文档库 最新最全的文档下载
当前位置:文档库 › 数据结构 哈夫曼树 C++实现

数据结构 哈夫曼树 C++实现

数据结构  哈夫曼树  C++实现
数据结构  哈夫曼树  C++实现

实验报告

一、实验目的

1.掌握哈夫曼树的基本概念及所用的存储结构。

2.掌握哈夫曼树的建立算法。

3.掌握哈夫曼树的应用(哈夫曼树的编码和译码)。

二、实验内容

给定权值5、29、7、8、14、23、3、11,建立哈夫曼树,输出哈夫曼编码。对上述给定的哈夫曼树及得到的哈夫曼编码,试输入一串二进制编码,输出它的哈夫曼译码。

三、实验与算法分析

建立哈夫曼树,将哈夫曼树的机构定义为一个结构型的一维数组每个元素含有四项:权值、双亲、左孩子、右孩子。给定的权值可以从键盘输入,要输出所建立的哈夫曼树,只要输出表示哈夫曼树的一维数组中的全部元素即可。

要实现哈夫曼编码,只要在所建立的哈夫曼树上进行二进制编码:往左走,编码为0,往右走编码为1,然后将从根结点到树叶中的所有0,1排列起来,则得到该树叶的哈夫曼编码。哈夫曼编码可以用一个结构型的一维数组保存,每个元素包含:编码,编码的开始位置,编码所对应的字符三项。

哈夫曼译码,就是将输入的译码还原成对应的字符。

抽象的算法描述:将建立哈夫曼树、实现哈夫曼编码、哈夫曼译码都定义成子函数的的形式,然后在主函数中调用它们。哈夫曼树的构造:假设有n个权值,则构造出的有n个叶子结点。n个权值分别设为w1,w2,……,wn,则哈夫曼树的构造规则为:(1)将w1,w2,……,wn看成是有n棵树的森林(每棵树仅有一个结点);(2)在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左右子树,且新树的根结点权值为其左右子树的根结点的权值之;(3)从森林中删除选取的两棵树,并将新树加入森林。(4)重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为我们所求得的哈夫曼树。

四、可执行程序及注释

实验代码

#include

#include

const int n=8; //maxn表示叶子数目

const int m=2*n-1; //m为森林中树的棵数

struct tree //哈夫曼树中的一个结点

{

float weight; //权值

int parent; //双亲

int lch,rch; //左孩子、右孩子

};

struct codetype //哈弗曼编码

{

int bits[n+1]; //哈弗曼编码

int start; //编码的存放位置

char ch; //所对应的字符

};

tree hftree[m+1];

codetype code[n+1];

void creathuffmantree() //建立哈夫曼树

{

int i,j,p1,p2;

float s1,s2;

for(i=1;i<=m;i++)

{

hftree[i].parent=0;

hftree[i].lch=0;

hftree[i].rch=0;

hftree[i].weight=0;

}

cout<<"请输入"<

for(i=1;i<=n;i++)

cin>>hftree[i].weight; //输入权值

for(i=n+1;i<=m;i++) //进行次合并

{

p1=p2=0; //p1,p2分别指向两个权值最小的值的位置

s1=s2=32767; //s1,s2代表两个最小权值

for(j=1;j<=i-1;j++) //选两个最小值

if(hftree[j].parent==0) //该权值还没有选中

if(hftree[j].weight

{

s2=s1;

s1=hftree[j].weight;

p2=p1;

p1=j;

}

else if(hftree[j].weight

{s2=hftree[j].weight;p2=j;}

//以下为合并

hftree[p1].parent=i;

hftree[p2].parent=i;

hftree[i].lch=p1;

hftree[i].rch=p2;

hftree[i].weight=hftree[p1].weight+hftree[p2].weight;

}

}

void huffcode() //哈弗曼编码

{

codetype cd;

int c,p;

for(int i=1;i<=n;i++)

{

cd.start=n+1;

cd.ch=96+i; //第一个树叶对应字母a,其余依此类推

c=i;

p=hftree[i].parent;

while(p!=0)

{

cd.start--;

if(hftree[p].lch==c)

cd.bits[cd.start]=0;

else

cd.bits[cd.start]=1;

c=p;

p=hftree[p].parent;

}

code[i]=cd;

}

for(i=1;i<=n;i++)

{

cout<<"字符"<

for(int j=code[i].start;j<=n;j++)

cout<

cout<

}

}

void trancode() //哈弗曼译码

{

int i=m;

char b;

cout<<"请输入一串二进制编码(0、1以外的数结束)"<

cin>>b;

while((b=='0')||(b=='1'))

{

if(b=='0')

i=hftree[i].lch;

else

i=hftree[i].rch;

if(hftree[i].lch==0)

{

cout<

i=m;

}

cin>>b;

}

}

void main()

