文档库 最新最全的文档下载
当前位置:文档库 › 10_压力容器应力分析_典型局部应力

10_压力容器应力分析_典型局部应力

压力容器设计基础

压力容器设计基础 压力容器设计基础 一、基本概念 压力容器的设计,就是根据给定的性能要求、工艺参数和操作条件,确定容器的结构型式,选择合适的材料,计算容器主要受压元件的尺寸,最后给出容器及其零部件的图纸,并提出相应的技术条件。正确完整的设计应达到保证完成工艺生产。正确完整的设计应达到保证完成工艺生产,运行安全可靠,保证使用寿命、制造、检验、安装、操作及维修方便易行,经济合理等要求。压力容器设计中的关键问题是力学问题,即强度、刚度及稳定性问题。在本节中,主要讨论压力容器设计中的有关强度问题。 所谓强度,就是结构在外载荷作用下,会不会因应力过大而发生破裂或由于过度性变形而丧失其功用。具体来讲,就是在外载荷作用下,容器结构内产生的应力不大于材料的许用 应力值,即: ζ≤K〔ζ〕t (1) 这个式子就是强度问题的基本表达式。压力容器的设计计算就是围绕这一关系式而进行 的。 公式(1)中的左端项是结构内的应力,它是人们最为关心的问题。求解结构的应力状态,它们的大小,是一个十分复杂的问题,常用的方法有解法(如弹性力学法、弹型性分析法等)、试验法(如电阻应变计测量法、光弹法、云纹法等)及数值解法(如有限元法、边界元法等)。应用这些方法可以精确或近似地求出结构的应力,然而,每一种结构的应力都有其特殊性,目前可求解的只是问题的绝大部分,仍有许多复杂结构的应力分析有等人们进一步探讨。求出结构内任一点的应力后,所遇到的问题就是怎样处理这些应力。一点的应力状态最多可含有6个应力分量,哪个应力起主要作用,这些应力对失效起什么作用,对它们如何控制才不致发生破坏,解决这一问题,就要选择相应的强度理论计算当量应力,以便与单向拉伸试验得到的许用应力相比较,将应力控制在许可的范围内。 公式(1)中的右端项是强度控制指标,即材料的许用应力。它涉及到材料强度指标(如抗拉强度ζb、屈服强度ζs 等)的确定及安全系数的选用等问题。当采用常规设计法,且只考虑静载问题时,系数K=1.0;如果考虑动载荷,或采用应力分析设计法,K≥1.0,此时 设计计算将更加复杂。 把强度理论(公式(1))具体应用到压力容器专业,就称这为压力容器的强度理论,它又增加了一些具体的规定和特殊要求,由此产生了一系列容器的设计规定和标准等。 1、强度理论及其应用 在对结构进行强度分析时,要对危险点处于复杂应力状态的构件进行强度计算,首先要知道是什么因素使材料发生某一类型破坏的。长期以来,人们根据对材料破坏现象的分析,提出了各种各样的假说,认为材料的某一类型破坏现象是由哪些因素所引起的,这种假说通常就称为强度理论。一种类型的破坏是脆性断裂破坏,第Ⅰ、Ⅱ强度理论依据于它;一种类型的破坏是型性流动破坏,第Ⅲ、Ⅳ强度理论以此为依据。 建立强度理论的目的就是要找出一种材料处于复杂应力状态下强度条件,即使是什么样的条件材料不会破坏失效。根据不同的强度理论可以得到复杂应力状况下三个元应力的某种组合,这种组合应力ζxd和轴向拉伸时的单向拉应力在安全程度上是相当的,具有可比性,可以与单向屈服应力相比较而得出强度条件,因此,通常称ζxd为相当应力或当量应力。

