文档库 最新最全的文档下载
当前位置:文档库 › 树脂砂铸造铸件产生气孔的原因及防止

树脂砂铸造铸件产生气孔的原因及防止

树脂砂铸造铸件产生气孔的原因及防止
树脂砂铸造铸件产生气孔的原因及防止

树脂砂铸造铸件产生气孔的原因及防止

概述:面对不断增长着的生产优质铸件的压力,同时又面临缺少有专长的劳动力的局面。时至今日,国内越来越多的公司(或企业)选择由粘土砂干型铸造工艺转为呋喃树脂砂铸造工艺。与粘土砂干型铸造工艺相比,呋喃树脂砂铸造工艺具有下述优点:铸件表面质量好、尺寸精度高、废品率低,适用范围广、对工人技术水平要求低,大大减轻了工人的劳动强度和改善工作环境,生产率提高40-60%。但在生产过程中,也存在着一些问题,如果不加以重视和解决,势必会带来不必要的经济损失。因此,我们在树脂砂生产技术方面,作了一些工作与探索,为我铸造车间进一步扩大业务,拓宽产品范围,作出了努力,本文主要论述的是树脂砂铸造铸件产生气孔的原因及防止。

关键词:呋喃树脂砂气孔防止

气孔是树脂砂铸造中最常见的缺陷之一,采用自硬树脂砂造型工艺尽管铸件气孔缺陷大为减少,但如果工艺、熔炼、浇注等措施不当,气孔缺陷也时有发生。气孔(气眼、气泡、呛火)主要在铸件内部、表面或近于表面处于有大大小小不等的光滑孔眼,形状有圆的、长的及不规则的、有单个的、也有聚集片的,颜色为白色或带一层暗包,有时覆有一层氧化皮。

目前,比较常用树脂砂铸造灰铸、球铁、合金铸铁、碳钢以及低碳合金钢,都会产生气孔,从铸件的气孔来看,主要有侵入性气孔、析出性气孔、反应性气孔等,它们对铸件的质量有不同的影响,但影响大多比较的大,甚至造成铸件的报废,因此,我们要想方设法的去防止、控制、阻止它的产生。

1 气体的来源

在树脂砂铸造铸件中,铸件产生气孔是比较常见的,主要是由各种气体形成的,想要更好的去防止、控制、阻止它的产生,就必须找到气体的来源,它的来源主要在熔炼、铸型、材料、浇注等过程中产生。

1.1 熔炼过程[1]

熔炼过程中气体的来源,如表一所示,主要来自各种炉料的锈湿以及周围气氛中的水分、氮、氧、以及Co2、Co、So2、H2及有机物燃烧产生的碳氢化合物等。

表一熔炼过程中气体的来源

气体种类气体来源

氢1、炉料中的水分、氢氧化合物、有机物。

树脂砂铸造对模具工艺的要求

树脂砂铸造对模具工艺的要求 树脂砂铸造 2009-07-05 15:46 阅读169 评论0 字号:大中小 树脂砂铸造是指型(芯)砂在室温条件下,通过加入一定量的固化剂,使型、芯在芯盒或砂箱内自行硬化成型的一种造型、制芯的方法。目前在铸造生产中得到应用的有酸固化呋喃树脂砂、酯固化碱性酚醛树脂砂和酚尿烷树脂砂等。这些工艺的共同特点是:型(芯)砂有一定的可使用时间,硬化速度与强度受室温、环境湿度的影响较大,生产效率也不太高。它们比较适合于单件、小批量、多品种的中、大型铸件的生产,例如机床、通用、重型、造船、机车等行业。在上述几种树脂自硬砂中,以酸固化的呋喃树脂砂在我国应用最多,因为它所用的原辅材料及设备能成套供应,技术成熟,积累的经验也最为丰富,据不完全统计,目前全国约有500多家采用呋喃树脂砂工艺进行铸件生产。它与粘土砂相比,铸件尺寸精度可提高2~3级,表面粗糙度明显改善,废品率明显下降。 与传统的粘土砂生产铸件相比,用树脂砂生产的铸件具有表面粗糙度小,尺寸精度高,品质好的特点,已日益受到市场的青睐,得到了迅速发展,已逐步成为铸件市场的主流产品。树脂砂上世纪50年代开始在铸造行业出现和使用,到现在已经有几十年的历史了,其生产工艺和设备已相当成熟和完善。

砂温对树脂砂硬化的影响及控制 呋喃树脂自硬砂的硬化原理是:树脂在固化剂的催化作用下逐渐发生交联反应而自行硬化,固化剂的催化作用受温度的影响较大,温度升高催化作用加速,温度下降,催化作用减慢,因而呋喃树脂自硬砂在硬化过程中,硬化反应的速率与砂温有密切的关系,同时硬化反应速率对硬化后铸型的强度有着重要的影响。所以,要得到满足生产需要的铸型强度,就必须控制砂温。 固化剂的加入量和酸值对铸型的影响及控制 固化剂的加入量是按其占树脂的比例来确定的。在固化剂酸值一定的情况下固化剂加入量愈大,树脂砂的硬化速率就愈快,反之,愈慢。在固化剂加入量一定的情况睛,所用固化剂酸值愈高,树脂砂硬化速率愈快,反之,愈慢。树脂砂铸造的硬化速率过快或过慢,都会降低铸型硬化后的强度,因此必须合理控制树脂砂的硬化速度。 树脂砂铸造生产对模具工艺的要求 与粘土砂相比,树脂砂铸件的外观质量依赖于模具的质量,因而树脂砂对模具的质量要求较高。模具工艺时使其较好的适应树脂砂造型的需要,主要在以下几个方面: 1、拔模斜度:树脂砂在起模时已具有一定的硬化强度,较小的退让性,较大的摩擦力,若采用敲击的方法起模,容易损坏模具,同时树脂砂的可修补性差,起模时,若受到破坏,较难修补。采用树脂砂造型时,应根据生产实际和产品结构加大模具的拔模斜度,能顺利

