文档库 最新最全的文档下载
当前位置:文档库 › 数值分析拉格朗日插值法.doc

数值分析拉格朗日插值法.doc

数值分析拉格朗日插值法.doc
数值分析拉格朗日插值法.doc

```````````````````````````````````````````

数值分析拉格朗日插值法

拉格朗日插值的算法设计及应用

【摘要】 本文简介拉格朗日插值,它的算法及程序和拉格朗日在实际生活中的运用。运用了拉格朗日插值的公式,以及它在MATLAB 中的算法程序,并用具体例子说明。拉格朗日插值在很多方面都可以运用,具有很高的应用价值。

【关键词】 拉格朗日;插值;公式;算法程序;应用;科学。

一、绪论

约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。数据建模有两大方法:一类是插值方法,另一类是拟合函数一般的说,插值法比较适合数据准确或数据量小的情形。然而Lagrange 插值有很多种,1阶,2阶,…n 阶。我们可以利用拉格朗日插值求方程,根据它的程序求原方程的图像。下面我具体介绍分析一下拉格朗日插值的算法设计及应用。

二、正文

1、基本概念

已知函数y=f(x)在若干点i x 的函数值i y =()i x f (i=0,1,???,n )一个差值问题就是求一“简单”的函数p(x):p(i x )=i y ,i=0,1,???,n, (1)

则p(x)为f(x)的插值函数,而f(x)为被插值函数会插值原函数,0x ,1x ,2x ,...,n x 为插值节点,式(1)为插值条件,如果对固定点-x 求f(-x )数值解,我们称-

x 为一个插值节点,f(-x )≈p(-x )称为-x 点的插值,当-x ∈[min(0x ,1x ,2x ,...,n x ),max(0x ,1x ,2x ,...,n x )]

时,称为内插,否则称为外插式外推,特别地,当p(x)为不超过n 次多项式时称为n 阶Lagrange 插值。

2、Lagrange 插值公式

(1)线性插值)1(1L

设已知0x ,1x 及0y =f(0x ) ,1y =f(1x ),)(1x L 为不超过一次多项式且满足)(01x L =0y ,)(11x L =1y ,几何上,)(1x L 为过(0x ,0y ),(1x ,1y )的直线,从而得到 )(1x L =0y +0

101x x y y --(x-0x ). (2) 为了推广到高阶问题,我们将式(2)变成对称式

)(1x L =0l (x )0y +1l (x)1y .

其中,

0l (x )=101x x x x --,1l (x)=0

10x x x x --。均为1次多项式且满足 0l (x )=1且1l (x)=0。或0l (x )=0且1l (x)=1。

两关系式可统一写成)(i i x l =?

??≠=j i j i 01 。 (3) (2)n 阶Lagrange 插值)(x L n

设已知0x ,1x ,2x ,...,n x 及i y =f(i x )(i=0,1,.....,n),)(x L n 为不超过n 次多项式且满足i i n y x L =)((i=0,1,...n ).

易知)(x L n =0l (x )0y +....+)(x l n n y .

其中,)(x l i 均为n 次多项式且满足式(3)(i,j=0,1,...,n ),再由j x (j ≠i )为n 次多项式)(x l i 的n 个根知)(x l i =c ∏≠=-n

i i j j x x 0.最后,由

?=-=∏≠=1)()(0n i j j j i j i x x c x l c=

∏≠=-n i j j j

i x x 0)(1,i=0,1,...,n.

总之,)(x L n =i n i i y x l ∑=0)(,)(x l i =.0∏≠=--n i

j j j i j x x x x 式为n 阶Lagrange 插值公式,其中,)(x l i (i=0,1,...n )称为n 阶Lagrange 插值的基函数。

3,Lagrange 插值余项

设0x ,1x ,2x ,...,n x ∈[a,b],f(x)在[a,b]上有连续的n+1阶导数,)(x L n 为f(x)关于节点0x ,1x ,2x ,...,n x 的n 阶Lagrange 插值多项式,则对任意x ∈[a,b],

).()!