{

creathuffmantree(); //建立哈夫曼树

huffcode(); //实现哈弗曼编码

trancode(); //进行哈弗曼译码

cout<

}

五、实验小结

实验六 哈夫曼树及哈夫曼编码

#include #include #include #define n 6 /* 叶子数目*/ #define m 2*n-1 /* 结点总数*/ #define Maxval 1 /* 最大权值*/ typedef char datatype; typedef struct //定义为结构类型 { float weight; //权值 datatype data; int lchild, rchild, parent; } hufmtree; hufmtree tree[m]; typedef struct { char bits[n]; /* 编码数组位串,其中n为叶子结点数目*/ int start; /* 编码在位串的起始位置*/ datatype data; } codetype; codetype code[n]; HUFFMAN(hufmtree tree[ ]) { int i, j, p1,p2; char ch; float small1,small2,f; for( i=0; i

哈夫曼树编码译码实验报告(DOC)

数据结构课程设计设计题目:哈夫曼树编码译码

目录 第一章需求分析 (1) 第二章设计要求 (1) 第三章概要设计 (2) (1)其主要流程图如图1-1所示。 (3) (2)设计包含的几个方面 (4) 第四章详细设计 (4) (1)①哈夫曼树的存储结构描述为: (4) (2)哈弗曼编码 (5) (3)哈弗曼译码 (7) (4)主函数 (8) (5)显示部分源程序: (8) 第五章调试结果 (10) 第六章心得体会 (12) 第七章参考文献 (12) 附录: (12)

在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。哈弗曼编码使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。哈夫曼编码的应用很广泛,利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和各个叶子对应的字符的编码,这就是哈夫曼编码。哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。 第二章设计要求 对输入的一串电文字符实现哈夫曼编码,再对哈夫曼编码生成的代码串进行译码,输出电文字符串。通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。电报通信是传递文字的二进制码形式的字符串。但在信息传递时,总希望总长度能尽可能短,即采用最短码。假设每种字符在电文中出现的次数为Wi,编码长度为Li,电文中有n种字符,则电文编码总长度为∑WiLi。若将此对应到二叉树上,Wi为叶结点的权,Li为根结点到叶结点的路径长度。那么,∑WiLi 恰好为二叉树上带权路径长度。因此,设计电文总长最短的二进制前缀编码,就是以n种字符出现的频率作权,构造一棵哈夫曼树,此构造过程称为哈夫曼编码。设计实现的功能: (1) 哈夫曼树的建立; (2) 哈夫曼编码的生成; (3) 编码文件的译码。

哈夫曼树及其应用教案

授课时间11.9 第17 次课

2007-07-18 哈夫曼树(Huffman树)是带权路径长度最小的二叉树。根据哈夫曼树的定义,一棵二叉树要使其带权路径长度最小,必须使权值越大的叶子结点越靠近根结点,而权值越小的叶子结点越远离根结点。哈夫曼依据这一特点提出了哈夫曼算法,其基本思想是: ⑴初始化:由给定的n个权值{w1,w2,…,wn}构造n棵只有一个根结点的二叉树,从而得到一个二叉树集合F={T1, T2,…,Tn};

⑵选取与合并:在F中选取根结点的权值最小的两棵二叉树分别作为左、右子树构造一棵新的二叉树,这棵新二叉树的根结点的权值为其左、右子树根结点权值之和; ⑶删除与加入:在集合F中删除作为左、右子树的两棵二叉树,并将新建立的二叉树加入到集合F中; ⑷重复⑵、⑶两步,当集合F中只剩下一棵二叉树时,这棵二叉树便是哈夫曼树。 通过上述Huffman树的构造过程,我们可以得到如下要点: ⑴当有n个权值(相应的Huffman树中有n个叶子),共需合并n-1次; ⑵每合并一次产生一个分支结点,经过n-1次合并后得到的Huffman树中共有2n-1个结点,其中有n-1个分支结点; ⑶在Huffman树中只有度为0(叶子结点)和度为2(分支结点)的结点,不存在度为1的结点; ⑷算法要求选取根结点权值最小的两棵二叉树作为左右子树构造一棵新的二叉树,但并没有要求哪一棵作左子树,哪一棵作右子树,所以左右子树的顺序是任意的; ⑸对同一组权值可以构造出不同的huffman树,但是他们的带权路径长度相同。 在建立Huffman树的过程中有以下三种常见的错误: ⑴在合并中不是选取根结点权值最小的两棵二叉树(包括已合并的和未合并的),而是选取未合并的根结点权值最小的一棵二叉树与已经合并的二叉树合并,如图5-10所示。 ⑵每次都是在未合并的二叉树中选取根结点的权值最小的两棵子树,如图5-11所示。 ⑶有时没有严格按照哈夫曼算法也构造出带权路径长度与哈夫曼树相同的二叉树,但那只是巧合,没有规律性,而没有规律性的解法不利于用计算机进行处理。