侵入气孔、析出气孔、针状气孔产生的原因有哪些

侵入气孔、析出气孔、针状气孔产生的原因有哪些? 侵入气孔产生的原因是:型砂中的水分与粘结剂中的挥发物,都会因受热变成气体。如果型砂(或芯砂)透气性差,或浇注系统设计不合理,或砂型紧实度过高.或砂型排气不良以及气道堵塞,都会使铸型中所产生的气休(浇注时)不能及时排出,就可能冲破金属表面凝固膜,而钻进铁水里去,若不能上浮排出,便留在铸件中形成气孔。因此应尽量减少铸型中的气体来源和增加铸型的排气能力。其具体措施有: (1)严格控制型砂的水分,同时起膜与修型时,不宜刷水过多。煤粉等加入量不宜过多,从而减少发气量。一般型砂中水<6%,煤<7%。 (2)干型要保证烘干的质量,烘干后停放时间不宜过长,以免返潮。 (3)适当地提高浇注温度,浇注时缓慢平稳,保征型腔内原有气体来得及排出。 (4)铸型紧实度要适当,保持良好的透气性。同时还要开气冒口,扎气眼;泥芯要有通气道等。 (5)浇注系统的设置要合理,要考虑型腔内排气畅通及金属液平稳地流入铸型。 (6)合箱时要注意封死芯头间隙,以免铁水钻入而堵塞通气道。 (7)对于大平面铸件,最好采用倾斜浇注,出气孔处高势,以利排气。 (8)泥芯撑和冷铁必须干净无锈 (9)适当减少粘结剂,可附加一些透气性材料,如木屑等。 (10)可选用圆性砂粒,增加型砂的透气性。 析出气孔产生的原因是:气体在金属中的溶解度随温度下降而急剧减少。在熔炼过程中,金属吸收了较多的气体,而在冷却凝固过程中,析出的气体若不能排出型外,则留在铸件中成为气孔。因此,要尽量减少铁水在熔炼和浇注时的吸气和减少铁水的粘度,以便气泡上浮排除。其具体措施有: (1)使用干燥炉料,并限制含气量较多的回炉料的用量。对锈蚀严重成表面有油的炉料要经过热处理后再使用,对本身含气量高的炉料,应重熔再生后再使用。 (2)尽量减少炉料与炉气接触:在金属液表面复盖溶剂,采用快速熔炼工艺,严格控制风量和风压等。 (3)浇包要完全烘干。 (4)进行脱气处理:方法是加入合金不溶性气体,把溶于金属液中的气体带出。如炼钢中加铁矿石沸腾而除去氢气、氮气等。 (5)采用真空熔炼,以清除金属液中气体或使用金属液在压力下结品,使已溶于金属的气体未来得及析出就已凝固。 (6)增加型砂的透气性:紧实度要合适,扎气眼,水分适宜。 (7)适当提高浇注温度,以降低金属液枯度。让气体易于排除。 (8)炉缸、前炉和铁水包需烘干后再使用。 (9)浇注时要避免断流,从而做到连续浇注。 (10)浇注时,必须点火引气。 针状气孔小,细而长,如针状,主要由氢和氧生成。其中氢可能以分子状态存在,也可能以原子状态存在。以分子状态存在时,如钢中有足够的氧化亚铁,则氢与氧化亚铁中的氧化合而成水蒸气,这种水蒸气可以直接生成针孔,也可以作为针孔的核心,周围的氢向其扩散,聚集而长大,终于生成针孔。以原子状态存在时,则熔解于钢水(或铁水)中,随着温度下降,氢被析出,并迅速扩散,或扩散到已有核心处,聚集长大,或扩散到已有析出氧的地方,与氧化合而成水蒸汽,从而生成针孔。在所有情况下,氢的扩散都要受到相邻金属品粒的阻碍,被迫向细长方向发展而成为针状。氧多以分子状态存在,并

树脂砂铸造过程中应注意的几个问题

树脂砂铸造过程中应注意的几个问题 兖矿集团大陆机械有限公司华铸分公司 史明华 由于自硬树脂砂铸造具有生产出的铸件表面质量好、尺寸精度高、废品率低,适用范围广、对工人技术水平要求低,大大减轻了工人的劳动强度和改善工作环境等优点,因此国内越来越多的公司(或企业)选择自硬树脂砂铸造手段。虽然自硬树脂砂铸造技术已经成熟,但在生产过程中仍然存在许多问题。我公司于2002年新上一条年产3000吨铸铁件的自硬树脂砂生产线,经过四年多来的不断探索,本人认为在自硬树脂砂铸造生产过程中,需要注意以下几个问题。 一、要经常注意设备的运行情况 设备运行情况的好坏,直接影响着铸造生产成本和铸件质量,因此,在铸造生产中,要经常注意设备的运行情况,发现运行异常及时分析解决,着重应注意以下两方面: 1、要注意除尘设备的运行 除尘设备的好坏,直接影响着再生砂的再生成本和铸件质量,在铸造生产中,除尘设备运行出现异常往往不易发现,但如果除尘设备的除尘效果不好,不但影响着工作环境、污染空气,更重要的是影响着再生砂的微粉含量,其直接结果是导致混砂时树脂加入量的增加和由于透气性差造成铸件废品率增多。 2、要注意混砂设备的运行 混砂机是否能够正常运行,直接影响着混砂的质量,其中液料(树脂、固化剂)的加入量最为关键。一般情况下,树脂的加入量是靠控制齿轮泵电机的电压、固化剂的加入量是靠控制隔膜泵电机的电压来实现的,由于季节、天气的变化,造成液料粘度的变化,在相同电压的情况下,液料的加入量会产生波动,且固化剂易产生结晶,造成阀及管道堵塞,因此,应每班对液料管道进行清理,每周对液料的加入量进行检测,以确保液料加入量的准确。 二、要注意制定的生产工艺的正确性及合理性 生产工艺制定的合理与否,直接影响着铸件的成品率、铸件质量和铸造成本,在制定生产工艺时,主要应注意以下几项: 1、确定合适的再生砂的LOI值 LOI值即灼烧减量是衡量再生砂的脱膜率的重要指标,也是与型砂的发气量及铸件产生气孔类缺陷密切相关的指标,铸铁件一般采用呋喃树脂砂生产,实践证明LOI值控制在3%左右完全可以满足生产要求,而过分降低LOI值意义不大。我公司在生产过程中,逐步将LOI 127

铝压铸件产生气孔的可能原因

铝压铸件产生气孔的可能原因(供参考) 一. 人的因素: 1. 脱模剂是否噴得太多? 因脱模济发气量大,用量过多时,浇注前未燃尽,使挥发气体被包在铸件表层。所以在同一条件下,某些工人操作时会产生较多的气孔的原因之一。 选用发气量小的脱模济,用量薄而均匀,燃净后合模。 2 未经常清理溢流槽和排气道? 3 开模是否过早? 是否对模具进行了预热?各部位是否慢慢均匀升温,使型腔、型芯表面温度为150℃~200℃。 4 刚开始模温低时生产的产品有无隔离? 5 如果无预热装置时是否使用铝合金料慢速推入型腔预热或用其它方法 加热? 6 是否取干净的铝液,有无将氧化层注入压室? 7 倒料时,是否将勺子靠近压室注入口,避免飞溅、氧化或卷入空气降 温等。 8 金属液一倒入压室,是否即进行压射,温度有无降低了?。 9 冷却与开模,是否根据不同的产品选择开模时间? 10 有无因怕铝液飞出(飞水),不敢采用正常压铸压力?更不敢偿试 适当增加比压。? 11 操作员有无严格遵守压铸工艺? 12 有无采用定量浇注?如何确定浇注量? 二. 机(设备、模具、工装)的因素: 主要是指模具质量、设备性能。 1 压铸模具设计是否合理,会否导致有气孔? 压铸模具方面的原因: 1.浇口位置的选择和导流形状是否不当,导致金属液进入型腔产生正面撞击和产生旋涡。(降低压射速度,避免涡流包气) 2.浇道形状有无设计不良? 3.内浇口速度有无太高,产生湍流? 4.排气是否不畅? 5.模具型腔位置是否太深? 6.机械加工余量是否太大?穿透了表面致密层,露出皮下气孔? 压铸件的机械切削加工余量应取得小一些,一般在0.5mm左右,既可减轻铸件重量、减少切削加工量以降低成本,又可避免皮下气孔露出。余量最好不要大于0.5mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。 2 排气孔是否被堵死,气排不出来? 3 冲头润滑剂是否太多,或被烧焦?这也是产生气体的来源之一。 4 浇口位置和导流形状,有无金属液先封闭分型面上的排溢系统? 5 内浇口位置是否不合理,通过内浇口后的金属立即撞击型壁、产生涡 流,气体被卷入金属流中? 6 排气道位置不对,造成排气条件不良?