压力管道应力分析的内容及特点 马佳

压力管道应力分析的内容及特点马佳 发表时间:2019-10-10T10:51:38.057Z 来源:《建筑学研究前沿》2019年13期作者:马佳 [导读] 压力管道应力分析是管道设计中最关键的工作之一。管道设计应根据工业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面着手。 新疆天麒工程项目管理咨询有限责任公司 834000 摘要:压力管道应力分析是管道设计中最关键的工作之一。管道设计应根据工业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面着手。因为压力管道上存在复杂性的各种载荷,进行压力管道的应力分析的难度较大,导致阻碍管道设计工作,而且管道在运行和生产过程中的安全和质量关键是因为应力而存在的,因此找到管道应力分析的方法具有重要意义。论述压力管道的应力特点和分布,能够提供给工程施工、管道选择和管道设计可靠的信息数据作参考,进而确保土建结构与管道连接的设备和管道自身的安全,保证了整个生产作业的安全,使压力管道提高使用价值。 关键词:应力;特点;压力;内容;管道 前言:压力管道具有十分广泛的应用范围,而且在各个场所中的应用作用十分关键,压力管道关键作用是运输物质,在重要的大型建设工程中应用,如冶金工程、电力工程、天然气体、石油化工等,为满足一些需要进行供给或运输。因为外界环境因素与整个管道系统均会很大程度的影响到压力管道应力,而且会受影响于流体的流动,这使应力分析增加了复杂度,应力分析压力管道应该结合实际的管道状况,尽量将接近实际、正确的分析结果准确模拟出来。 1应力分析压力管道的涵义 在市政建设行业、化工行业、石油石化等产业普遍应用到管道,这些行业存在较高要求的工程安全指数与投资额,对压力管道进行应力分析应该对概念充分了解。应力指的是管道构件应用在建设需要中承受的单位面积内力,其在荷载外力下形成的值较大,若是超出能够承受的材料极限强度,将造成管材失稳、破裂、变形等状况,关键在于因为外部热荷载与机械荷载导致的。应力分析管道的状况下,能够确保良好的使用工艺装置而且保持其柔软性,精准的计算与分析热荷载与机械荷载后,获取设计管道的配件参数,计算变形与应力、应力与荷载,提供给管道配置合理的数据凭据,能够使管道产生的震动干扰减少,进而错开震源的震动频率,使管道的可靠性与安全性得到确保。 2应力分析压力管道的内容 清楚了解分析的种类是应力分析压力管道的重要前提基础,按照不同种类应力的特点,应用针对性措施是压力管道减小应力,按照压力管道承受应力的作用方向、范围、强度大小,能够将压力管道上承受的应力分类成一、二次应力与峰值应力。应力分析压力管道的关键内容是管道材料的承受力、应力的影响因素、应力种类、管道应力分布、工作流程、分配的分析任务等。最重要的是应力种类,关于管道的设计工作技术方面的最基本要求是对应力的种类掌握了解并且快速分析。 2.1压力管道一次应力分析内容 导致压力管道形成一次应力是因为受到一定的外载荷,致使压力管道上存在外载荷的关键原因为受影响于外界力,如风压、介质压力、重力等,通过受到的平衡受力得知外界力与一次应力具有相同的大小,一次应力伴随改变的外界力改变,所以所以具备无自限性特点的一次应力所以出于无线增大的外力影响下,压力管道将无限制增长受到的应力,进而产生压力管道变形或裂缝的现象,然而压力管道受到的应力方向相反于外界力方向。因为压力管道受到的不确定方向的外界力,导致存在不同分布范围的应力,能够按照压力管道受到作用范围的一次应力,分成局部薄膜弯曲一次应力、一次应力与总体薄膜一次应力导致压力管道变形与破裂的关键原因在于被一次应力所影响,压力管道承受的一次应力大小若是比压力管道材料具备的塑性变形值大的状况下便会产生这种现象,进而致使运输流体在压力管道中对正常运行工程项目产生影响与损失。所以想要防止产生一次应力超出管材具备的塑性变形值,应该压力管道承受的外界力严格控制,而且在对压力管道选取管材时保证相较于外界力管材具备的塑性变形值更大。 2.2压力管道二次应力分析内容 像气体一样,被温度所影响,流体的体积大小将受到影响,因为对于液体来讲,压力管道具备的变形性特别小,在低温或高温的状况下,压力管道会出现热胀冷缩的状况,而且因为温度等原因导致连接于压力管道的设备出现初始位移,因为管道在这些状况下形成的变形致使被约束于外界条件,如土建结构、设备管口等,使应力形成,二次应力是因为附加位移与热胀冷缩等形成的。二次应力最基本的不同在于,二次应力没有一次应力存在的无自限性,而且二次应力不会由于改变外界力的大小而受到改变,若是外界力导致产生局部屈服的状况下,管道出现变形直到外界力和一次应力处于平衡状态,也不会影响到二次应力。在压力管道存在很大的塑性变形值的基础上,压力管道受到初次荷载的状况下,导致破坏压力管道的原因不是二次应力,压力管道受到多次变化的荷载的状况下,导致压力管道不断降低塑性变形值,使管道产生疲劳破坏的状况,压力管道会受到二次压力重要的破坏,关于管道受到二次应力而遭到破坏的状况,并非是受到一次应力限定的破坏时间,是因为循环次数与交变的应力导致的。 2.3压力管道峰值应力分析内容 在局部范畴中压力管道遭受的应力便是峰值应力,并非是压力管道承受的最大应力值,因为压力管道具有十分复杂的形状,会产生形状突变如急转等状况,受影响于突然产生变化的荷载致使峰值应力受力于压力管道,导致产生峰值的原因紧密关系着压力管道中构成设备仪器的形式,峰值压力不会导致压力管道产生破裂与变形的现象,然而在压力管道产生疲劳受力的状况下,若是受到峰值应力将导致压力管道破裂的状况形成。 3应力分析压力管道的特点探讨 伴随我国目前不断发展的科学技术和应力分析压力管道方面不断提高的技术水平,应力分析压力管道的状况下越发能够有效、清楚的将相关应力处理,然而在处理压力管道应力管道应力方面相比于西方发达国家还有明显的差异存在,导致产生差异的关键原因在于规范的校核原则不足。应力分析压力管道的过程中,设计人员通常情况下对局部薄膜应力和一次弯曲应力分析忽视,无法对产生一次应力的原因与受力全面的了解,进而致使对压力管道分析的数据有一定程度的差错产生,使工作人员编制的后期数据报告存在错误,从而使正常运行