1()()()()()1(x n f x L x f x R n n n ωξ+=-=+其中,ξ位于0x ,1x ,2x ,...,n x 及x 之间(依赖于x ),ω(x)=∏=-n

j j x x 0).(

Eg1:已知函数表sin

6π=0.5000,sin 4π=0.7071,sin 3π=0.8660,分别由线性插值与抛物插值求sin 9

2π的数值解,并由余项公式估计计算结果的精度。 解:(1)这里有三个节点,线性插值需要两个节点,根据余项公式,我们选取前两个节点,易知:

sin 92π≈1L (92π)=0.5000+6

45000.07071.0ππ--(92π-6π) =0.5000+0.20713

2?=0.6381 截断误差,

)92(1πR =)492)(692(2)(sinx ππππ--''310615.736

1821-?=??≤ππ, 得.105.010615.713--?

(2)易知sin 92π≈+?=5000.0)3-6)(4-6()33-92)(4-92(

)92(2πππππππππL ?----))(())((3464392692ππππππππ 0.7071+8660.04

363492692?----))(())((ππππππππ=7071.0985000.092?+??-910.8660=0.6434 截断误差为:

≤---'''==ξπππππππx x R )492)(492)(692(6)(sin )92(2210861..09

361861-?=???πππ 得.105.010861.824--?

比较本题精确解sin

9

2π=0.642787609...,实际误差限分别为0.0047和0.00062。 4,Lagrange 插值算法和程序 function yy=nalagr(x,y,xx)

%用途:Lagrange 插值法数值求解;格式:yy=nalagr(x,y,xx)

%x 是节点向量,y 是节点上的函数值,xx 是插值点(可以多个),yy 返回插值

m=length(x);n=length(y);

if m~=n,error('向量x 与y 的长度必须一致');end

s=0;

for i=1:n

t=ones(1,length(xx));

for j=1:n

if j~=i

t=t.*(xx-x(i))/(x(i)-x(j));

end

end

s=s+t*y(i);

end

yy=s;

用以上程序的Eg1的结果为

>> x=pi*[1/6 1/4];y=[0.5 0.7071];xx=2*pi/9;

>> yy1=nalagr(x,y,xx)

yy1 =

-0.5690

>> x=pi*[1/6 1/4 1/3];y=[0.5 0.7071 0.866];

>> yy2=nalagr(x,y,xx)

yy2 =

0.8023

>> fplot('sin',[pi/6,pi/3]);hold on;

>> plot(x,y,'o',xx,0.6381,'g^',xx,0.6434,'rv');hold off;

图形为

3,Lagrange插值应用

在物理化学,资产价值鉴定工作和计算某一时刻的卫星坐标和钟差等这些方面可以应用Lagrange插值。采用拉格朗日插值法计算设备等功能重置成本,计算精度较高,方法快捷。但是这方法只能针对可比性较强的标准设备,方法本身也只考虑了单一功能参数,它的应用范围因此受到了一定的限制。作为一种探索,我们可以将此算法以及其它算法集成与计算机评估分析系统中,作为传统评估分析方法的辅助参考工具,以提高资产价值鉴定工作的科学性和准确性。

三,结论

拉格朗日插值模型简单,结构紧凑,是经典的插值法。但是由于拉格朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新计算。且当增大插值阶数时容易出现龙格现象。

参考文献

1,[序号]作者.文章名[J].学术刊物名,年,卷(期):引用部分起—止页.