树脂砂铸造生产工艺

树脂砂铸造生产工艺 为规树脂砂铸造的生产过程,严格执行操作工艺,减少因违反工艺或操作不当产生的废品和降低的铸件生产成本,特制定本生产操作工艺规程。本工艺规程适用于公司所有树脂砂铸件的生产全过程和与之相关的各类操作人员。下面节选一部分供大家参考阅读。 工艺规程 3.1 主要原材料的技术要求或规格 3.1.1原砂(天然石英砂) 粒度:40/70目(件)或50/100目(一般件); 化学成分:SiO2 >90% 、含泥量<0.2%~0.3% 、含水量 <0.1~0.2%;微粉含量(140目筛以下) ≤0.5~1.0%、耗酸值<5ml 、灼减量<5、粒型:圆形或多角形。 3.1.2再生砂 灼减量<3.0%;耗酸值<2.0ml;PH值<5 ;200目筛底盘<1%;底盘量<0.2%;含水量<0.2%; 粒形:圆形。 3.1.3呋喃树脂 含氮量2.0~5.0%;24h抗拉强度>1.5MPa;游离甲醛<0.3%;粘度<60mPa.s;密度1.15~1.25 g/cm3;游离酚<0.3%。 3.1.4固化剂 采用有机磺酸固化剂,其黏度一般控制在<200mPa.s,水不溶物的含量<0.1%,同时冷冻和随后的溶解之间要有可逆性。为了保证稳定的型砂可使用时间和硬化速度,可选用“a+b”固化剂或根据季节不同选用不同酸度型号的固化剂。

3.1.5涂料 采用醇基涂料。要求涂料的固体含量高,粉料粒度细,粉料及黏结剂的耐火度高,抗爆热能力强等。具体工艺性能要求有:密度 1.25~1.35 g/cm3;黏度6~7s;悬浮性(2h)>97%;涂刷性、流平性、渗透性、抗裂性要好,涂层强度要高。对于表面球化有深度要求的铸件,应采用氧化镁涂料。 3.2操作工艺规程 3.2.1再生砂准备 根据树脂砂再生设备的要求和工艺流程进行操作,获得满足工艺要求的再生砂。特别要注意控制好进入混砂机时的再生砂的温度,最好在25-35℃。 3.2.2砂、树脂、固化剂加入量的调整 (1)混砂机的流量测定 根据混砂机的设定要求,在正常的生产情况下,至少每四天进行一次流量测定。分别对相同时间砂、树脂、固化剂的流量进行称量,掌握时间流量。并先将砂流量按混砂机的公称流量进行调整。 (2)树脂量的调整 根据砂流量调整树脂的加入量,树脂加入量一般控制在型砂重量的0.8~1.2%,厚大件取上限,中小件取下限。 (3)固化剂量的调整 固化剂加入量在正常情况下与砂温和车间环境温度有关,一般控制在树脂加入量的30~50%,高温时取下限,低温时取上限。放砂时间长的大件固化剂加入量取下限,以保证树脂砂有足够的可使用时间。 (4)混砂机的调整与准备

铸件粘砂现象及粘沙

铸件粘砂现象及粘沙原因 铸件粘砂不仅影响铸件的外观质量,甚至引起报废。因此,必须对铸件的粘砂引起足够的重视。 一、粘砂现象 1.机械粘砂系金属液渗人砂型或砂芯砂粒间隙中,与砂烧结并粘附在铸件表面。它可以是薄薄的一层,也可能是数毫米的厚层。金属液有时会渗透到砂芯的整个截面,致使内腔阻塞,这种粘砂往往是不可能清除的,铸件不得不报废。 2.化学粘砂系金属液化学反应生成的金属氧化物与造型材料作用形成的粘着力很强的 硅酸铁浮渣。它多产生在铸件内浇口或厚壁处,尤其当砂型或砂芯较薄而铸件较厚时较易产生。 3.化学粘砂与机械粘砂的简易鉴别,在于前者粘砂层中往往不含有金属铁。 二、粘砂原因 1.足够的压力使金属液渗人砂粒之间较高的金属液静压力头。即由铸件浇注高度和浇注系统形成的压力。如该压力超过砂粒间隙之间毛细现象形成的抵抗压力。即尸毛=QcosO/r,式中P毛为毛细压力;。为金属液表面张力;e为金属液毛细管的润湿角;r为毛细管半径。就会形成机械粘砂。静压力头超过500 mm,铸造用砂又较粗,多数会产生机械粘砂,除非上涂料。上式亦说明:越大,即砂粒粒度越粗,尸毛越小,即较易产生机械粘砂。 2.金属液在铸型内流动形成的动压力。 3.铸型“爆”或“呛”。即铸型浇注时释放的可燃气体与空气混合并被炽热金属液点燃所形成的动压力。 4.机械粘砂一经开始,即便压力减小,金属液渗透还会继续进行,直到渗透金属液前沿凝固。即金属液温度低于固相线温度,渗透方可停止。 5.化学粘砂最通常的原因是湿型和制芯用原材料耐火度、烧结点低;石英砂不纯;煤粉或代用品加人不足;没有使用涂料或使用不当;浇注温度过高;浇注不当致使渣子进人铸型等因 素造成。