ANSYS在压力容器应力分析优化设计中的应用

ANSYS在压力容器应力分析优化设计中的应用 刘金纯 抚顺石油化工设计院 113006 摘要压力容器应力分析设计法正在我国石油、化工等行业得到迅速地普及和发展。应用ANSYS软件提供的参数化设计语言和优化设计等高级分析技术,我们可以采用一种新的“结构 优化法”进行压力容器的应力分析设计。该方法具有设计计算周期短、工作量小等优点,具有应 用推广价值。 关键词ANSYS 压力容器 应力分析 优化设计 1 前言 随着我国压力容器设计观点、设计方法和设计标准的不断更新,以及电子计算机技术的快速发展,应用有限元分析程序对压力容器进行分析设计这一先进的设计方法正在石油、化工、核工业等行业的设备设计工作中,得到迅速的推广。在众多可用的通用和专用有限元软件中,ANSYS做为最通用有效的有限元软件之一,也在压力容器的应力分析设计中得到了广泛应用。 应用有限元分析程序进行压力容器应力分析的标准过程都是根据设计条件,用解析计算方法或根据经验值确定容器的初始结构尺寸,按照该结构尺寸用有限元程序建模、求解,再对得出的应力分析结果进行强度评定。如果强度评定不合格则根据设计者的经验对初始尺寸进行修改,然后再次建模、求解,进行强度评定,如此反复,直至强度评定合格为止。用这种方式进行压力容器的应力分析设计存在以下一些不足: 1.设计人员工作量大,设计计算的时间周期长;特别是模型较复杂或修改较多时,更是 如此; 2.对设计人员的工作经验要求比较高,同一台容器,不同的人员设计,往往会得到差异 较大的不同结果; 3.对容器各部分,尤其是形状比较复杂部位结构尺寸的确定往往偏于保守,造成材料浪 费。 现在,利用ANSYS程序提供的参数化设计语言(ADPL)和优化设计等高级分析技术,我们可以采用一种“结构优化法”进行压力容器的分析设计和结构优化。所谓的“结构优化法”,就是以应力强度S I、SⅡ、SⅢ、SⅣ满足设计标准要求的应力强度控制值作为约束条件,通过ANSYS的优化设计功能,求得使容器重量最小的容器结构尺寸。它与一般方法的主要区别是将以往由人工确定初始结构尺寸变为由软件通过计算自动确定,并且软件给出的这些结构尺寸是满足应力强度控制条件的优化值。 2 “结构优化法”的基本过程 “结构优化法”的基本过程如图一所示。 在这一过程中,为简化计算和便于各应力强度的控制,将容器结构参数的优化分为“优化容器基本结构参数”和“优化容器局部结构参数”两个步骤来进行。容器基本结构是组成容器壳体结构的筒体、封头、接管、管板等基本板壳部件(简称元件)。容器基本结构参数指的是在不考虑应力集中和边缘效应的情况下,元件的结构尺寸。“优化容器基本结构参数”是以参数化建模的方式分别分析计算各个元件在设计外载作用下,不受其它元件约束,可以自由变形时的应力分布。然后,选取可能出现最大一次整体薄膜应力(P m),最大一次薄膜