数据结构哈夫曼树的实现

#include #include #include #include using namespace std; typedef struct { unsigned int weight; unsigned int parent,lchild,rchild,ch; }HTNode,*HuffmanTree; //动态分配数组存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组存储哈夫曼编码表 int m,s1,s2; HuffmanTree HT; void Select(int n){ //选择两个权值最小的结点 int i,j; for(i=1;i<=n;i++){ if(!HT[i].parent){ s1 = i;break; } } for(j=i+1;j<=n;j++){ if(!HT[j].parent){ s2 = j;break; } } for(i=1;i<=n;i++){ if((HT[s1].weight>HT[i].weight)&&(!HT[i].parent)&&(s2!=i)){ s1=i; } } for(j=1;j<=n;j++){ if((HT[s2].weight>HT[j].weight)&&(!HT[j].parent)&&(s1!=j)) s2=j; } } void HuffmanCoding(HuffmanCode HC[], int *w, int n) { // w存放n个字符的权值(均>0),构造哈夫曼树HT,// 并求出n个字符的哈夫曼编码HC int i, j; char *cd; int p; int cdlen; int start; if (n<=1) return;

实验四 哈夫曼树与哈夫曼编码

实验四哈夫曼树与哈夫曼编码 一、实验目的 1、使学生熟练掌握哈夫曼树的生成算法。 2、熟练掌握哈夫曼编码的方法。 二、实验内容 [问题描述] 已知n个字符在原文中出现的频率,求它们的哈夫曼编码。[基本要求] 1. 初始化:从键盘读入n个字符,以及它们的权值,建立Huffman 树。(具体算法可参见教材P147的算法6.12) 2. 编码:根据建立的Huffman树,求每个字符的Huffman 编码。 对给定的待编码字符序列进行编码。 [选作内容] 1. 译码:利用已经建立好的Huffman树,对上面的编码结果译码。 译码的过程是分解电文中的字符串,从根结点出发,按字符’0’和’1’确定找左孩子或右孩子,直至叶结点,便求得该子串相应的字符。 4. 打印 Huffman树。 [测试数据] 利用教材P.148 例6-2中的数据调试程序。可设8种符号分别为A,B,C,D,E,F,G,H。编/译码序列为“CFBABBFHGH”(也可自己设定数据进行测试)。

三、算法设计 1、主要思想:******************赫夫曼树的构造 ********************** (1) 由给定的 n 个权值{w1, w2, …, wn},构造具有 n 棵二 叉树的森林 F ={T1, T2, …, Tn },其中每棵二叉树 Ti 只有一个带权为 wi 的根结点, 其左、右子树均为空。 (2) 在 F 中选取两棵根结点的权值最小的二叉树, 作为 左、右子树构造一棵新的二叉树。置新的二叉树的根结点的权值为其左、右子树上根结点的权值之和。 (3)在 F 中删去这两棵二叉树, 把新的二叉树加入F。 (4)重复(2)和(3), 直到 F 中仅剩下一棵树为止。 ****************************霍夫曼编码***************************** 主要用途是实现数据压缩。由于赫夫曼树中没有度为1的节点,则一棵有n个叶子结点的赫夫曼树共有2n-1个结点,可以存储在一个大小为2n-1的一维数 组中。由于在构成赫夫曼树之后,为求编码需从叶子结点出发走一条从叶子到根的路径;而为译码需从根出发走一条从根到叶子的路径。则对每个结点而言,既须知双亲的信息,又需知孩子结点的信息。 2、本程序包含三个模块 1)主函数 Int main() { 先输入结点总数; 分别输入各个结点; 调用建立哈夫曼树函数; 调用编码函数读入建立的哈夫曼树进行编码 } 3、元素类型、结点类型和指针类型 typedef struct //定义新数据类型即结点结构

哈夫曼树及其应用(完美版)

数据结构课程设计设计题目:哈夫曼树及其应用 学院:计算机科学与技术 专业:网络工程 班级:网络 131 学号:1308060312 学生姓名:谢进 指导教师:叶洁 2015年7 月12 日

设计目的: 赫夫曼编码的应用很广泛,利用赫夫曼树求得的用于通信的二进制编码称为赫夫曼编码。树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和各个叶子对应的字符的编码,这就是赫夫曼编码。哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。 1、熟悉树的二叉树的存储结构及其特点。 2、掌握建立哈夫曼树和哈夫曼编码的方法。 设计内容: 欲发一封内容为AABBCAB ……(共长 100 字符,字符包括A 、B 、C 、D 、E 、F六种字符),分别输入六种字符在报文中出现的次数(次数总和为100),对这六种字符进行哈夫曼编码。 设计要求: 对输入的一串电文字符实现赫夫曼编码,再对赫夫曼编码生成的代码串进行译码,输出电文字符串。通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。电报通信是传递文字的二进制码形式的字符串。但在信息传递时,总希望总长度能尽可能短,即采用最短码。假设每种字符在电文中出现的次数为Wi,编码长度为Li,电文中有n种字符,则电文编码总长度为∑WiLi。若将此对应到二叉树上,Wi为叶结点的权,Li为根结点到叶结点的路径长度。那么,∑WiLi 恰好为二叉树上带权路径长度。因此,设计电文总长最短的二进制前缀编码,就是以n种字符出现的频率作权,构造一棵赫夫曼树,此构造过程称为赫夫曼编码。设计实现的功能: 1.以二叉链表存储, 2.建立哈夫曼树; 3.求每个字符的哈夫曼编码并显示。