砂型铸件的表面缺陷

砂型铸件的表面缺陷 1.1 机械粘砂和化学粘砂 砂型铸件表面的机械粘砂是金属液直接钻入砂型砂粒间孔隙,靠金属的包围和钩连作用与砂粒连结在一起,没有发生化学反应。产生化学粘砂的原因是高温金属液可能被氧化而生成金属氧化物,主要产物是氧化亚铁FeO,其熔点为1370℃。FeO与型砂的SiO2起化学反应生成硅酸亚铁(即铁橄榄石FeO?SiO2),化学反应如下: SiO2 + 2FeO 2FeO?SiO2 硅酸亚铁的熔点极低,仅有1220℃,因此流动性很好,即使铸件表面已有凝固壳,新生成的硅酸亚铁仍呈液态,易于渗透入砂型孔隙中。凝结后的硅酸亚铁对铸件和型砂都有极强的粘结性,能够将型砂牢固粘附在铸件表面上而成个化学粘砂。 用湿型砂生产铸铁件一般只形成机械粘砂,而不会形成化学粘砂。这是因为铁液中含有多量碳,不会产生大量氧化铁等金属氧化物。砂型中又含有相当多的煤粉,浇注时产生的还原性气氛能防止金属氧化物。原砂的SiO2含量较低也不是湿型铸铁件形成化学粘砂的必然条件。研究结果表明,使用SiO2含量只有82%左右的黄河风积砂,用湿型生产铸铁件并未发现有化学粘砂。 凭肉眼区别两种粘砂是比较困难的,通常可用以下方法区分: ⑴显微观查:从粘砂层上敲取一小块,用液体树脂固定并磨制成试样,用金相显微镜观察。如果是机械粘砂,可以清楚看到单个砂粒夹在金属之中。渗入的金属与砂粒间有明显的分界线,不存在任何化学反应产物。渗入的金属金相组识与铸件本体的金相组织一致(见图2)。如果是化学粘砂,则可以看见在粘砂层中有新生相将铸件和砂粒粘连(见图3)。 ⑵电测:机械粘砂中连结物是金属,具有良好的导电能力。将万用电表的旋钮开到电阻测定档,用一个电极接触铸件,另一电极接触粘砂部位。如果电阻接近为零,表明粘砂是金属包裹砂粒形成的机械粘砂。如果显示有巨大电阻,表明粘砂部位已经形成不导电的硅酸亚铁,属于化学粘砂。 ⑶化学鉴别:用扁铲凿下一小块粘砂块,浸入盛有浓盐酸的试管中。如果缓慢发生气泡,一夜之后液体颜色由无色透明变为棕红色。反应终了时粘砂块消失,试管底部留下少数单个砂粒,说明是机械粘砂,铁质部分已被盐酸溶解成为氯化铁。化学反应式为: 2Fe + 6HCl 2FeCl3 +3H2↑ 如果是化学粘砂,则气泡产生很少,酸液也没有明显的变化。最后的残留物是多孔性团絮状物质。 1.1.1 各种因素对机械粘砂的影响 实际生产经验表明,湿型铸件的重量一般不超过一、二百千克,壁厚大多不超过50mm,型砂中水分引起激冷效应使铸件外壳较快冷却和凝固,对型砂的加热作用并不过分严重。虽然铸铁用原砂中除了含有石英(熔点1715℃)以外,还含有相当数量熔点较低的长石(熔点1170~1550℃)、云母(熔点1150~1400℃)及其它矿物质,但同时铸铁湿型砂中含有的煤粉抑制了氧化铁的生成,因而不致引起化学反应。生产经验表明,湿型铸钢件一般也都是机械粘砂,而不是化学粘砂。这是因为湿型铸钢件都不是厚大铸件,而且所用硅砂含SiO2较高,铸件对型砂的热作用并不严重,不产生明显多的铁橄榄石。 以下将分别讨论铸件产生机械粘砂的各种影响因素: 1.1.1.1 砂型紧实程度

铸铁件氮气孔产生的原因分析及特征

铸铁件氮气孔产生的原因分析及特征 特征:枝晶间裂隙状氮气孔 这种缺陷呈裂隙状多角形或断续裂纹状,跟其它的气孔类缺陷大不相同,从外观上看没有明显的气体痕迹,但能明显看到粗大的树枝晶,跟缩孔、缩松缺陷有点类似,所以在有些较厚大件上,经常被误认为是缩孔、缩松。值得一提的是,这种气孔在铸件断面上呈大面积分布,有的也分布在较大的平面处,在铸件最后凝固如冒口附近,热节中心最为密集,这类气孔常发生在同一炉或同一浇包浇注的全部或大部分铸件中。由于是在凝固过程晚期形成的,因而气孔孔洞形状不是圆球形的,而改变为多角形或枝晶间裂隙状的,这说明气泡生成及长大时,其周边被固体的枝晶壁所包围,而不能形成圆球形的气孔。 来源:液态金属所吸收的氮来自多种途径,主要有两大类,一是浇注前金属液本身所含的氮;二是树脂砂中所含的氮。 对于冲天炉熔炼的灰铸铁,炉料中的废钢是氮的重要来源,碱性电弧炉废钢,其含氮量可达 60ppm~140ppm,废钢多于35%,就有可能产生氮气孔,树脂砂中所含的氮来源于树脂及固化剂、再生砂中积累的氮、型砂中的含氮附加物及涂料中的氮沥青焦炭含氮量高,作为增碳剂使用时容易产生氮气孑L,必须引起高度重视。而电极电墨作为增碳剂,则由于其含氮量低而不容易发生氮气孑L。此外,在熔炼过程中即使加入含氮量高的增碳剂,如沥青焦炭,也只有在刚加入铁液时含氮量急剧增加,当铁液保温十多分钟后,含氮量逐渐恢复到加增碳剂前的水平。 机理: 用树脂砂生产铸铁件更容易产生氮气孔,这是因为当铁液浇人铸型后,含N的树脂受热分解出NH3,NH3又在金属液表面离解,NH3一[N]+3/2H2,[N]原子相当一部分进入铸型金属界面尚处于熔融

浅谈树脂砂铸造中的砂芯涂刷工艺

浅谈树脂砂铸造中的砂芯涂刷工艺 摘要:涂料是影响树脂砂铸件质量的一个重要因素,对树脂砂型芯所用涂料性能和施涂工艺的正确认识,并且以此选用性能优良的涂料和正确的施涂工艺,是获得优质树脂砂铸件必不可缺少的条件。本文阐述了树脂砂铸造中的砂芯涂刷工艺的一些问题和改进措施。 关键词:树脂砂铸造,涂料,涂刷工艺,砂芯 树脂砂是铸造中常用的造型、制芯方法之一,适用于多品种、小批量铸件的生产,具有流动性好,浇出的铸件尺寸精度高,表面光洁度好,浇注后的型砂溃散性好,容易再生等特点,在机床、水利机械、工程机械、矿石机械等领域普遍使用。树脂砂铸件在铸造过程中,涂料与涂刷工艺是影响铸件表面质量的重要因素,需要重点关注。 一、涂料的作用和选择 在铸造过程中,是否使用涂料需要考虑到清沽费用、修整费用和废品率等铸件成本后决定。一般来说,涂料可以起到防止渗漏,防止冲砂,防止粘砂,改善铸件表面质量,降低清沽费用,减少废品率等作用。铸型涂料与一般涂料不同之处在于,铸型涂料受得了高温融化的金属,并且在融化的金属与铸型之间形成一个阻隔层。通常来说,铸型涂料是把高熔点物质或者耐火物质悬浮在液体当中,当然,除了有耐火物质,铸型涂料还含有其他很多成分。 在实际生产中,铸型涂料必须具有以下特质:①具有优良的触变性、流平性、渗透性、涂敷性,涂层无刷、流痕等;②涂料具有优良的悬浮稳定性,水基涂料6小时悬浮性达到99%以上。③涂料具有很好的抗粘砂性能,浇注出的铸件表面光洁度好,轮廓清楚、无粘砂。④涂料的使用方法简单方便,可用于刷涂、喷涂、浸涂、流涂等工艺。⑤涂层烘干后,具有较高的强度和高温抗裂性,1300℃爆热1~2分钟涂层不开裂、不起泡。⑥涂料质量稳定、使用方便,特别是浅(白)色涂料,对改善劳动环境有显著效果。 为了不让涂料过多的渗入到砂型深处,影响涂层的干燥程度,并保证涂层厚度,提高抗金属液渗透的能力,涂料必须有一定的浓度,在涂刷性能良好的情况下,应保证涂料浓度并在涂刷前搅匀。