局部应力应变分析法

1.局部应力应变分析法、名义应力疲劳设计法、疲劳可靠性设计法、损伤容限设计法 2.磨损、腐蚀、断裂 3.交变应力水平低、脆性断裂、损伤积累过程、断口在宏观和微观上有特征 4.表面应力水平比内部高、表面晶体束缚少,易发生滑移、表面易发生环境介质腐蚀、表面的加工痕迹或划痕会降低零件疲劳强度 5.材料在循环应力、应变作用下,某点或某些点发生局部永久性结构变形,在经过一定循环次数后产生裂纹或发生断裂的过程。 6.外加应力水平和标准试样疲劳寿命之间关系的曲线 7.疲劳寿命无穷大时的中值疲劳强度 8.在各级应力水平下的疲劳寿命分布曲线上可靠度相等的点连成曲线就能得到给定可靠度的一组SN曲线 9.理论应力:局部应力与名义应力的比值Kt=6t/6n 10.在应力集中和终加工相同的情况下,尺寸为d的零件的极限寿命与标准直径试样的极限寿命的比值 11.史密斯图、海夫图、等寿命图(相同寿命时在不同应力下的疲劳极限间关系的线图) 12.线性积累损伤理论: 13.载荷随时间变化的历程应力随时间变化的历程 14.零件的疲劳破损都是从应变集中部位最大局部应变处开始的 裂纹萌生以前,一般都会产生塑性变形 塑性变形是裂纹萌生和扩展的先决条件 零件的疲劳强度和寿命由应变集中部位的最大局部应力应变决定 15参数应力(名义应力)应变(局部应变) 特征应力疲劳应变疲劳 范围104-105-5*106 103-104-105 寿命总寿命裂纹形成寿命 曲线SN曲线古德曼曲线EN曲线,循环应力应变曲线 变形弹性变形应力应变成正比塑性变形较大 16真实应力 17材料在循环载荷作用下的应力应变响应循环应力应变曲线 18循环硬化:应力幅6a为常数,应变幅Ea随着循环次数增加而减少,最后趋于稳定 循环软化:应变幅Ea为常数,应力幅6a随着循环次数增加而逐渐减少 19.漫森四点:应变寿命曲线的弹性线上取2点,塑性线上取2点,通用斜率法 20.雨流法:Y方向为时间,X方向为应力大小 21.在循环加载作用下应力应变响应称为循环应力应变曲线 在循环加载作用下应力应变轨迹线称为应力应变迟滞回线 件加载拉伸到A卸载到O加载压缩到B加载拉伸到C(与A重合)形成的环线 22.损伤容限设计:以断裂力学理论为基础 以无损检测技术和断裂韧性与疲劳裂纹扩展速率的测定技术为手段 以有初始缺陷的寿命估算为中心 以断裂控制为保障 确保零件在使用期内能够安全使用的一种疲劳计算方法 23.应力强度因子:K是度量裂纹端部应力场强弱程度的一个参数 24.断裂韧度:应力强度因子的临界值,发生脆断时的应力强度因子。 25.性能、可靠性(规定条件规定时间完成规定功能)、维修性指标(规定条件时间程序方法恢复到规定状态) 26.广义可靠性=狭义可靠性(不可维修产品的可靠性)+可维修性 27.故障和失效(产品不能完成其规定功能的状态) 28.可靠度(规定条件时间完成规定功能的概率)

压力管道应力分析计算软件在工程设计中应用的探讨

压力管道应力分析计算软件在工程设计中应用的探讨 摘要:随着新工艺和新设备的出现,发电、化工、海洋、石油、市政等领域, 管道的压力、温度、管径和壁厚不断加大,敷设的方式也越来越复杂。传统手工 进行管道应力分析的计算已不能满足实际的需要,各设计和研究单位借助专门的 管道应力分析软件进行计算已成为常态。 关键词:压力管道;应力分析;计算软件;工程应用 导言 上世纪60年代以来,随着发电、化工、市政等领域新工艺和新设备的不断出现,管道的压力、温度提高,管径和壁厚不断加大,管道应力分析也受到越来越 多的重视。由于计算机的不断普及,国际上出现了一批管道应力分析专用计算机 程序。国内虽然也出现了一些自行编制的管道应力分析程序但大多应用于少数特 定领域,与国外软件相比较,软件功能、开发完善、标准规范、技术支持等方面,还存在一定差距,实际使用中,大多数设计单位还是使用国外成熟的管道应力分 析软件。 1 管道应力分析的原则 管道应力分析主要保证管道在设计条件下具有足够的柔性,防止管道因热胀 冷缩、管道支承或端点附加位移造成应力问题。 2 压力管道应力分析的内容和目的 2.1管道应力分析的内容 管道应力分析分为静力分析和动力分析。 静力分析包括:1)压力荷载和持续荷载作用下的一次应力计算;2)管道热 胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算;3)管道对设备作 用力的计算;4)管道支吊架的受力计算;5)管道上法兰的受力计算。 动力分析包括:l)管道自振频率分析;2)管道强迫振动响应分析;3)往复 压缩机(泵)气(液)柱频率分析;4)往复压缩机(泵)压力脉动分析。 2.2 管道应力分析的目的 管道应力分析的目的:1)使管道和管件内的应力不超过许用应力值2)使与 管系相连的设备的管口荷载在制造商或规范规定的许用范围内;3)使与管系相 连的设备管口的局部应力在规定的允许范围内;4)计算管系的支架和约束的设 计荷载;5)进行操作工况碰撞检查而确定管子的位移量;6)优化管系设计。 3 工程设计中常用的压力管道应力分析软件 目前各大设计单位对压力管道应力分析计算基本采用计算机,但采用的软件 各院不尽相同,计算软件的开发品种较多。在压力管道计算方面采用软件情况: 化工、医药、机械行业设计采用美国的CAESAR II,AutoPipe较多,市政热水、蒸 汽及石油输送管道常用sisKMR、START软件。国内自主开发的软件有RJCAD热力 工程设计软件,主要用于热力管网的计算。 3.1.CAESAR II管道应力分析软件 CAESAR II软件历史久远,功能强大,包含动态和静态管道应力分析,在化工,石油,海洋工程方面有很多应用,在国内电力行业也有很多成功应用。 CAESARII可进行管系在承受自重、压力载荷、热载荷、地震载荷等静态载荷,和水锤、蒸汽锤以及安全阀泄放等动态载荷下的应力分析。软件的功能特点如下:

压力容器ansys有限元分析设计实例

ANSYS 应力分析报告Stress Analysis Report 学生姓名 学号 任课教师 导师

目录 一. 设计分析依据 (2) 1.1 设计参数 (2) 1.2 计算及评定条件 (2) 二. 结构壁厚计算 (3) 三. 结构有限元分析 (4) 3.1 有限元模型 (5) 3.2 单元选择 (5) 3.3 边界条件 (6) 四. 应力分析及评定 (7) 4.1 应力分析 (7) 4.2 应力强度校核 (8) 4.3疲劳分析校核 (11) 五. 分析结论 (11) 附录1设计载荷作用下结构应力沿路径线性化结果(A) (12) 附录2设计载荷作用下结构应力沿路径线性化结果(B) (13) 附录3设计载荷作用下结构应力沿路径线性化结果(C) (14) 附录4设计载荷作用下结构应力沿路径线性化结果(D) (16) 附录5设计载荷作用下结构应力沿路径线性化结果(E) (17) 附录6设计载荷作用下结构应力沿路径线性化结果(F) (19) 附录7设计载荷作用下结构应力沿路径线性化结果(G) (20) 附录8设计载荷作用下结构应力沿路径线性化结果(H) (21)

一. 设计分析依据 (1)《压力容器安全技术监察规程》 (2)JB4732-1995《钢制压力容器——分析设计标准》(2005确认版) 1.1 设计参数 表1 设备基本设计参数 1.2 计算及评定条件 (1) 静强度计算条件 表2 设备载荷参数

注:在计算包括二次应力强度的组合应力强度时,应选用工作载荷进行计算,本报告中分别选用设计载荷进行进行计算,故采用设计载荷进行强度分析结果是偏安全的。 (2) 材料性能参数 材料性能参数见表3,其中弹性模量取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2和表6-6确定。 表3 材料性能参数性能 (3) 疲劳计算条件 此设备接管a 、c 上存在弯矩,接管载荷数据如表4所示。 表4 接管载荷数据表 二. 结构壁厚计算 按照静载荷条件,根据JB4732-95第七章(公式与图号均为标准中的编号)确定设备各元件壁厚,因介质密度较小,不考虑介质静压,同时忽略设备自重。 1.筒体厚度 因P c =2.97MPa<0.4KS m =0.4×1×134.8=53.92MPa ,故选用JB4732-95公式(7-1)计算筒体厚度: 计算厚度: c m i c P KS D P -=2δ=97 .28.134********.2-???=44.56mm

浅析压力容器分析设计的塑性措施

引言 《压力容器》“压力容器应力分析设计方法的进展和评述”中曾介绍和评述了压力容器分析设计的弹性应力分析方法(又称应力分类法)的最新进展。本文将进一步介绍和评述压力容器分析设计的塑性分析方法,包括ASME的极限载荷分析方法、弹塑性应力分析方法和欧盟的直接方法等。 压力容器设计是一个创新意识非常活跃的工程领域,它紧跟着科学技术的发展而不断地更新设计方法。随着弹性理论、板壳理论和线性有限元分析方法的成熟,20世纪60年代,压力容器界提出了基于弹性应力分析和塑性失效准则的“弹性应力分析设计方法”。进入21世纪后,由于塑性理论和非线性有限元分析方法的日趋成熟,欧盟标准和ASME规范又先后推出了压力容器的塑性分析设计方法。其中涉及许多新的基本概念和新的分析方法,需要我们及时学习领会和消化吸收,以提高我们的分析设计水平,并结合国情进一步修订我国的压力容器设计规范。 ASME和欧盟的新规范都是以失效模式为主线来编排的。ASME考虑了以下4种模式: (1)防止塑性垮塌。对应于欧盟的“总体塑性变形(GPD)”失效模式。 (2)防止局部失效。 (3)防止屈曲(失稳)垮塌。对应于欧盟的“失稳(I)”失效模式。 (4)防止循环加载失效。对应于欧盟的“疲劳(F)”和“渐增塑性变形(PD)”2种失效模式。 欧盟还考虑了“静力平衡(SE)”失效模式,即防止设备发生倾薄。 文中讨论的塑性分析设计方法主要应用于防止塑性垮塌和防止局部失效2种情况。 1、极限载荷分析法 在一次加载情况下,结构的失效是一个加载历史过程,即随着载荷的增加从纯弹性状态到局部塑性状态再到总体塑性流动的失效状态。对无硬化的理想塑性材料和小变形情况,结构进入总体塑性流动时的状态称为极限状态,相应的载荷称为极限载荷。此时,结构变成几何可变的垮塌机构,将发生不可限制的塑性变形,因而失去承载能力。 一般的弹塑性分析方法都要考虑上述复杂的加载历史过程,但极限载荷分析法(简称极限分析)则另辟蹊径,跳过加载历史,直接考虑在最终的极限状态下结构的平衡特性,由此求出结构的承载能力(即极限载荷)。它是塑性力学的一个