2,约瑟夫·拉格朗日https://www.wendangku.net/doc/8b459512.html,/view/19783.htm#3

3,作者,张玲。文章名,拉格朗日插值在资产评估中的应用。

4,作者,宫厚诚,李全海。文章名,基于IGS精密星历的卫星坐标和钟差插值。

5,作者,吴法伦,赵占芬。文章名,利用计算机绘制物理化学实验中的曲线——拉格朗日插值

附录

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

拉格朗日插值公式的证明及其应用

拉格朗日插值公式的证明及其应用 摘要: 拉格朗日(Lagrange)插值公式是多项式中的重要公式之一,在理论和实践中都有着广泛的应用.本文阐述了Lagrange 插值的基本理论,譬如:线形插值,抛物插值,Lagrange 多项式等.然后将线形插值,抛物插值,Lagrange 多项式插值分别应用到高中知识中,并且学会用计算机程序来编写.插值法的思想与中国剩余定理一脉相承, 体现了代数中"线性化" (即表示为求和和数乘的形式) 这一基本思路, 大巧若拙.本文的目的是通过介绍拉格朗日插值公式的推导,唯一性,证明过程及其在解题与实际生活问题中的应用来寻找该公式的优点,并且引人思考它在物理,化学等领域的应用.通过实际鉴定过程,利用插值公式计算生活中的成本问题,可以了解它的计算精度高,方法快捷. 关键词: 拉格朗日插值公式 唯一性 证明 解题应用 资产评估 曲线插值问题,直观地说,认为已知的一批数据点()n k k k f x 0,=是准确的,这些数据点所表现的 准确函数关系()x f 是未知的,在这种情况下要作一条近似曲线()x P 且点点通过这些点,插值问题不仅要讨论这种近似曲线()x P 的构造方法,还要讨论点增多时这种近似曲线()x P 是否稳定地收敛于未知函数()x f ,我们先研究一种简单常用的插值——拉格朗日插值. 一.定义,推导及其在解题中的应用 1.线性插值 1.1. 线性插值的定义 假定已知区间[]1,+k k x x 的端点处的函数值()k k x f y =, ()11++=k k x f y ,要求线性插值多项式()x L 1使它满足()k k y x L =1, ()111++=k k y x L . ()x L y 1=的几何意义:通过两点()k k y x ,和()11,++k k y x 的直线, 如图1所示,()x L 1的表达式由几何意义直接给出,即 ()()k k k k k k x x x x y y y x L ---+ =++111 (点斜式), 图1 ()11111++++--+--= k k k k k k k k y x x x x y x x x x x L (两点式). y=L 1x () y=f x () y k+1 y k x k+1 x k o y x

matlab实现数值分析报告插值及积分

Matlab实现数值分析插值及积分 摘要: 数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。在实际生产实践中,常常将实际问题转化为数学模型来解决,这个过程就是数学建模。学习数值分析这门课程可以让我们学到很多的数学建模方法。 分别运用matlab数学软件编程来解决插值问题和数值积分问题。题目中的要求是计算差值和积分,对于问题一,可以分别利用朗格朗日插值公式,牛顿插值公式,埃特金逐次线性插值公式来进行编程求解,具体matlab代码见正文。编程求解出来的结果为:=+。 其中Aitken插值计算的结果图如下: 对于问题二,可以分别利用复化梯形公式,复化的辛卜生公式,复化的柯特斯公式编写程序来进行求解,具体matlab代码见正文。编程求解出来的结果为: 0.6932 其中复化梯形公式计算的结果图如下:

问题重述 问题一:已知列表函数 表格 1 分别用拉格朗日,牛顿,埃特金插值方法计算。 问题二:用复化的梯形公式,复化的辛卜生公式,复化的柯特斯公式计算积分,使精度小于5。 问题解决 问题一:插值方法 对于问题一,用三种差值方法:拉格朗日,牛顿,埃特金差值方法来解决。 一、拉格朗日插值法: 拉格朗日插值多项式如下: 首先构造1+n 个插值节点n x x x ,,,10 上的n 插值基函数,对任一点i x 所对应的插值基函数 )(x l i ,由于在所有),,1,1,,1,0(n i i j x j +-=取零值,因此)(x l i 有因子 )())(()(110n i i x x x x x x x x ----+- 。又因)(x l i 是一个次数不超过n 的多项式,所以只 可能相差一个常数因子,固)(x l i 可表示成: )())(()()(110n i i i x x x x x x x x A x l ----=+- 利用1)(=i i x l 得:

数值分析常用的插值方法

数值分析报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……x n处的值是f(x0),……f(x n),要求估算f(x)在[a,b〕中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0, C1,……C n的函数类Φ(C0,C1,……C n)中求出满足条件P(x i)=f(x i)(i=0,1,……n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x0,x1,……xn 称为插值结(节)点,Φ(C0,C1,……C n)称为插值函数类,上面等式称为插值条件,Φ(C0,……C n)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,,,n x x x L 上的函数值01,,,n y y y L ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =++++L ,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a L 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 20112111 2012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ? ?