气孔类别

本文从铝合金铸件气孔类别分析入手,指出铝合金铸件气孔可分为点状针孔、网状针孔、综合性针孔三类;氢是造成铝合金铸件针孔的主要原因,而氢的主要来源则是由于水蒸气分解所产生的。因此,铝合金在熔炼过程中造成水蒸气产生的原因,也就是直接影响针孔形成的主要因素。由于铝合金铸件气孔对铸件的品质尤其是对其力学性能产生不良的影响,作者在文中论述了铝合金铸件气孔形成的主要因素,并针对铝合金铸件气孔形成的主要因素提出了相应的预防措施,文章最后扼要总结了预防铝合金铸件针孔必须遵守的“防”、“排”、“溶”工艺原则。 引言: 在纯铝中加入一些金属或非金属元素所熔制的铝合金是一种新型的合金材料,由于其比重小,比强度高,具有良好的综合性能,因此被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器具制造等方面。随着国民经济的发展以及经济一体化进程的推进,其生产量和耗用量大有超过钢铁之势。 加强对铝合金材料性能的研究,保证铝合金铸件具有优良品质,既是我们每一个科技工作者义不容辞的责任,也是同我们的日常生活息息相关的头等大事。本文结合作者铝合金铸件生产实践经验谈谈铝合金铸件气孔与预防问题。 1.气孔类别 由于铝合金具有严重的氧化和吸气倾向,熔炼过程中又直接与炉气或外界大气相接触,因此,如熔炼过程中控制稍许不当,铝合金就很容易吸收气体而形成气孔,最常见的是针孔。针孔(gas porosity/pin-hole),通常是指铸件中小于1mm的析出性气孔,多呈圆形,不均匀分布在铸件整个断面上,特别是在铸件的厚大断面和冷却速度较小的部位。根据铝合金析出性气孔的分布和形状特征,针孔又可以分为三类①,即: (1) 点状针孔:在低倍组织中针孔呈圆点状,针孔轮廓清晰且互不连续,能数出每平方厘米面积上针孔的数目,并能测得出其直径。这种针孔容易与缩孔、缩松等予以区别开来。 (2) 网状针孔:在低倍组织中针孔密集相连成网状,有少数较大的孔洞,不便清查单位面积上针孔的数目,也难以测出针孔的直径大小。 (3) 综合性气孔:它是点状针孔和网状针孔的中间型,从低倍组织上看,大针孔较多,但不是圆点状,而呈多角形。 铝合金生产实践证明,铝合金因吸气而形成气孔的主要气体成分是氢气,并且其出现无一定的规律可循,往往是一个炉次的全部或多数铸件均存在有针孔现象;材料也不例外,各种成分的铝合金都容易产生针孔。 2.针孔的形成 铝合金在熔炼和浇注时,能吸收大量的氢气,冷却时则因溶解度的下降而不断析出。有的资料介绍②,铝合金中溶解的较多的氢,其溶解度随合金液温度的升高而增大,随温度的下降而减少,由液态转变成固态时,氢在铝合金中的溶解度下降19倍。(氢在纯铝中的溶解度与温度的关系见图1③)。因此铝合金液在冷却的凝固过程中,氢的某一时刻,氢的含量超过了其溶解度即以气泡的形式析出。因过饱和的氢析出而形成的氢气泡,来不及上浮排出的,就在凝固过程中形成细小、分散

铸造用呋喃树脂砂

第一章铸造用呋喃树脂砂概述 一、自硬呋喃树脂砂的特点 1. 优点: 1)铸件表面光洁、棱角清晰、尺寸精度高; 2)型砂的溃散性好,清理、打磨容易,从而减少了落砂清铲修整工序中对铸 件形状精度的损害; 3)由于在各个工序中都最大限度的排除了影响铸型、铸件变形和损坏的因 素,所以树脂砂铸件的铸件表面质量、铸件几何尺寸精度方面比黏土可以提高1~2级,达到了CT7~9级精度和1~2mm/600mm的平直度,表面粗糙度大有改观; 4)减轻劳动强度大大改善了劳动条件和工作环境,尤其是减轻了噪声、矽 尘等,减少了环境污染; 5)树脂砂型(芯)强度高(含高温强度高)、成型性好发气量较其它有机铸型 低、热稳定性好、透气性好,可以大大减少铸件的粘砂、夹砂、砂眼、气孔、缩孔、裂纹等铸件缺陷,从而降低废品率,可以制造出用黏土砂难以做出的复杂件、关键件; 6)旧砂回收再生容易可以达到90%左右的再生回收率。在节约新砂、减少 运输、防止废弃物公害方面效果显著。 2. 缺点: 1)对原砂要求较高,如粒度、粒形、SiO2含量、微粉含量、碱金属盐及黏土 含量等都有较严格要求; 2)气温和湿度对硬化速度和固化后强度的影响较大; 3)与无机类黏结剂的铸型相比,树脂砂发气量较高,如措施不当,易产生气 孔类缺陷; 4)与黏土砂相比,成本仍较高; 5)对球铁件或低碳不锈钢等铸件,表面因渗硫或渗碳可能造成球化不良或增 碳,薄壁复杂铸钢件上易产生裂纹等缺陷; 6)浇注时有刺激性气味及一些有害气体发生,CO气发生量较大,需要良好 的通风条件。

二、自硬呋喃树脂砂原辅材料 1. 原砂: 原砂品质对树脂用量,树脂砂强度以及铸件质量影响很大,某些工厂由于忽视对原砂质量的严格要求,给生产带来很多麻烦。表1列举了不同大小和材质的铸件采用原砂的技术指标。 表1 树脂自硬砂用原砂的技术指标(质量分数,%) ①微粉:对30/50、40/70筛号的原砂、140筛号以下为微粉;对50/100、70/140筛号的原砂,200筛号以下为微粉;对100/200筛号的原砂,270筛号以下为微粉。 酸自硬树脂砂除个别的、特殊要求之外,一般都采用硅砂,对硅砂的具体要求是: 1)原砂SiO2含量要高,一般铸钢件w(SiO2)≥97%,铸铁件w(SiO2)≥90%, 非铁合金铸件w(SiO2)≥85%; 2)酸耗值应尽可能低,一般小于等于5ml; 3)含泥量越小越好,一般质量分数小于0.2%,颗粒表面应干净、不受污染, 以保证砂粒与树脂膜之间有高的附着强度,因此应尽可能采用经过擦洗 处理的擦洗砂;