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

压力容器设计方法分析对比.docx

压力容器设计方法分析对比 目前我国压力容器设计所采用的标准规范有两大类:一类是常规设计标准,以GB150-2011《压力容器》标准为代表;另一类是分析设计,以JB4732-1995《钢制压力容器--分析设计标准》为代表。两类标准是相互独立的、自成体系的、平行的压力容器规范, 绝对不能混用, 只能依据实际的工程情况而选其一。 设计准则比较 常规设计主要依据是第一强度理论,认为结构中主要破坏应力为拉应力,限定最大薄膜应力强度不超过规定许用应力值,当结构中某最大应力点一旦进入塑性, 结构就丧失了纯弹性状态即为失效。常规设计是基于弹性失效准则,以壳体的薄膜理论或材料力学方法导出容器及其部件的设计计算公式。一般情况它仅考虑壁厚中均布的薄膜应力,对于边缘应力及峰值应力等局部应力一般不作定量计算,如对弯曲应力。 分析设计的主要依据是第三强度理论,认为结构中主要破坏应力为剪切力。采用以极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹塑性失效”的设计准则,对容器的各种应力进行精确计算和分类。对不同性质的应力, 如:总体薄膜应力、边缘应力、峰值应力等;同时还考虑了循环载荷下的疲劳分析, 在设计上更合理。 标准适用范围对比 常规设计标准GB150-2011适用于设计压力大于或等于且小于35MPa,及真空度高于。对于设计温度,GB150-2011规定为-269℃-900℃,是按钢材允许的使用温度确定设计温度范围, 可高于材料的蠕变温度范围。 " 分析设计标准JB4732-1995适用于设计压力大于或等于且小于100MPa,及真空度高于。对于设计温度,JB4732-1995 将最高的设计许用温度限制在受钢材蠕变极限约束的温度。 应力评定对比 常规设计标准GB150-2011,采用统一的许用应力,如容器筒体,是采用“中径公式”进行应力校核,最大应力满足许用应力即可。 分析设计标准JB4732-1995的核心是将压力容器中的各种应力加以分类,根据所考虑的失效模式比较详细地计算了容器及受压元件的各种应力。根据各种应力本身的性质及对失效模式所起的不同作用予以分类如下: 一次应力

压力容器应力分析设计方法的进展和评述

压力容器应力分析设计方法的进展和评述 压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。 压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。 分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用

理论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿命控制最大总应力,以防止循环失效等。 2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为: 2.4.1.从弹性应力分析扩充到弹塑性分析。和应力分类法(弹性应力分析方法)并行地提出了弹塑性分析方法和极限载荷分析方法(ASME)或直接法(欧盟)。 2.4.2.把能够给出显式表达式的解析解都调整到“规则设计”中,“分析设计”只规定通用性强的数值分析方法。另一方面,在“规则设计”公式的强度校核中又引入了应力分类的思想。 随着时间的推移和科学的发展,“分析设计”的方法和内容还会有新的扩充和调整。在现阶段可以说,“分析设计”是一种以塑性失效准则为基础、采用先进力学分析手段的压力容器设计方法。先进的材料、

浅谈压力容器的两种设计方法

龙源期刊网 https://www.wendangku.net/doc/8c15718496.html, 浅谈压力容器的两种设计方法 作者:王艳 来源:《价值工程》2010年第15期 摘要:本文介绍了压力容器的两种设计方法,指出分析设计方法虽然相对复杂,但较常规设计方法更安全更经济,且随着计算机技术的发展、有限元方法的应用及各种功能软件的使用它将 会得到更广泛的应用。 Abstract: This paper introduces two kinds of pressure vessel design methods and points that analysis and design methods are relatively complex and more economical,but safer than the conventional design method,and with the development of computer technology,finite element method and software applications will be more widely used. 关键词:压力容器;常规设计;分析设计 Key words: pressure vessel;conventional design;analysis and design 中图分类号:TH49 文献标识码:A文章编号:1006-4311(2010)15-0166-01 压力容器是化工、冶金、轻工、纺织、机械以及航空航天工业中广泛使用的承压设备。尽管各类压力容器设备功能各异、结构复杂程度不一,但一般可将其分解为筒体、封头、法兰、 开孔、接管、支座等部件。 压力容器及其部件的两种设计方法分别是常规设计和分析设计。 常规设计是以弹性设计准则为基础,以壳体的薄膜理论或材料力学方法导出容器及其部件 的设计计算公式,这些公式均以显式表达,给出了压力、许用应力、容器主要尺寸之间的关系。它包含了设计三要素:设计方法、设计载荷及许用应力,但这些并不是建立在对容器及其部件进行详尽的应力分析基础之上。如容器筒体,是采用“中径公式”(根据内压与筒壁上均匀分布的薄膜应力整体平衡推导而得),一般情况它仅考虑壁厚中均布的薄膜应力,不考虑其它类型的应力,如对弯曲应力,只有当它特别显著、起主导作用时才予以考虑。实际上,当容器承载以后器壁上会出现多种应力,其中包括由于结构不连续所产生的局部高应力,常规设计对此只是结合经典力学理论和经验公式对压力容器部件设计做一些规定,在结构、选材、制造等方面提出要求,把局部应力粗略地控制在一个安全水平上,在考虑许用应力时选取相对高的安全系数,留有足够的安全裕度。因此,常规设计从本质上讲,可以说是基于经验的设计方法。 工程实际中我们用常规设计的观点和方法解决了很多问题,但也有一些问题无法解释,因为常规设计只考虑弹性失效,没有去深究隐含在许用应力值后面的多种失效模式。