++++=?L L L L L 其系数矩阵的行列式D 为范德萌行列式: ()20 0021110 2111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏L L M M M M L

实验一拉格朗日插值法

实验一 拉格朗日插值法 基本信息 实验课程:计算方法 设课形式:非独立 课程学分:3 实验项目:拉格朗日插值法 项目类型:基础 项目学时:2 目的和要求 该实验在计算机上实现拉格朗日插值法并进行验证。要求对拉格朗日插值法的流程进行分析,设计算法,并使用一种编程语言实现,最后通过具体例子进行验证,得到正确结果。 实验条件 装有编程语言的计算机一台、项目相关材料。 实验内容和原理或涉及的知识点 公式: 基点x i 的n 次插值基函数( i=0,1,…,n): n i x x x x x x x x x x x x x x x x x x x x x x x x x l j i j n i j j n i i i i i i i n i i i ,,1,0) ())(())(() ())(())(()(011101110 =--∏ =----------= ≠=+-+- n 次拉格朗日插值多项式: ∑∏ =≠=--=+++=n i n i j j j i j i n n n x x x x y x l y x l y x l y x P 0 01100)()()()(

流程图: 输入及x y x i i i n ,,,,,=012 P i ??00 ,L ?1 L L x x x x j i j j n j i ?--=≠()() ,,,() 01 P P y L i ?+i i ?+1 开始T F 输出P 结束 i n = 验证例子 已知如下的函数表,试编写程序,用拉格朗日插值多项式求0.5,0.7,0.85三点处的函数值。 x 0.40.550.80.91y 0.410750.578150.88811 1.02652 1.1752 实验结果: 插值点的个数 m=3

数值计算方法—拉格朗日插值

数值计算方法作业 专业:测控1002 学号:10540226 姓名:崔海雪

拉格朗日插值的算法及应用 【摘要】 本文简介拉格朗日插值,它的算法及程序和拉格朗日在实际生活中的运用。运用了拉格朗日插值的公式,以及它在MATLAB 中的算法程序,并用具体例子说明。拉格朗日插值在很多方面都可以运用,具有很高的应用价值。 【关键词】 拉格朗日;插值;公式;Matlab 算法程序; 一、绪论 约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。数据建模有两大方法:一类是插值方法,另一类是拟合函数一般的说,插值法比较适合数据准确或数据量小的情形。然而Lagrange 插值有很多种,1阶,2阶,…n 阶。我们可以利用拉格朗日插值求方程,根据它的程序求原方程的图像。下面我具体介绍分析一下拉格朗日插值的算法设计及应用。 二、正文 1、基本概念 已知函数y=f(x)在若干点i x 的函数值i y =()i x f (i=0,1,???,n )一个差值问题就是求一“简单”的函数p(x):p(i x )=i y ,i=0,1,???,n, (1) 则p(x)为f(x)的插值函数,而f(x)为被插值函数会插值原函数,0x ,1x ,2x ,...,n x 为插值节点,式(1)为插值条件,如果对固定点-x 求f(-x )数值解,我们称- x 为一个插值节点,f(-x )≈p(-x )称为-x 点的插值,当-x ∈[min(0x ,1x ,2x ,...,n x ),max(0x ,1x ,2x ,...,n x )]时,称为内插,否则称为外插式外推,特别地,当p(x)为不超过n 次多项式时称为n 阶Lagrange 插值。 2、Lagrange 插值公式 (1)线性插值)1(1L 设已知0x ,1x 及0y =f(0x ) ,1y =f(1x ),)(1x L 为不超过一次多项式且满足 )(01x L =0y ,)(11x L =1y ,几何上,)(1x L 为过(0x ,0y ) ,(1x ,1y )的直线,从而得到 )(1x L =0y +0101x x y y --(x-0x ). (2)

拉格朗日插值法理论及误差分析

浅析拉格朗日插值法 目录: 一、 引言 二、 插值及多项式插值的介绍 三、 拉格朗日插值的理论及实验 四、 拉格朗日插值多项式的截断误差及实用估计式 五、 参考文献 一、引言 插值在数学发展史上是个古老问题。插值是和拉格朗日(Lagrange )、牛顿(Newton )、高斯(Gauss )等著名数学家的名字连在一起的。在科学研究和日常生活中,常常会遇到计算函数值等一类问题。插值法有很丰富的历史渊源,它最初来源人们对天体研究——有若干观测点(我们称为节点)计算任意时刻星球的位置(插值点和插值)。现在,人们在诸如机械加工等工程技术和数据处理等科研都有很好的应用,最常见的应用就是气象预报。插值理论和方法能解决在实际中当许多函数表达式未知或形式复杂,如何去构造近似表达式及求得在其他节点处的值的问题。 二、插值及多项式插值 1、插值问题的描述 设已知某函数关系()y f x =在某些离散点上的函数值: 插值问题:根据这些已知数据来构造函数()y f x =的一种简单的近似表达式,以便于计算点,0,1,,i x x i n ≠= 的函数值()f x ,或计算函数的一阶、二阶导数值。 x 0x 0 y y 1 y 1 n y -n y 1 x 1 n x -n x