压铸件气孔的成因和解决办法

压铸件气孔的成因和解决办法 铝压铸是将铝液快速高压充填到模具型腔的铸造。铝液充填压铸模型腔的时间极短,一般为百分之几秒或千分之几秒。压铸过程中形成的气孔有光滑的表面,形状多为圆形或椭圆形,其多存在于铸件的表面或皮下针孔,也可能在铸件内部。气孔的来源主要为压铸过程中卷入的气体或铝液析气。 一、压铸过程中卷气。 1、压铸机压铸现在基本上采取三级压射,在第一级压射时,压射冲头以较慢的速度推进(通常在0.3m/s以内),这有利于将压室中的气体挤出;第二级压射则是按压铸件的结构、壁厚选择适当的流速,内浇口速度极快(一般冲头速度为1~6m/s,薄壁件、高气密性件、镁合金件有可能达到8m/s以上的速度),将铝液把型腔基本充满。这一级是压铸件产生气孔的关键,速度越高越易产生涡流而形成气孔。这一过程里,控制压铸件气孔主要通过控制一、二级压射速度和一、二级切换点来实现。一、二级速度尽量低一点(但太低会影响铸件成型或表面质量,要根据实际情况而定);二级压射的起点可选择在不允许有铸件气孔的部位之后,不同的铸件我们可选择不同的起点。同时随着压铸机射出速度、增压建压时间、提速时间等工作性能的不断提高和完善,铸件气孔将会越来越少。 2、一套好的压铸模应具备良好的浇注系统、排溢系统。在压铸过程中要尽量使多股浇道,铝液流与铸件方向保持一致,尽量不互相碰撞而产生涡流及因充填混乱造成卷气;另外使多股浇道充填型腔要注意做到同时填充,不能让一股或几股铝液先到最后端死角后再返回产生涡流。压铸模上的集渣包和排气道分布要合理。 3、压铸模具的温度对铸件的质量和气孔也有着关键的影响。当模温过高时,脱模剂在高温下挥发不能形成致密的皮膜,易造成粘膜;而模温过低,则脱模剂形成的皮膜有未挥发的水分,使脱模效果差,导致铸件气孔。通常模具预热温度为150℃~180℃,工作保持温度为220℃~280℃。 4、涂料产生的气体 a、首先是涂料的性能:挥发点太高,发气量大对铸件气孔有直接影响。 b、从喷涂工艺上看:喷涂使用量过多,喷涂时间过长,易造成气体挥发量大,还会使模具表面温度过低,模具表面水气一时无法蒸发,合模后型腔产生大量气体。生产过程中我们要选择性能好的涂料,挥发点要低,产生气体量要小。 5、最后由于压铸的特点是以很快的速度充填型腔,铝液在模具内快速凝固形成产品,所以铸件内部一定会有因铝液卷气产生的气孔。但铸件表层也会因快速凝固形成细晶粒的致密层,这些细晶粒具有较高的机械性能,只要铸件的加工余量尽量小一点,铸件的物理性能也可以得到保证。过大的加工余量就会把表面致密层加工掉,从而引起内部气孔暴露,铸件的物理性能降低。 下面举例说说我们生产的铝不粘锅的工艺: 1、产品名称:铝不粘锅,铸件轮廓尺寸为Φ250×180的圆锅,壁厚2.5mm。 2、材料:ADC12。 3、压铸机:650T。 4、产品要求:表面质量要求光滑,需在430℃高温下进行特氟隆处理,如果铸件有气孔,表面会鼓包,因此铸件不能有气孔、缩松、夹杂。

树脂砂造型的特点及工艺流程

树脂砂造型的特点及工艺流程 树脂砂造型工艺以其生产的铸件表面轮廓清晰、光洁,几何精度、尺寸精度高;生产工艺简单易于控制,而越来越为铸造企业接受和应用。这几年随着机械产品质量要求的不断提高,包括材质、尺寸精度,尤其是表面质量要求的提高,树脂砂这一较先进工艺得到了大力的推广。另外随着对原砂的处理及树脂、催化剂、混砂设备、工艺等方面的改进,树脂砂成本得到降低,也大大促进了树脂砂技术的推广。 树脂砂造型的特点: 1、成品率高 铸铁件成品率一般情况下≥92%,较高情况可达96~98%。2、表面光洁 比普通湿型粘土砂造型高2~3个等级,表面粗糙度可达Ra12.5。 3、尺寸精度高 由于型砂强度较高,铸件尺寸精度比一般潮模砂高2个级别,可达IT8~10级。后续加工余量可减少,刀具磨损小。 4、工艺简洁,易于控制 树脂砂造型工艺属自硬型,工艺要点由设备保证,只要掌握好工艺参数,就完全可以保证铸件质量,所以对操作工的技术素质要求较低,且节省劳动力,减轻劳动强度,车间单位面积的铸件产量比粘土砂烘模工艺翻一番,清砂效率也有大幅提高。同时扬尘点与散落砂少,所以工作环境较整洁。 5、高的工作效率

采用树脂砂造型提高了工作效率,单位面积的工作量提高,节约了车间面积。 6、减轻劳动强度 树脂砂大大减轻了制芯、造型、落砂、清理工人的劳动强度。 工艺流程如下: 落砂机——振动输送机——悬挂磁选机-------1#链式斗提机——1#砂斗——振动给料机——破碎机——2#斗提机——惯通式磁选机——2#砂斗——3#斗提机——3#砂斗——4#斗提机——再生机——风选机——5#斗提机——砂温调节器————6#斗提机——4#砂斗——气力输送罐----—固定双臂混砂机

3树脂砂铸件的粘砂问题

附件2 科研令号:010 二级科研课题实施计划 课题名称:树脂砂铸件的粘砂问题 承担单位:冶金分公司铸钢厂(盖章) 课题负责人:罗秋生 填报日期:2007年2月12日 中国第一重型机械集团技术中心

1.课题简介 树脂砂铸件的粘砂问题 自2005年3月份小型工部开始试生产以来,绝大多数树脂砂铸件表面产生严重粘砂,造成了大量废品。经过对一些铸件粘砂过程中产生机理的分析,产生粘砂的主要种类有机械粘砂和化学粘砂。粘砂的共同点是热作用、机械作用和它们之间相互发生化学作用的综合结果,本课题主要解决小型树脂砂件的粘砂问题。 2.课题目标 铸件表面无粘砂,降低清理费用30~50元/吨。 3.主要研究内容及节点计划 3.1主要研究内容 第一、树脂砂的强度对粘砂的影响 第二、涂料对粘砂的影响 第三、浇注温度对粘砂的影响 第四、操作方法对粘砂的影响 3.2节点计划(此项为课题考核依据) 4.关键技术及解决方案 本课题的关键技术是解决型、芯树脂砂的强度低,紧实度、均匀性差造成金属液体钻入砂型表面孔隙中凝固后将砂粒机械地钩连在铸件表面上形成机械粘砂。涂料性能、浇注温度的控制及具体的操作方法,对粘砂的影响因素。强度、涂料和浇注温度需要进行大量试验得出树脂最低加入量和选出最佳涂料,制定最佳浇注温度及操作方法。此过程中需购买相应的书籍、A+B设备,到相关生产厂家作技术交流。 5.课题的承担单位、参加单位及课题组成员

6.费用预算 费用预算表 7、成果形式

研究成果应用于实际生产 8、经济效益分析 将研制的科研成果应用于生产实际上,减少了大量废品。提高了铸钢件的表面质量,降低了能源、材料及人工消耗,每年预计减少质量废品损失200万元。

