n 2 +100是质数,求n 的值.

奥数-因式分解-综合4师

第一讲 因式分解4:综合及应用 §1.1 因式分解的基本方法 一、 考试要点剖析 因式分解是一种重要的恒等变形,虽然它是初中阶段学习的内容,在高中阶段也有着非常广泛的应用,比如,比较大小、判断函数的单调性、证明不等式、解高次方程、超越方程等,因此,因式分解历来是“中考”和数学竞赛着重考查的热点问题. **基本知识 因式分解 把一个多项式分解成几个非常数的多项式或单项式的积的形式叫做多项式的因式分解.多项式的因式分解是在给定的数域上进行的,即要求各因式的系数是给定数域上的数.因此,一个多项式在某个数域上可能不能分解因式,而在另外的(更广的)数域上也许是可以分解的.一般地,如果没有特别指定数域,则因式分解通常都是在有理数域上进行的. 既约多项式 如果一个多项式在某数域上不能再分解,则称它是此数域上的既约多项式. 因式分解的常用公式: **基本方法 初中教材中介绍了提取公因式法、逆用乘法公式法、配方法、分组分解法、十字相乘法、求根法,这些都是非常重要的基本方法,要牢固地掌握和灵活地运用.此外,在数学竞赛中,还要掌握和运用如下一本讲纲要 §1.1 因式分解的基本方法 1. 提取公因式 2. 主元法 3. 分组分解 4. 公式 5. 换元 6. 配方 7. 十字、待定系数法 8. 倒数代数式 §1.2 因式分解的特殊方法 1. 添项、拆项 2. 因式定理 §1.3 对称式的因式分解 1. 对称式 2. 轮换 3. 交代式 §1.4 因式分解的应用 1. 计算 2. 化简 3. 求值 4. 整除 5. 不定方程 6. 完全平方数

(1)换元法将待分解的多项式中某些特殊的部分看作一个整体,用一个新的字母表示,使原来复杂的结构简化. (2)双十字相乘法对于二元二次多项式的分解,可先用“十字相乘法”将二次项进行分解,然后将局部分解的因式看作一个整体(字母),连同后面的一次项和常数项再采用十字相乘法进行分解. (3)待定系数法将待分解的多项式表示成若干个含有待定系数的多项式的积的形式,得到一个恒等式.然后根据多项式恒等的性质,比较对应项的系数,或令变元取一些特殊值,得到关于待定系数的方程组,解方程组求出待定系数,进而得到多项式的分解.这种方法叫做待定系数法. (4)主元法对于多元多项式的分解,我们可选择其中一个字母当作变量,而将其他字母看成常数,其中当做变量的字母称为“主元”.这样,多项式就变成了关于“主元”的一元多项式,这种选择主元进行多项式分解的方法叫做主元法. **基本问题 一元二次多项式的因式分解,常用的方法有:十字相乘法、配方法、求根法等; 一元高次多项式的因式分解,常用的方法有:配方法、逆用乘法公式法、换元法、分组分解法等; 二元二次多项式的因式分解,常用的方法有:主元法、分组分解法、双十字相乘法、待定系数法等. 多元(通常是二元、三元)高次多项式的因式分解,常用的方法有:配方法、逆用乘法公式法、换元法、分组分解法等. 1. 提取公因式 例1.(★ 93 芜湖)分解因式: 【解】: 2. 主元法 例2.(★★ 1996年扬州市初中数学竞赛题)分解因式: . 【解】:以y 为主元降幂排列,则 原式= 3. 分组分解 例3.(★★ 1995年昆明市初中数学竞赛题)将因式分解. 【解】:原式= 4. 公式(n n a b ) 例4.(★★★ 希望杯培训题)设n 为正整数,分解因式: 【解】:

相关文档