2020年压力容器设计人员考试大纲

(情绪管理)压力容器设计人员考试大纲

压力容器设计人员考核大纲 (2012) SummaryofCheckingContentforDesignerandApproverofPressu reVesselDesign 全国锅炉压力容器标准化技术委员会 2012年02月20日 目录 第壹章总则 (1) 第二章常规设计审批人员考试内容 (1) 第三章分析设计人员考试内容 (4) 第四章附则 (5) 压力容器设计人员资格考试大纲 第一章总则 第壹条为规范压力容器设计人员资格考试工作,依据为国家质量监督检验检疫总局锅炉压力容器安全监察局颁布的TSGR1001-2008《压力容器压力管道设计许可规则》(以下简称规则)及全国锅炉压力容器标准化技术委员会制定的《压力容器设计人员考试规则》(2012),制定本规则。 第二条本规则适用于A、C、D类压力容器设计(以下称常规设计)审批(含审核、审定人)人员及SAD类压力容器分析设计(以下称分析设计)设计人、审批人的考核工作。

第二章常规设计审批人员考试内容 第三条A、D类压力容器设计审批人考试内容: (壹)理论考试要求: 1.应熟悉压力容器设计关联的基本基础知识,包括材料、结构、力学基础、设计计算方法、热处理、腐蚀、焊接、无损检测等; 2.应熟练掌握压力容器设计关联的法规、安全技术规范、标准、文件;3.能够正确解决压力容器设计、制造中常见的实际工程问题; 4.熟悉且及时掌握压力容器行业关联的标准信息 (二)关联的安全技术规范文件: TSGR0004-2009《固定式压力容器安全技术监察规程》 TSGR1001-2008《压力容器压力管道设计许可规则》等 (三)关联的标准规范: GB150.1~GB150.4《压力容器》 GB151《管壳式换热器》 GB12337《钢制球形储罐》 GB50009《建筑结构载荷规范》 GB50011《建筑抗震设计规范》 JB/T4710《钢制塔式容器》

压力容器设计

《过程设备设计基础》 教案 4—压力容器设计 课程名称:过程设备设计基础 专业:过程装备与控制工程 任课教师:

第4章压力容器设计 本章主要介绍压力容器设计准则、常规设计方法和分析设计方法,重点是常规设计的基本原理和设计方法。 §4-1 概述 4.1概述 教学重点:压力容器设计的基本概念、设计要求 教学难点:无 压力容器发展趋势越来越大型化、高参数、选用高强度材料,本章着重介绍压力容器设计思想、常规设计方法和分析设计方法。 什么是压力容器的设计? 压力容器设计是指根据给定的工艺设计条件,遵循现行规范标准的规定,在确保安全的前提下,经济正确地选取材料,并进行结构、强(刚)度和密封设计。 结构设计--------确定合理、经济的结构形式,满足制造、检验、装配和维修等要求。 强(刚)度设计---------确定结构尺寸,满足强度、刚度和稳定性要求,以确保容器安全、可靠地运行。 密封设计--------选择合适的密封结构和材料保证密封性能良好。 4.1.1设计要求 设计的基本要求是安全性和经济性的统一,安全是前提,经济是目标,在充

分保证安全的前提下尽可能做到经济,经济性包括材料的节约、经济的制造过程和经济的安装维修。 4.1.2设计文件 压力容器的设计文件包括:设计图样 技术条件 设计计算书 必要时包括设计或安装使用说明书. 分析设计还应提供应力分析报告 强度计算书包括: ★设计条件、所用的规范和标准、材料、腐蚀裕量、计算厚度、名义厚度、计算应力等。 ★装设安全泄放装置的压力容器,还应计算压力容器安全泄放量安全阀排量和爆破片泄放面积。 ★当采用计算机软件进行计算时,软件必须经“压力容器标准化技术委员会”评审鉴定,并在国家质量技术监督局认证备案,打印结果中应 有软件程序编号、输入数据和计算结果等内容。 设计图样包括:总图和零部件图 总图包括压力容器名称、类别、设计条件; 主要受压元件设计材料牌号及材料要求; 主要受压元件材料牌号及材料要求; 主要特性参数(如容积、换热器换热面积和程数) 制造要求;热处理要求;防腐蚀要求;无损检测要求;耐压试验和气密 性试验要求;安全附件的规格;压力容器铭牌位置; 包装、运输、现场组焊和安装要求;以及其他特殊要求。 4.1.3设计条件 设计条件可用设计条件图表示(设计任务所提供的原始数据和工艺要求) 设计条件图包含设计要求、简图、接管表等 简图-------示意性的画出容器本体、主要内件部分结构尺寸、接管位置、支座形式及其他需要表达的内容。 设计要求-------工作介质、压力和温度、操作方式与要求和其他。 为便于填写,设计条件图又分为 一般设计条件图