数据结构课程设计-哈夫曼树

嘉应学院计算机学院 实验报告 课程名称:数据结构课程设计 开课学期:2017-2018学年第2学期 班级: 指导老师: 实验题目:哈夫曼树 学号: 姓名: 上机时间:

一、实验目的 本实验的目的是通过对简单的哈夫曼编/译码系统的设计与实现来熟练掌握树形结构在实际问题中的应用。 二、实验问题描述 利用哈夫曼编码进行通信可以大大提高通信利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码,此试验即设计这样的一个简单的编/译码系统。系统应该具备如下的几个功能。 1、求出各个叶子节点的权重值 输入一个字符串,统计其中各个字母的个数和总的字母个数。 2、构造哈夫曼树 统计出的字母种类为叶子结点个数,每个字母个数为相应的权值,建立哈夫曼树。 3、打印哈弗曼树的功能模块 按照一定形式打印出哈夫曼树。 4、编码 利用已经建立好的哈夫曼树进行编码。 5、译码 根据编码规则对输入的代码进行翻译并将译码。 三、实验步骤 1、实验问题分析 (1)设计一个结构体数组保存字母的类型和个数。 { ; 字母的种类 ; 字母的个数 }; (2)在构造哈夫曼树时,设计一个结构体数组保存哈夫曼树中各结点

的信息,根据二叉树的性质可知,具有n个结点的哈夫曼树共有21个结点,所以数组大小设置为21,描述结点的数据类型为: { ; 权值 ; 双亲 ; 左孩子 ; 右孩子 }; []; 定义此类型的数组 (3)求哈夫曼编码,实质上是在已经建立的哈夫曼树中,从叶子结点开始,沿着结点的双亲链表域退回到根节点,每退回一步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼值,由于一个字符的哈夫曼编码是从根结点所经过的路径上各分支所组成的0、1序列,因此先得到的分支代码为所求编码的低位码,后得到的分支代码为所求编码的高位码,所以设计如下的数据类型: 10; { []; 每个结点的哈夫曼编码 ; 开始位置 }; (4)设置全局变量。 s; 为输入的字符串 0; 记录输入的字符串中字母的种类,即叶子结点个数 0; 记录字符串中字母的总个数 []叶子结点类型 2、功能(函数)设计 (1)统计字母种类和个数模块 此模块的功能为从键盘接受一个字符串,统计字符串中字母种类即结 点个数,每种字母出现次数即各叶子结点的权值。全局变量s保存输 入的字符串,将种类和个数保存到[]中。 函数原型:() 如输入的字符串是“”则显示如下。

哈夫曼编码算法实现完整版

实验三树的应用 一.实验题目: 树的应用——哈夫曼编码 二.实验内容: 利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输的时间,降低传输成本。根据哈夫曼编码的原理,编写一个程序,在用户输入结点权值的基础上求哈夫曼编码。 要求:从键盘输入若干字符及每个字符出现的频率,将字符出现的频率作为结点的权值,建立哈夫曼树,然后对各个字符进行哈夫曼编码,最后打印输出字符及对应的哈夫曼编码。 三、程序源代码: #include #include #include #include typedef struct{ char data; int weight; int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char * * HuffmanCode; void Select(HuffmanTree &HT,int n,int m) {HuffmanTree p=HT; int tmp; for(int j=n+1;j<=m;j++) {int tag1,tag2,s1,s2; tag1=tag2=32767; for(int x=1;x<=j-1;x++) { if(p[x].parent==0&&p[x].weights2) //将选出的两个节点中的序号较小的始终赋给s1 { tmp=s1; s1=s2; s2=tmp;} p[s1].parent=j;

哈工大数据结构大作业——哈夫曼树生成、编码、遍历

一、问题描述 1.用户输入字母及其对应的权值,生成哈夫曼树; 2.通过最优编码的算法实现,生成字母对应的最优0、1编码; 3.先序、中序、后序遍历哈夫曼树,并打印其权值。 二、方法思路 1.哈夫曼树算法的实现 §存储结构定义 #define n 100 /* 叶子树*/ #define m 2*(n) –1 /* 结点总数*/ typedef struct { /* 结点型*/ double weight ; /* 权值*/ int lchild ; /* 左孩子链*/ int rchild ; /* 右孩子链*/ int parent; /* 双亲链*/ 优点? }HTNODE ; typedef HTNODE HuffmanT[ m ] ; /* huffman树的静态三叉链表表示*/ 算法要点 1)初始化:将T[0],…T[m-1]共2n-1个结点的三个链域 均置空( -1 ),权值为0; 2)输入权值:读入n 个叶子的权值存于T的前n 个单元 T[0],…T[n], 它们是n 个独立的根结点上的权值; 3)合并:对森林中的二元树进行n-1次合并,所产生的新 结点 依次存放在T[i](n<=i<=m-1)。每次合并分两步: (1) 在当前森林中的二元树T [0],…T[i-1]所有结点中 选取权值 最小和次最小的两个根结点T[p1]和T[p2]作为合并对象,这 里0<= p1,p2<= i –1; (2) 将根为T[p1]和T[p2]的两株二元树作为左、右子树 合并为一 株新二元树,新二元树的根结点为T[i]。即 T[p1].parent =T[p2].parent = i ,T[i].lchild= p1,