2、插值的几何意义 插值的几何意义如图1所示: 图1 3、多项式插值 3.1 基本概念 假设()y f x =是定义在区间,a b ????上的未知或复杂函数,但一直该函数在点01n a x x x b ≤<<<≤ 处的函数值01,,n y y y 。找一个简单的函数,例如函数 ()P x ,使之满足条件 (),0,1,2,, i P x y i n == (3.1) 通常把上述01n x x x <<< 称为插值节点,把()P x 称为()f x 的插值多项式,条件(3.1)称为插值条件,并把求()P x 的过程称为插值法。 3.2 插值多项式的存在性和唯一性 如果插值函数是如下m 次的多项式: 1 011()m m m m m P x a x a x a x a --=+++ 那么插值函数的构造就是要确定()m P x 表达式中的m+1个系数 011,,,m m a a a a - 。由于插值条件包含n+1独立式,只要m=n 就可证明插值函数多项式是唯一存在。 实际上,由n+1个插值条件可得

数值分析常用的插值方法

数值分析 报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上 n+1 个互不相同点x 0,x 1 (x) n 处的值是f(x ),……f(x n ),要求估算f(x)在[a,b〕 中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C , C 1,……C n 的函数类Φ(C ,C 1 ,……C n )中求出满足条件P(x i )=f(x i )(i=0,1,…… n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x 0,x 1 ,……xn 称为插值结(节)点,Φ(C 0,C 1 ,……C n )称为插值函数类,上面等式称为插值条件, Φ(C 0,……C n )中满足上式的函数称为插值函数,R(x)= f(x)-P(x)称为 插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,, ,n x x x 上的函数值01,, ,n y y y ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =+++ +,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 201121112012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?+++ +=?++++=??? ?+++ +=? 其系数矩阵的行列式D 为范德萌行列式: () 200021110 2 111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏

实验1拉格朗日插值与牛顿插值

数学与计算机学院上机实践报告 课程名称:计算方法A年级:上机实践成绩: 指导教师:姓名: 上机实践名称:拉格朗日插值和牛顿插值法学号:上机实践日期: 上机实践编号:1上机实践时间: 一、目的 1.通过本实验加深对拉格朗日插值和牛顿插值法构造过程的理解; 2.能对上述两种插值法提出正确的算法描述编程实现。 二、内容与设计思想 自选插值问题,编制一个程序,分别用拉格朗日插值法和牛顿插值法求解某点的函数近似值。(从课件或教材习题中选题) 已知y=f( 三、使用环境 操作系统:windows XP 软件环境:Microsoft Visual C++6.0 四、核心代码及调试过程 (一) 拉格朗日插值法: lude double product(double *p,double newx,int k,int n); main() { /*divisor,dividend double x[10]={0.10,0.15,0.25,0.40,0.50,0.57,0.70,0.85,0.93,1.00}; double newx[3]={0.45,0.6,0.80},divisor,dividend,quotient,result; double y[10]={0.904837,0.860708,0.778801,0.670320,0.606531,0.565525,0.496585,0.427415,0.394554; int i,th; for(th=0;th<3;th++) { result=0; for(i=0;i<10;i++)