压力容器应力分析设计方法的进展和评述优选稿

压力容器应力分析设计方法的进展和评述 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

压力容器应力分析设计方法的进展和评述压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。 压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。

分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用理 论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿 命控制最大总应力,以防止循环失效等。 2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。 综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法 和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME 新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为:

管道应力分析主要内容及要点

管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 ASME B31《压力管道规范》由几个单独出版的卷所组成,每卷均为美国国家标准。它们是子ASME B31 压力管道规范委员会领导下的编制的。 每一卷的规则表明了管道装置的类型,这些类型是在其发展过程中经考虑而确定下来的,如下所列: B31.1 压力管道:主要为发电站、工业设备和公共机构的电厂、地热系统以及集中和分区的供热和供冷系统中的管道。 B31.3 工艺管道:主要为炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的管道。 B31.4 液态烃和其他液体的输送管线系统:工厂与终端设备剑以及终端设备、泵站、调节站和计量站内输送主要为液体产品的管道。 B31.5 冷冻管道:冷冻和二次冷却器的管道 B31.8 气体输送和配气管道系统:生产厂与终端设备(包括压气机、调节站和计量器)间输送主要为气体产品的管道以及集汽管道。 B31.9 房屋建筑用户管道:主要为工业设备、公共结构、商业和市政建筑以及多单元住宅内的管道,但不包括B31.1 所覆盖的只寸、压力和温度范围。 B31.11 稀浆输送管道系统:工厂与终端设备间以及终端设备、泵站和调节站内输送含水稀浆的管道。 管道应力分析的主要内容 一、管道应力分析分为静力分析析 1.静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算一一防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据: 5)管道上法兰的受力计算一防止法兰汇漏。 2.动力分析包括: 1)管道自振频率分析一一防止管道系统共振: 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析一一防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 二、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等 (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载;

浅析压力容器分析设计的塑性措施

浅析压力容器分析设计的塑性措施 引言 《压力容器》“压力容器应力分析设计方法的进展和评述” 力 容器分析设计的弹性应力分析方法(又称应力分类法) 一步介 绍和评述压力容器分析设计的塑性分析方法,包括 方法、弹塑 性应力分析方法和欧盟的直接方法等。 压力容器设计是一个创新意识非常活跃的工程领域,它紧跟着科学技术的发展而 不断地更新设计方法。随着弹性理论、板壳理论和线性有限元分析方法的成熟, 20世纪60年代,压力容器界提出了基于弹性应力分析和塑性失效准则的“弹性 应力分析设计方法”。进入21世纪后,由于塑性理论和非线性有限元分析方法 的日趋成熟,欧盟标准和ASMEK 范又先后推出了压力容器的塑性分析设计方法。 其中涉及许多新的基本概念和新的分析方法,需要我们及时学习领会和消化吸 收,以提高我们的分析设计水平,并结合国情进一步修订我国的压力容器设计规 范。 ASM 岳口欧盟的新规范都是以失效模式为主线来编排的。 ASME 考虑了以下4种模 式: (1) 防止塑性垮塌。对应于欧盟的“总体塑性变形 (GPD )”失效模式。 (2) 防止局部失效。 (3) 防止屈曲(失稳)垮塌。对应于欧盟的“失稳(I ) ”失效模式。 (4) 防止循环加载失效。对应于欧盟的“疲劳(F )”和“渐增塑性变形(PD ” 2种失效模式。 欧盟还考虑了“静力平衡(SE ”失效模式,即防止设备发生倾薄。 文中讨论的塑性分析设计方法主要应用于防止塑性垮塌和防止局部失效 2种情 况。 1、极限载荷分析法 在一次加载情况下,结构的失效是一个加载历史过程,即随着载荷的增加从纯弹 性状态到局部塑性状态再到总体塑性流动的失效状态。 对无硬化的理想塑性材料 和小变形情况,结构进入总体塑性流动时的状态称为极限状态, 相应的载荷称为 极限载荷。此时,结构变成几何可变的垮塌机构,将发生不可限制的塑性变形, 因而失去承载能力。 一般的弹塑性分析方法都要考虑上述复杂的加载历史过程,但极限载荷分析法 (简称极限分析)则另辟蹊径,跳过加载历史,直接考虑在最终的极限状态下结 构的平衡特性,由此求出结构的承载能力(即极限载荷)。它是塑性力学的一个 重要分支。极限分析求得的极限载荷与对弹性-理想塑性材料结构进行弹塑性小 变形分析的结果是完全一致的。 中曾介绍和评述了压 的最新进展。本文将进 ASME 勺极限载荷分析

相关文档
相关文档 最新文档