哈夫曼树的建立与操作

实验六哈夫曼树的建立与操作 一、实验要求和实验内容 1、输入哈夫曼树叶子结点(信息和权值) 2、由叶子结点生成哈夫曼树内部结点 3、生成叶子结点的哈夫曼编码 4、显示哈夫曼树结点顺序表 二、详细代码(内包含了详细的注释): #include using namespace std; typedef char Elemtype; struct element { int weight; Elemtype date; element* lchild,*rchild; }; class HuffmanTree { public: HuffmanTree()//构造函数 { cout<<"请输入二叉树的个数"<>count; element *s=new element[count];//s为指向数组的指针,保存指向数组的地址 for(int i=0;i>s[i].weight;

cout<<"输入第"<>s[i].date; s[i].lchild=NULL; s[i].rchild=NULL; }//以上为初始化每一个结点 element * *m=new element*[count];//m为指向数组成员的地址的指针,保存【指向数组成员地址的指针】的地址 for(int i=0;iweightweight; return1=i; } } for(int i=0;iweightweight>a) { b=m[i]->weight; return2=i; } } q=new element;//构建一棵新树 q->weight=m[return1]->weight+m[return2]->weight; q->lchild=m[return1]; q->rchild=m[return2]; m[return1]=q; m[return2]=NULL; //用新树替换原来的两子树,并置空一个数 } boot=q;//把最后取得的哈夫曼树的头结点即q赋值给boot

哈夫曼树建立、哈夫曼编码算法的实现

#include /*2009.10.25白鹿原*/ #include /*哈夫曼树建立、哈夫曼编码算法的实现*/ #include typedef char* HuffmanCode;/*动态分配数组,存储哈夫曼编码*/ typedef struct { unsigned int weight ; /* 用来存放各个结点的权值*/ unsigned int parent, LChild,RChild ; /*指向双亲、孩子结点的指针*/ }HTNode, * HuffmanTree; /*动态分配数组,存储哈夫曼树*/ void select(HuffmanTree *ht,int n, int *s1, int *s2) { int i; int min; for(i=1; i<=n; i++) { if((*ht)[i].parent == 0) { min = i; i = n+1; } } for(i=1; i<=n; i++) { if((*ht)[i].parent == 0) { if((*ht)[i].weight < (*ht)[min].weight) min = i; } } *s1 = min; for(i=1; i<=n; i++) { if((*ht)[i].parent == 0 && i!=(*s1)) { min = i; i = n+1; } } for(i=1; i<=n; i++) { if((*ht)[i].parent == 0 && i!=(*s1)) {

if((*ht)[i].weight < (*ht)[min].weight) min = i; } } *s2 = min; } void CrtHuffmanTree(HuffmanTree *ht , int *w, int n) { /* w存放已知的n个权值,构造哈夫曼树ht */ int m,i; int s1,s2; m=2*n-1; *ht=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); /*0号单元未使用*/ for(i=1;i<=n;i++) {/*1-n号放叶子结点,初始化*/ (*ht)[i].weight = w[i]; (*ht)[i].LChild = 0; (*ht)[i].parent = 0; (*ht)[i].RChild = 0; } for(i=n+1;i<=m;i++) { (*ht)[i].weight = 0; (*ht)[i].LChild = 0; (*ht)[i].parent = 0; (*ht)[i].RChild = 0; } /*非叶子结点初始化*/ /* ------------初始化完毕!对应算法步骤1---------*/ for(i=n+1;i<=m;i++) /*创建非叶子结点,建哈夫曼树*/ { /*在(*ht)[1]~(*ht)[i-1]的范围内选择两个parent为0且weight最小的结点,其序号分别赋值给s1、s2返回*/ select(ht,i-1,&s1,&s2); (*ht)[s1].parent=i; (*ht)[s2].parent=i; (*ht)[i].LChild=s1; (*ht)[i].RChild=s2; (*ht)[i].weight=(*ht)[s1].weight+(*ht)[s2].weight; } }/*哈夫曼树建立完毕*/ void outputHuffman(HuffmanTree HT, int m) { if(m!=0) {

完整word版数据结构课程设计:电文编码译码哈夫曼编码

福建农林大学计算机与信息学院 数据结构课程设计 设计:哈夫曼编译码器 姓名:韦邦权 专业:2013级计算机科学与技术 学号:13224624 班级:13052316 完成日期:2013.12.28

1 哈夫曼编译码器 一、需求分析 在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。哈夫曼编码使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。哈夫曼编码的应用很广泛,利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和