{ dividend=product(x,newx[th],i,9); divisor=product(x,x[i],i,9); quotient=dividend/divisor; result+=quotient*y[i]; } printf("%lf处的近似值为%lf\n",newx[th],result); } } double product(double *p,double newx,int k,int n) { int cycle_times; double result=1; for(cycle_times=0;cycle_times<=n;cycle_times++) if(cycle_times!=k) result=result*(newx-p[cycle_times]); return result; } (二)牛顿插值法: #include #define total_points 10 void fill_in_the_blank(double *p,int x,int y); double newton(double (*p)[total_points+1],double newx); main() { double table[total_points][total_points+1], newx; int x,y; printf("Please notice (x,y) is from (x1,y1) to (x%d,y%d)!\n",total_points,total_points); for(x=0;xy) fill_in_the_blank(table,x,y); } printf("input a number you want to calculate:"); scanf("%lf",&newx); printf(" the result is:%lf\n",newton(table,newx)); } void fill_in_the_blank(double (*p)[total_points+1],int x,int y) { double diff_up,diff_down; diff_up=*(*(p+x)+y-1)-*(*(p+x-1)+y-1); diff_down=*(*(p+x))-*(*(p+x-y+1)); *(*(p+x)+y)=diff_up/diff_down; }

计算方法上机实验报告——拉格朗日插值问题

计算方法上机实验报告——拉格朗日插值问题 一、方法原理 n次拉格朗日插值多项式为:Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些 L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x 2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1) 二、主要思路 使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。 对节点xi(i=0,1,…,n)中任一点xk(0<=k<=n)作一n次多项式lk(xk),使它在该点上取值为1,而在其余点xi(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) 上式表明:n个点xi(i=0,1,…,k-1,k+1,…,n)都是lk(x)的零点。可求得lk 三.计算方法及过程:1.输入节点的个数n 2.输入各个节点的横纵坐标 3.输入插值点 4.调用函数,返回z 函数语句与形参说明 程序源代码如下: 形参与函数类型 参数意义 intn 节点的个数 doublex[n](double*x) 存放n个节点的值 doubley[n](double*y) 存放n个节点相对应的函数值 doublep 指定插值点的值 doublefun() 函数返回一个双精度实型函数值,即插值点p处的近似函数值 #include #include usingnamespacestd; #defineN100 doublefun(double*x,double*y,intn,doublep); voidmain() {inti,n; cout<<"输入节点的个数n:"; cin>>n;

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合 一、实验目的 1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性; 2. 编写MA TLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象; 3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理; 4. 编写MA TLAB 程序实现最小二乘多项式曲线拟合。 二、实验内容 1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。 2. 设 ]5,5[,11 )(2 -∈+= x x x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。 (2) 编写MA TLAB 程序绘制出曲线拟合图。 三、实验步骤 1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件: ?? ?≠===j i j i x l ij j i , 0, , 1)(δ 的一组基函数{}n i i x l 0)(=,l i (x )的表达式为 ∏ ≠==--= n i j j j i j i n i x x x x x l ,0),,1,0()( 有了基函数{}n i i x l 0)(=,n 次插值多项式就可表示为 ∑==n i i i n x l y x L 0 )()( (2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为

数值分析实验一——拉格朗日插值算法报告