树脂砂铸造工艺

树脂砂铸造工艺 第一章 / 概论 1 — 1 自硬呋喃树脂砂的概念 自硬呋喃树脂砂的命名来源于英语的 Furan No-Bake process,它表示以呋喃树脂为粘结剂,并加入催化剂混制出型砂,不需烘烤或通硬化气体,即可在常温下使砂型自行固化的造型方法。通常被简称为“冷硬树脂砂”,甚至“树脂砂”。以下介绍两个基本概念。 一、呋喃树脂的概念 由碳原子和其它元素原子 (如 O、 S、 N等 )共同组成的环叫做杂环、组成杂环的非碳原子叫杂原子。含有杂环的有机化合物叫做杂环化合物。所谓“呋喃”,是含有一个氧原子的五员杂环有机化合物,它是表示一族化合物的基本结构总称。在呋喃系中不带取代基的杂环作为母体,叫做“呋喃”,它的衍生物则根据母体来命名。呋喃本身在互业上并无什么用途,但它的衍生物——糠醛和糠醇,却是互业上的重要原料,它们是最重要的呋喃衍生物,糠醛学名叫α——呋喃甲醛,糠醇学名叫呋喃甲醇。它们的分子结构如下: 含有糠醇的树脂称为呋喃树脂。作为铸造粘结剂用的呋喃树脂一般是用糠醇 (FA)与尿素、甲醛或苯酚等缩合而成的 ,如尿醛呋喃树脂( UF/FA)、酚醛呋喃树脂 (PF/FA)、酚脲醛呋喃树脂( UPF- FA)和甲醛——糠醇树脂 (F/FA)等。 二、呋喃树脂的硬化机理 根据呋喃树脂的组成不同,分别可以通过加热、通入硬化气体或添加酸催化剂等方法使其固化。酸催化(即“自硬”)的呋喃树脂一般糠醇含量都超过 50%。其硬化机构很复杂,现在还未完全弄清楚,但基本的树脂化反应包括了糠醇的第一醇基和呋喃环的第五位氢之间的脱水缩合,此外呋喃环的断裂生成乙酰丙酸,第一醇基间脱水生成醚和醛等等的反应。图 1- 1为呋喃树脂粘结剂的成分和代表性的呋喃自硬树脂结构的一例。 ?初期阶段 1 — 2 自硬呋喃树脂砂的优缺点 一、自硬呋喃树脂砂具有以下优点: 1 .铸件表面光洁、棱角清晰、尺寸精度高。 这是由于树脂砂造型可以排除许多使型(芯)变形的因素。如:( 1)型砂流动性好,不需捣固机紧实,减少了模样(芯盒)的伤损和变形;( 2)砂型(芯)固化后起模,减少了因起模前松动模样和起模时碰坏砂型(芯)引起的变形;( 3)无需修型,减少了修型时引起的变形;( 4)无需烘烤,减少了因烘烤造成的铸型(芯)变形;( 5)铸型强度高、表面稳定性好,故芯头间隙小、分型负数小,减少了下芯、配模过程中铸型的破损和变形,保证了配模精度;( 6)铸型(芯)硬度高,热稳定性好,可以有效地抵御浇注时的型壁退让、迁移现象,减少了铸型的热冲击变形(如胀砂等);( 7)型砂的溃散性好,清理、打磨容易,从而减少了落砂清铲修整工序中对铸件形状精度的损害。综上所述,由于在各个工序中都最大限度地排除了影响铸型、铸件变形和损坏的因素,所以树脂砂铸件的铸件表面质量、铸件几何尺寸精度方面比粘土烘模砂可以提高 1— 2级,达到 CT7-9级精度和 1- 2mm / 600mm的平直度,表面粗糙度更大有改观。 2 .造型效率高,提高了生产率和场地利用率,缩短了生产周期。 这是由于( 1)、型砂流动性好,不需捣固机紧实,节省了大量的捣固工作量,使造型

熔模铸件缺陷分析--粘砂

熔模铸件常见缺陷分析及处理 ——表面缺陷类之一 化学粘砂与机械粘砂 潘玉洪 摘要:机械粘砂和化学粘砂是熔模铸件常见的铸造缺陷之一,它是指在铸件的表面上牢固地粘结着一层金属与型壳材料结合物。本文重点阐述熔模铸件化学粘砂和机械粘砂的外部特征,产生的部位、机理以及主要原因,同时提出了从熔模铸造的选材、制壳工艺、焙烧工艺、熔炼工艺等方面采取实用、有效的对策,从而提高熔模铸件的合格率。 关键词:熔模铸件;粘砂缺陷;分析与处理 1.引言 在熔模铸造生产中,当灼热的金属液浇入型壳中,金属液与型腔表面就发生极为复杂的、物理的和化学的相互作用,往往导致铸件产生各种类型的铸造缺陷,机械粘砂和化学粘砂就是其中之一。 如果铸件局部产生粘砂,还不至于使铸件报废;但它影响了铸件的外观,增加了清理铸件的工时和劳动量;尤其对于需要机械加工的铸件,粘砂会给切削加工带来很多的麻烦,提高了生产成本,甚至影响正常的生产进度和交货期。所以,熔模铸造工作者必须在生产中尽量减少,甚至消除铸件的机械粘砂和化学粘砂缺陷。 目前,国内外一些资料把粘砂分为两种、三种或四种,作者认为分为化学粘砂和机械粘砂两种比较合适。 2.化学粘砂 2.1概述 2.1.1特征 金属液在高温下与型腔表面发生相互作用,冷凝后在铸件的表面上牢固地粘结一层难以清除的金属液与型壳材料之间化学反应生成粘砂。如图1:

图1 化学粘砂 左A-化学粘砂右-正常 2.1.2 部位 常常产生在大型铸件、铸件的厚大部位,铸件浇注部位的下端,靠近内浇口或冒口等部位。 2.1.3 机理 按照化学粘砂产生的主要原因,把化学粘砂的形成过程分为三种情况,如图2: 图2 化学粘砂形成过程的示意图 A型:a—金属液浇入型腔中; b—金属液被型砂中的空气或水分氧化,生成低熔点的、与石英砂浸润能力很强的氧化铁: 2Fe +O2=2FeO (液、固)(气)(液、固) c—氧化铁与石英砂(粉)作用: 2FeO+SiO2=2FeO ·SiO2 生成液态的铁硅酸盐(也称铁橄榄石),因为其熔点低(为1205℃)、流动性好、

气孔形成的原因

气孔形成的原因及解决的措施 杨群收汇编在工厂的生产实践中,人们对气孔的叫法不一样。有的叫气眼、气泡、气窝,丛生气孔,划为一体统称为“气孔”。 气孔是铸件最常见的缺陷之一。在铸件废品中,气孔缺陷占很大比例,特别是在湿模砂铸造生产中,此类缺陷更为常见,有时会引起成批报废。球墨铸铁更为严重。气孔是在铸件成型过程中形成的,形成的原因比较复杂,有物理作用,也有化学作用,有时还是两者综合作用的产物。有些气孔的形成机理尚无统一认识,因为其形成的原因可能是多方面的。 各类合金铸件,产生气孔缺陷有其共性,但又都是在特定条件下生成的,因此又都具有特殊性。所以要从共性中分析产生气孔的一般规律,也要研究特性中的特有规律,以便采取有效的针对性措施,防止气孔缺陷的产生。 一、气孔的特征 气孔大部分产生在铸件的内表面或内部、砂芯面以及靠近芯撑的地方。形状有圆形的、长方形的以及不规则形状,直径有大的、小的也有似针状丛生孔形。气孔通常具有干净而光滑的内孔面,有时被一层氧化皮所覆盖。光滑的孔内颜色一般是白色,或带有一层暗蓝色,有的气孔内壁还有一个或几个小铁豆豆,常把这种气孔称作“铁豆气孔”。距铸件表面很近的气孔,又叫“皮下气孔”,往往通过热处理、清滚或者机械加工后才被发现。还有一种常见