各个叶子对应的字符的编码,这就是哈夫曼编码。哈夫曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。 二、设计要求 对输入的一串电文字符实现哈夫曼编码,再对哈夫曼编码生成的2 代码串进行译码,输出电文字符串。通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。电报通信是传递文字的二进制码形式的字符串。但在信息传递时,总希望总长度能尽可能短,即采用最短码。假设每种字符在电文中出现的次数为Wi,编码长度为Li,电文中有n种字符,则电文编码总长度为∑WiLi。若将此对应到二叉树上,Wi为叶结点的权,Li为根结点到叶结点的路径长度。那么,∑WiLi 恰好为二叉树上带权路径长度。因此,设计电文总长最短的二进制前缀编码,就是以n种字符出现的频率作权,构造一棵哈夫曼树,此构造过程称为哈夫曼编码。设计实现的功能: (1) 哈夫曼树的建立; (2) 哈夫曼编码的生成; (3) 编码文件的译码。 三、概要设计 哈夫曼编\译码器的主要功能是先建立哈夫曼树,然后利用建好的哈夫曼树生成哈夫曼编码后进行译码。 在数据通信中,经常需要将传送的文字转换成由二进制字符0、1组成的二进制串,称之为编码。构造一棵哈夫曼树,规定哈夫曼树中的左分之代表0,右分支代表1,则从根节点到每个叶子节点所经过的

哈夫曼树及应用

常熟理工学院微课教学比赛教学设计 1、课程基本信息 课程名称:哈夫曼树及应用所属课程:数据结构与算法 课程所属专业:软件工程适用专业:计算机类 选用教材:严蔚敏,吴伟明编著《数据结构(C语言版)》北京:清华大学出版社,2007 主讲人:周思林时长:15分钟 所属学校:常熟理工学院所属院系:计算机科学与工程学院 2.教学背景 《数据结构与算法》课程是计算机类专业的学科基础课程,本节微课“哈夫曼树及应用”属于数据结构课程中的“树与二叉树”章节中的重点及难点。 2.1《数据结构与算法》课程简介及特点 《数据结构与算法》课程是计算机类专业的学科基础课程,同时也是计算机类专业的核心课程。课程的主要目标是使学生理解和掌握基本数据结构的概念、经典算法的思想及实现方法,具备为应用所涉及的数据选择适当的逻辑结构、存储结构及其相应的操作算法的能力。数据结构与算法课程的学习也是复杂程序设计的训练过程,通过算法设计和实践,培养学生的数据抽象和复杂程序设计能力。 《数据结构与算法》课程由线性结构、树形结构、图状结构三种逻辑结构和查找、排序算法为主体,结合应用型本科院校特点,通过实践理解和掌握基本数据结构与算法,在实践中提高学生的专业素养和专业技能。 2.2本节微课课程特点 “树与二叉树——哈夫曼树及应用”是《数据结构与算法》课程中第六章“树与二叉树”的核心内容之一,同时也是该章节的教学难点。 本节微课采用案例驱动法进行教学,调动学生的学习积极性,引导学生发现问题、思考问题、解决问题,利用形象的多媒体动画展示案例的执行过程,将哈夫曼树及编码复杂的程序结构趣味化、形象化。由发送报文问题引入课程,循序渐进的介绍哈夫曼树的概念、逻辑特性、存储结构和算法实现,使学生掌握哈夫曼树及编码的基本概念和算法,提升学生的程序设计及逻辑思维能力。 3.教学设计 3.1教学目的 通过本节微课的学习,培养学生以下几个方面的能力: (1)理解哈夫曼树的应用范围和场景,并能灵活运用; (2)掌握哈夫曼树及编码的概念、求解算法基本思想,针对实例,能构造哈夫曼树,求解哈夫

武汉理工大学数据结构与算法综合实验哈夫曼树(1)

学生学号Xxx实验课成绩 学生实验报告书 实验课程名称数据结构与算法综合实验 开课学院计算机科学与技术学院 指导教师姓名xxx 学生姓名xxx 学生专业班级xxxx 2015--2016学年第2学期

实验课程名称:数据结构与算法综合实验 实验项目名称二叉树与赫夫曼图片压缩报告成绩 实验者xx专业班级xxx组别 同组者完成日期2016年5月 2日第一部分:实验分析与设计(可加页) 一、实验目的和要求 1.目的 掌握树的存储结构 掌握二叉树的三种遍历方法 掌握 Huffman树、Huffman编码等知识和应用 使用 C++、文件操作和 Huffman算法实现“图片压缩程序”专题编程。 2.要求 针对一幅 BMP 格式的图片文件,统计 256 种不同字节的重复次数,以每种字 节重复次数作为权值,构造一颗有 256 个叶子节点的哈夫曼二叉树。 利用上述哈夫曼树产生的哈夫曼编码对图片文件进行压缩。 压缩后的文件与原图片文件同名,加上后缀.huf (保留原后缀),如 pic.bmp 压 缩后 pic.bmp.huf 二、分析与设计 依据上述的实验目的与要求,可导出实现的二叉树与赫夫曼图片压缩软件的流程为: ① 读取图片文件、统计权值 ②生成 Huffman树 ③生成 Huffman编码 ④ 压缩图片文件 ⑤ 保存压缩的文件 1.数据结构的设计 记录统计 256种不同字节的重复次数使用整型数组。 int weight[256] = { 0 }; 二叉树的存储结构。使用结构体存储节点,使用数组存储树的节点,使用静态二叉链表方 式存储二叉树。 Huffman编码存储结构 struct HTNode { int weight;//权值