拉格朗日插值算法的实现 实验报告 姓名:** 年级:****专业:计算机科学与技术科目:数值分析题目:拉格朗日插值算法的实现 实验时间: 2014年5月27日实验成绩: 实验教师: 一、实验名称:拉格朗日插值算法的实现 二、实验目的: a. 验证拉格朗日插值算法对于不同函数的插值 b. 验证随着插值结点的增多插值曲线的变化情况。 三、实验内容: 拉格朗日插值基函数的一般形式: 也即是: 所以可以得出拉格朗日插值公式的一般形式: 其中, n=1时,称为线性插值,P1(x) = y0*l0(x) + y1*l1(x) n=2时,称为二次插值或抛物插值,精度相对高些,P2(x) = y0*l0(x) + y1*l1(x) + y2*l2(x) 四、程序关键语句描写 double Lagrange(int n,double X[],double Y[],double x) { double result=0; for (int i=0;i

for(int j=0;j #include using namespace std; int main() { double Lagrange(int n,double X[],double Y[],double x); //插值函数double x;//要求插值的x的值 double result;//插值的结果 char a='n'; double X[20],Y[20]; do { cout<<"请输入插值次数n的值:"<>n; cout<<"请输入插值点对应的值及函数值(xi,yi):"<>X[k]>>Y[k]; } cout<<"请输入要求值x的值:"<>x; result=Lagrange(n,X,Y,x); cout<<"由拉格朗日插值法得出结果:"<>a; }while(a=='yes'); return 0; }

插值算法之拉格朗日插值

记一下拉格朗日插值公式的推导和一些要点【这里说的都是二维插值,多维上的以此类推】 1、插值问题:在做实验的过程中,往往得到一堆离散的数据,现在想用数学公式模拟这堆离散数据。怎么办,数学家们提出了插值问题。插值问题的提法是这样的给定一堆数据点(x0, y0), (x1, y1), (x2, y2)...(xn, yn),要求一个函数y = f(x) ,要求该函数经过上面所有的数据点。 2、多项式插值及其唯一性:在所有的函数中,多项式函数是最简单的函数,所以只要是人就会想到用多项式函数来作为插值函数,好,以上给定了n+1个点,现在要求一个n次多项式y = an * x^n + ... a1 * x + a0, 使它们经过这n+1个点;通过范德蒙行列式和克莱姆法则,可以判定如果这n+1个点的x值各不相同,那么这个多项式是唯一的。结果唯一,但是用直接法很不好求。现在用别的办法来求之。这就是:拉格朗日多项式 3、拉格朗日多项式的构造,以四个点为例子进行说明 由于函数经过4个点(x0, y0),(x1, y1),(x2, y2),(x3, y3),所以可以设函数为: f(x) = b0(x) * y0 + b1(x) * y1 + b2(x) * y2 + b3(x) * y3 注意:b0(x),...,b3(x)都是x的3次多项式,称之为拉格朗日插值基函数。 由于要求当x为x0时候,f(x) = y0, 所以最简单的做法就是让b0(x0) = 1, b1(x0) = b2(x0) = b3(x0) = 0; 同理可知,在x1,x2,x3点上,插值基函数的值构造如下:

b0(x) b1(x) b2(x) b3(x) x=x0 1 0 0 0 x=x1 0 1 0 0 x=x2 0 0 1 0 x=x3 0 0 0 1 问题1、根据这些值来确定b0(x)的表达式, 由于b0(x1) = b0(x2) = b0(x3) = 0,所以x1, x2, x3是b0(x)的零点,由于b0(x)是三次多项式,所以设 b0(x) = c0 * (x-x1) * (x-x2) * (x-x3) 由于b0(x0) = 1,所以1 = c0 * (x0-x1) * (x0-x2) * (x0-x3) 得到c0 = 1/[(x0-x1)(x0-x2)(x0-x3)] 所以:b0(x) = (x-x1)*(x-x2)*(x-x3)/[(x0-x1)*(x0-x2)*(x0-x3)] 同理可求b1(x)、b2(x),略 问题2、根据上面的表格说明插值基函数的一个性质:无论x取和值,它们的和都为1.【这

拉格朗日插值法1

拉格朗日抛物线插值法 1、定义若多项式l j (j=0,1,2...n )在n+1个节点x 0

end end S=t*y(k)+s; end; yi=s; 3、例题 1)计算115 解: L 2(x)=0201021))(())((y x x x x x x x x ----+ 1201020) )(())((y x x x x x x x x ---- + 2201010) )(())((y x x x x x x x x ---- = 10)44(21)144)(121(?-?---x x + 11) 23(21)144)(100(?-?--x x + 1223 44)144)(100(??--x x L 2(115)= 10)44(21)29(6?-?--?-x + 11) 23(21)29(15?-?-? + 1223 44)6(15??-? ≈10.7228 在Matlab 窗口输入

拉格朗日插值法C语言的实现