的气孔,叫做“气缩孔”,是气体和铸件凝固时的收缩而共同促使其产生的,形状又有其特殊性。铸钢和高牌号铸铁都常出这种名称的缺陷,但形成的机理有所差异。 气孔和缩孔是可以区别开的,一般说来气孔是圆形或梨形的孔洞,内壁光滑。而不像缩孔那样内表面比较粗糙。 二、气体的来源 各类铸造合金在熔炼及成型过程中,总要和气体相接触的,气体就会进入并以各种形式存在于合金中,气体来源是多方面的,归纳起来,主要来自以下几个方面: 1、原材料带进的。各种铁类、铁合金、燃料、熔剂等,自身就含有气体,有的带有雨雪潮湿,有的锈蚀,有的带有浊污,在熔炼过程中都有可能产生气体,其中一部分就会滞留在合金液中。有人提出:炉料上带的雨水、雪湿、浊污随炉料进入炉内,在炉料还是固态仅发红时,它们就已蒸发或烧掉,怎么会留存在铁水里呢?在资料里,用语言详细解释的不多,但在实践中,只要炉料(生铁、废钢、回炉料)受雨雪淋湿,湿着入炉,铁水一定会氧化,这确是事实。潮湿炉料在炉内的变化是无法看到的,但是废钢、生铁夏天被雨淋后,其表面很快就会有一层黄色的锈,这则是常见的!这层黄色的锈就是铁氧化的象征。 [Fe]+[H2O]——[FeO]+2[H]↑ 另外我们还会常见到这种现象,露天堆放的生铁、废钢经雨雪淋后,冬天生锈发黄的时间慢,夏天生锈发黄的时间快,夏天经雨淋后

铸件表面质量验收标准

铸铁件验收项目及标准 铸件的表面质量主要包括铸件的表面缺陷、尺寸精度、形状偏差、表面粗糙度、表面清理质量等; 1、铸件表面缺陷的检验 1.1表面缺陷检验的一般要求 1.1.1 铸件非加工表面上的浇冒口必须清理得与铸件表面同样平整,加工面上的浇冒口残留量应符合技术要求,若无要求,则按表8执行; 1.1.2 在铸件上不允许有裂纹、通孔、穿透性的冷隔和穿透性的缩松、夹渣等机械加工不能去除的缺陷; 1.1.3 铸件非加工表面的毛刺、披缝、型砂、砂芯等应清理干净; 1.1.4 铸件一般待加工表面,允许有不超过加工余量范围内的任何缺陷存在;重要加工面允许有不超过加工余量2/3的缺陷存在,但裂纹缺陷应予清除;加工后的表面允许存在直径*长度*深度小于等于2*2*2的非连片孔洞的铸造缺陷; 1.1.5 作为加工基准面(孔)和测量基准的铸件表面,平整度小于等于 2.0 毫米、粗糙度Ra50以内; 1.1.6 铸件表面气孔、砂眼、夹渣面积不大,但比较分散或者有连片麻点的表面不予接收; 1.1.7 除技术要求特别注明的铸件外,对于表面有气孔、缩孔、砂眼等缺陷的铸钢件允许补焊,但铸铁件未经允许不得焊补(铸铁件实行一案一判的原则)但补焊面积不允许超过铸件面积的10%,焊接质量应符合JB/T 5000.7-2007标准要求,补焊后必须退火、机械性能达到图纸要求,且不得有渗漏及影响外观的缺陷; 1.2铸件外观质量等级 表1 铸件外观质量等级

2、铸件尺寸的检验 2.1铸件毛坯尺寸公差 铸件尺寸公差应按毛坯图或技术条件规定的尺寸公差等级执行,当技术文件未规定尺寸公差时,则应以GB6414-1999为依据,并按照表2选定公差值(粗线框内为推荐使用公差等级); (单位:mm) 表2铸件尺寸公差

气孔形成的原因及解决的措施(二)

气孔形成的原因及解决的措施(二) 三、产生气孔的原因前面叙述的是气体的主要来源和部分形成气孔的经过。其实在具体生产作业过程中,形成气孔的原因还很多,为了便于在实践中直接操作应用,把各工序在操作中易产生气孔的具体因素归纳如下:(1)冶炼过程中,金属液氧化,溶解有大量气体。金属液溶解的气体量与所熔炉料的质量,以及熔化设备,炉工操作技术有很大的关系。如炉料氧化,锈蚀严重,带有油污和焦炭带有水、雨、雪潮湿。熔化操作不当,底焦太高,过热区越大,铁水氧化越严重,风压风量太大,使金属液大量吸气而过分氧化。(2)浇注时或金属液凝固过程中,由外界侵入的气体。需要说明的是,由这种气体形成的气孔往往是单独存在的,气体来源型(芯)中的水分,附加材料燃烧挥发产生的气体,浇注中金属液形成涡流,将气体旋入而产生的气孔。由经验可知这种气孔大部呈梨形状,如果梨形孔的尖部指向泥芯(图1),那么这种气孔有可能是因芯子而造成的。如果尖部指向外型(图2),则有可能是因外型而造成的。如果通过气孔形状判断不出气体来源,就只有根据气孔所在的位置来决定,如果气孔在芯子附近,该气孔则有可能是由芯子而造成的。如果发生在外型附近,这种气体则有可能是由外型而造成的。但气孔发生在中部就难以判断了。在这种情况下,就必须从铸

造全部工艺过程来分析和判断了。(实践中常遇到这样的情况,在分析废品原因时,找到了一个认为可能是产生废品的原因,马上就被自己又否认掉,甚至找到几个可能的原因,但又都被推翻,确定不下来。可见废品分析的困难度。某工厂生产HT250汽车制动鼓,造型工艺没有改变,化学成分 和以前的一样,但是有一段时间生产出的铸件却白口,找不出真正原因,只能认为可能是废钢中含有微量反石墨化元素。许昌一位老板,铸造专业毕业二十多年了,现办有两个铸造工厂,他说:下辈子说啥也不搞铸造了,太难,正干的好好的,说出废品就是一批,原因就不好找。)(3)所用的原砂 过细。山西晋城一铸造厂,因型砂过细,衬板上表面出现丛生气孔,在不能及时更换型砂的情况下,只有采用多扎气眼,型砂适当干点的措施来解决。(4)型砂透气性不好,含水分太大,或型砂中发气物质如煤粉及有机物太多或质量不好;粘结剂及附加物用量太大;舂箱太紧,起模、修型时局部刷水过多,至使浇注时产生了大量的气体而又不能顺利排出。(5)砂型或砂芯子的烘烤时间短,烘烤温度低,保温时间短,型(芯)烘烤的不干,或外干内湿没有烘透(烘烤不 透的型(芯)拉出烘干窑后,上面冒烟;用手指弹铸型,是否烘透声音不一样)。(6)砂型或砂芯上的涂料质量不好, 涂料方法不正确(涂料过稀,涂量过大,厚深不均),涂后 没有烘干。(7)使用的芯撑或芯铁不干净,上面有锈或者潮

相关文档
相关文档 最新文档