实验四 哈夫曼树与哈夫曼编码

实验四哈夫曼树与哈夫曼编码 一、实验内容 [问题描述] 已知n个字符在原文中出现的频率,求它们的哈夫曼编码。[基本要求] 1. 初始化:从键盘读入n个字符,以及它们的权值,建立Huffman 树。(具体算法可参见教材P147的算法6.12) 2. 编码:根据建立的Huffman树,求每个字符的Huffman 编码。 对给定的待编码字符序列进行编码。 二、概要设计 算法设计: 要是实现哈夫曼树的操作,首先创建一个哈夫曼树,在创建哈夫曼树的时候,对哈夫曼树的叶子和非叶子结点进行初始化,而在建立哈夫曼树时,最难的该是选择权值最小的两个顶点,然后两个结点的权值和作为新的权值,再选择两个权值最小的作为新的两个结点创建一个小的二叉树的子树;创建哈夫曼树后,进行编码,在编码过程中,先找到根,然后遍历,左孩子用0标记,右孩子用1标记,最后将编码好的哈夫曼树进行输出,就可以知道哈夫曼树的编码了。 流程图:

算法:

模块: 在分析了实验要求和算法分析之后,将程序分为四个功能函数,分别如下: 首先建立一个哈夫曼树和哈夫曼编码的存储表示: typedef struct { int weight; int parent,lchild,rchild; char elem; }HTNode,*HuffmanTree;//动态分配数组存储赫夫曼树 typedef char **HuffmanCode;//动态分配数组存储赫夫曼编码表CrtHuffmanTree(HuffmanTree *ht , int *w, int n):w存放n个字符的权值,构造哈夫曼树HT。先将叶子初始化,再将非叶子结点初始化,然后构造哈夫曼树。 构造哈夫曼树: for(i=n+1;i<=m;++i) {//在HT[1……i]选择parent为0且weight最小的两个Select(HT,i-1,&s1,&s2);

数据结构课程设计哈夫曼编码

题目:哈夫曼编码器 班级:031021班姓名:李鑫学号:03102067 完成日期:2011/12 1. 问题描述 利用赫夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。这要求在发送端通过一个编码系统对待传输数据预先编码,在接收端将传来的数据进行译码(复原)。对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。试为这样的信息收发站编写一个赫夫曼码的编/译码系统。 2.基本要求 一个完整的系统应具有以下功能: (1) I:初始化(Initialization)。从终端读入字符集大小n,以及n个字符和n个权值,建立赫夫曼树,并将它存于文件hfmTree中。 (2) E:编码(Encoding)。利用已建好的赫夫曼树(如不在内存,则从文件hfmTree中读入),对文件ToBeTran中的正文进行编码,然后将结果存入文件CodeFile中。 (3) D:译码(Decoding)。利用已建好的赫夫曼树将文件CodeFile中的代码进行译码,结果存入文件Textfile中。 以下为选做: (4) P:印代码文件(Print)。将文件CodeFile以紧凑格式显示在终端上,每行50个代码。同时将此字符形式的编码文件写入文件CodePrin中。 (5) T:印赫夫曼树(Tree printing)。将已在内存中的赫夫曼树以直观的方式(比如树)显示在终端上,同时将此字符形式的赫夫曼树写入文件TreePrint 中。 3.测试 (1)利用教科书例6-2中的数据调试程序。 (2) 用下表给出的字符集和频度的实际统计数据建立赫夫曼树,并实现以下报文的编码和译码:“THIS PROGRAME IS MY FA VORITE”。 字符 A B C D E F G H I J K L M 频度186 64 13 22 32 103 21 15 47 57 1 5 32 20 字符N O P Q R S T U V W X Y Z 频度57 63 15 1 48 51 80 23 8 18 1 16 1 4.实现提示 (1) 编码结果以文本方式存储在文件Codefile中。 (2) 用户界面可以设计为“菜单”方式:显示上述功能符号,再加上“Q”,表示退出运行Quit。请用户键入一个选择功能符。此功能执行完毕后再显示此菜单,直至某次用户选择了“Q”为止。 (3) 在程序的一次执行过程中,第一次执行I,D或C命令之后,赫夫曼树已经在内存了,不必再读入。每次执行中不一定执行I命令,因为文件hfmTree可能早已建好。

哈夫曼树及其应用

专业基础实践报告 题目哈夫曼树及应用 起讫日期2008年6月30日至2008年7月11日所在院系软件学院 学生姓名专业计算机 班级学号 指导教师职称 所在单位软件学院 2008年7 月11 日

目录 一、任务及要求 (1) 二、总体设计 (3) 三、运行效果 (16) 四、总结 (22) 五、附录 (23) 参考文献 1.唐策善?《数据结构---用C语言描述》?高等教育出版社?1995 ?p50~p120 2.谭浩强?《C程序设计》?清华大学出版社? 2005 ? p330!p348