实验 一 .拉格朗日插值法C 语言的实现 1.实验目的: 进一步熟悉拉格朗日插值法。 掌握编程语言字符处理程序的设计和调试技术。 2.实验要求: 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标 。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值 。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X 坐标; (3)分别输入已知点的Y 坐标; (4)通过调用函数lagrange 函数,来求某点所对应的函数值。 拉格朗日插值多项式如下: 0L ()()0,1,n n j k k j j k x y l x y j n ====∑…… 其中00()()0,1,,()k k x x l x k n x x -= =-k-1k+1n k k-1k k+1k n ……(x-x )(x-x ) …(x-x )…………(x -x )(x -x ) …(x -x ) 程序流程图:

↓ 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项式*/ a=(float *)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:"); scanf("%d",&n); if(n>=20) { printf("Error!The value of n must in (0,20)."); getch();return 1; } if(n<=0) { printf("Error! The value of n must in (0,20)."); getch(); return 1; } for(i=0;i<=n-1;i++) {

计算方法实验四拉格朗日插值实验报告

实验报告 学院:电子信息工程 实验课程:计算方法 学生姓名: 学号: 专业班级:通信工程17-3班级

实验四 Lagrange 插值 1 目的与要求 (1)进一步理解和掌握Lagrange 插值的数值算法。 (2)能够根据给定的函数值表求出插值多项式和函数在某一点的近似值以解决实际问题 2 实验内容 已知函数表如下,通过编制程序,试用拉格朗日插值多项式求0.5,0.7,0.85三点处的近似函数值。 3 实验原理 拉格朗日插值多项式: 4 程序设计 (1)流程图 拉格朗日插值程序流程图 ∑=== n i 0 i i i ) x (l y y ) x x ()x x )(x x ()x x () x x ()x x )(x x ()x x ()x (l n i 1i i 1i i 0i n 1i 1i 0i --------= +-+-ΛΛΛΛ

(2)程序代码 #include #include #define n 5 double lagrange(long double a[n],long double b[n],double x) { int k,l; long double y1,m; y1=0.0; for(k=0;k

{ m=1.0; for(l=0;l

对拉格朗日插值法与牛顿插值法的学习和比较

对拉格朗日插值法与牛顿插值法的学习和比较 摘要:根据对拉格朗日插值法和牛顿插值法的理解,本文主要介绍了拉格朗日插值法和牛顿插值法的相关内容以及它们的区别。 关键词:拉格朗日插值法;牛顿插值法 The leaning and comparison of the Lagrange interpolation and Newton interpolation Abstract: Based on the understanding of the Lagrange interpolation and Newton interpolation ,this paper mainly describes some related knowledge as well as the difference between these two methods. Keywords: Lagrange interpolation ; Newton interpolation 前言 在工程和科学研究中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数)(x f 在区间],[b a 上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值(即一张函数表)。显然,要利用这张函数表来分析函数)(x f 的性态,甚至直接求出其他一些点上的函数值可能是非常困难的。面对这些情况,总希望根据所得函数表(或结构复杂的解析表达式),构造某个简单函数)(x P 作为)(x f 的近似。这样就有了插值法,插值法是解决此类问题目前常用的方法。 如设函数)(x f y =在区间],[b a 上连续,且在1+n 个不同的点b x x x a n ≤≤,,,10 上分别取值n y y y ,,,10 。 插值的目的就是要在一个性质优良、便于计算的函数类Φ中,求一简单函数)(x P ,使 ),,1,0()(n i y x P i i == 而在其他点i x x ≠上,作为)(x f 的近似。 通常,称区间],[b a 为插值区间,称点n x x x ,,,10 为插值节点,称式i i y x P =)(为插值条件,称函数类Φ为插值函数类,称)(x P 为函数)(x f 在节点n x x x ,,,10 处的插值函数。求插值函数)(x P 的方法称为插值法。 插值函数类Φ的取法不同,所求得的插值函数)(x P 逼近)(x f 的效果就不同。它的选择取决于使用上的需要,常用的有代数多项式、三角多项式和有理函数等。当选用代数多项式作为插值函数时,相应的插值问题就称为多项式插值。本文讨论的拉格朗日插值法与牛顿插值法就是这类插值问题。 在多项式插值中,最常见、最基本的问题是:求一次数不超过n 的代数多项式 n n x a x a a x P +++= 10)( 使),,1,0()(n i y x P i i n ==,其中,n a a a ,,,10 为实数。

相关文档
相关文档 最新文档