一、任务及要求 在本专业基础实践中,综合C语言程序设计、离散数学、数据结构等学过的 专业基础课程中的基本概念、基础知识和基本理论,进行软件设计的思想、方法 和过程的训练,提高综合素质和动手能力,达到加强专业基础知识理解程度和熟 练程度的目的。具体任务及要求如下: 1、任务 (1)给定一个包含10个以上字符的字符串,长度不少于100个字符,统计各个字符的概率,存放在数组中。 (2)根据上面统计的结果建立哈夫曼树。 (3)实现哈夫曼编码。 (4)实现哈夫曼译码。 (5)自己选做1~2个附加的任务。 2、要求 (1)算法中处理的数据要存放在文件中,实现文件的读写操作。 (2)设计程序中的各个C函数、画出模块图。 (3)程序的代码要规范、有详细的注释。 (4)按照指导教师给出的模板进行专业基础实践报告书写。 二、工作量 在2周(10个工作日)时间里,完成15-20个C函数,150-200行代码。并提交专业实践报告一份,字数不少于5000字(包括英文字符)。 三、计划安排 第1个工作日-第2个工作日:查找相关资料、书籍;确定逻辑结构并进行运算的 定义;选择存储结构并进行算法设计。 第3个工作日-第7个工作日:完成程序的编码,并且自己调试、测试。穿插进行 实践报告的撰写。 第8个工作日-第9个工作日:整理并完成专业基础实践报告,提交指导教师。第10个工作日:由教师检查软件测试效果、审阅实践报告,评定成绩。 指导教师签字: 2008年6月26日

哈夫曼树及其操作-数据结构实验报告(2)

电子科技大学 实验报告 课程名称:数据结构与算法 学生姓名:陈*浩 学号:************* 点名序号: *** 指导教师:钱** 实验地点:基础实验大楼 实验时间: 2014-2015-2学期 信息与软件工程学院

实验报告(二) 学生姓名:陈**浩学号:*************指导教师:钱** 实验地点:科研教学楼A508实验时间:一、实验室名称:软件实验室 二、实验项目名称:数据结构与算法—树 三、实验学时:4 四、实验原理: 霍夫曼编码(Huffman Coding)是一种编码方式,是一种用于无损数据压缩的熵编码(权编码)算法。1952年,David A. Huffman在麻省理工攻读博士时所发明的。 在计算机数据处理中,霍夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码,其中变长编码表是通过一种评估来源符号出现机率的方法得到的,出现机率高的字母使用较短的编码,反之出现机率低的则使用较长的编码,这便使编码之后的字符串的平均长度、期望值降低,从而达到无损压缩数据的目的。 例如,在英文中,e的出现机率最高,而z的出现概率则最低。当利用霍夫曼编码对一篇英文进行压缩时,e极有可能用一个比特来表示,而z则可能花去25个比特(不是26)。用普通的表示方法时,每个英文字母均占用一个字节(byte),即8个比特。二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。倘若我们能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。 霍夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。树的路径长度是从树根到每一结点的路径长度之和,记为WPL=(W1*L1+W2*L2+W3*L3+...+Wn*Ln),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。 可以证明霍夫曼树的WPL是最小的。

数据结构哈夫曼编码实验报告

数据结构实验报告 ――实验五简单哈夫曼编/译码的设计与实现 本实验的目的是通过对简单哈夫曼编/译码系统的设计与实现来熟练掌握树型结 构在实际问题中的应用。此实验可以作为综合实验,阶段性实验时可以选择其中的几个功能来设计和实现。 一、【问题描述】 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行 译码,此实验即设计这样的一个简单编/码系统。系统应该具有如下的几个功能: 1、接收原始数据。 从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件nodedata.dat 中。 2、编码。 利用已建好的哈夫曼树(如不在内存,则从文件nodedata.dat中读入),对文件中的正 文进行编码,然后将结果存入文件code.dat中。 3、译码。利用已建好的哈夫曼树将文件code.dat中的代码进行译码,结果存入文件textfile.dat 中。 4、打印编码规则。 即字符与编码的一一对应关系。 二、【数据结构设计】 1、构造哈夫曼树时使用静态链表作为哈夫曼树的存储。 在构造哈夫曼树时,设计一个结构体数组HuffNode保存哈夫曼树中各结点的信息,根 据二叉树的性质可知,具有n个叶子结点的哈夫曼树共有2n-1个结点,所以数组HuffNode 的大小设置为2n-1,描述结点的数据类型为: typedef struct { int weight;//结点权值 int pare nt; int lchild; int rchild; char inf; }HNodeType; 2、求哈夫曼编码时使用一维结构数组HuffCode作为哈夫曼编码信息的存储。 求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从叶子结点开始,沿结点的双亲链 域回退到根结点,没回退一步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼码值,由于一个字符的哈夫曼编码是从根结点到相应叶子结点所经过的路径上各分支所组成的0、1序列,因此先得到的分支代码为所求编码的低位码,后得到的分支代码位所求编码的高位码,所以设计如下数据类型: #defi ne MAXBIT 10 typedef struct

相关文档
相关文档 最新文档