文档库 最新最全的文档下载
当前位置:文档库 › 圆锥曲线大题含答案5-14

圆锥曲线大题含答案5-14

圆锥曲线大题含答案5-14
圆锥曲线大题含答案5-14

5. 已知椭圆2

2:24C x

y +=,

⑴求椭圆C 的离心率;⑵设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆2

22x y +=的位置关系,并证明你的

结论。

解:⑴由题意,椭圆C :22142

x y +=,所以24a =,22b =,从而2222c a b =-=。 因此2a =

,c =

C

的离心率c e a =

=

; ⑵直线AB 与圆222x y +=相切。

证明如下:设点()00,A x y ,(),2B t ,其中00x ≠。

因OA OB ⊥,故0OA OB ?= ,即0020tx y +=,解得00

2y

t x =-。

当0x t =时,2

02

t y =,代入椭圆C

的方程,得t =AB

:x =

圆心O 到直线AB

的距离d =。此时直线AB 与圆2

2

2x y +=相切; 当0x t ≠时,直线AB :()002

2y y x t x t

--=

--,即()()000

220y x x t y x t y ---+-=,

圆心O 到AB 的距离

00|2d x ty =-

又2

2

0024x y +=,002t y x

=-

,故2

000

2|2y d x x =+,

此时AB 与圆2

2

2x y +=相切。综上得证。

解:(Ⅰ)由题意得1314c a a b ???

??+=??,解得=2a ,1b =.所以椭圆C 的方程是

2

214

x y +=…… 4分 (Ⅱ)以线段PQ 为直径的圆过x 轴上的定点.由22(1)1

4

y k x x y =-??

?+=??得2222(14)8440k x k x k +-+-=.

设1122(,),(,)A x y B x y ,则有2122814k x x k +=+,2122

44

14k x x k -=+.

又因为点M 是椭圆C 的右顶点,所以点(2,0)M .

由题意可知直线AM 的方程为11

(2)2y y x x =--,故点1

12(0,)2y P x --.

直线BM 的方程为2

2

(2)2y y x x =--,故点2

22(0,)2y Q x -

-. 若以线段PQ 为直径的圆过x 轴上的定点0

(,0)N x ,则等价于0PN QN ?=u u u r u u u r

恒成立. 1

012(,)2y PN x x =-uuu r ,2022(,)2y QN x x =-uuu r ,所以221212001212224022(2)(2)

y y y y PN QN x x x x x x ?=+?=+=----uuu r uuu r 恒成

立.

又因为121212(2)(2)2()4x x x x x x --=-++2222448241414k k k k -=-+++2

2

414k k =

+, 2

12121212(1)(1)[()1]y y k x k x k x x x x =--=-++222

22

448(1)

1414k k k k k -=-+++

2

2314k k -=+, 所以2

222212000

21

22

12414304(2)(2)14k y y k x x x k x x k -++=+=-=--+. 解得0x =PQ 为直径的圆过x 轴上的定点(.………… 14分

法三:设直线AC 的方程为1y kx =+,则1(,0)M k

-, ---------------------------------5分 22220,1,

x y y kx ?+-=?

=+?化简得到22

2(1)20x kx ++-=, 所以22(12)40k x kx ++=,所以12240,21

k

x x k -==

+, -----------------------------6分

所以22222421112121k k y kx k k k --+=+=+=++,所以222421(,)2121

k k C k k --+++, -------7分 因为,C D 关于y 轴对称,所以222421

(,)2121

k k D k k -+++.----------------------------8分

所以直线BD 的方程为2221

1211

421

k k y x k k -+++=-+,即

1

12y x k

=

-.------------------10分 令0y =,得到2x k =,所以(2,0)N k .1

(,1)(2,1)10AM AN k k

?=--?-=-≠ , -----12分

所以90MAN ∠≠ , ----13分所以,以线段MN 为直径的圆恒过(0,2)和(0,2)-两点.

(Ⅰ)由已知可设椭圆G 的方程为:22

21(1)1x y a a +

=>.-------------------------------1分 由2

e =,可得22

2

112a e a -==,-----------------------------------------------------2分 解得2

2a =, ----------------------------------------------3分

所以椭圆的标准方程为22

121

x y +=. ------------------------------------------4分 (Ⅱ)法一:

设00(,),C x y 且00x ≠,则00(,)D x y -. ----------------------------------------5分 因为(0,1),(0,1)A B -, 所以直线AC 的方程为00

1

1y y x x -=

+. ----------------------------------------6分 令0y =,得001M x x y -=

-,所以0

0(

,0)1

x M y --. ------------------------------------7分 同理直线BD 的方程为00

11y y x x +=

--,求得0

0(,0)1x N y -+.-----------------------8分

00

00(,1),(,1),11x x AM AN y y -=-=--+ -----------------------------------------9分

所以AM AN ?=

2

02

011x y -+-, --------------------------------------10分 由00(,)C x y 在椭圆G :2

212

x y +=上,所以22002(1)x y =-,-------------------11分 所以10AM AN ?=-≠

, -----------------------------13分

所以90MAN ∠≠ ,

所以,以线段MN 为直径的圆不过点A . ------------------------------14分

法二:因为,C D 关于y 轴对称,且B 在y 轴上

所以CBA DBA ∠=∠. ------------------------------------------5分 因为N 在x 轴上,又(0,1),(0,1)A B -关于x 轴对称

所以NAB NBA CBA ∠=∠=∠, ------------------------------------------6分 所以//BC AN , -------------------------------------------7分 所以180NAC ACB ∠=-∠ , ------------------------------------------8分 设00(,),C x y 且00x ≠,则22002(1)x y =-. ----------------------------------------9分 因为222

00000003(,1)(,1)(1)02

CA CB x y x y x y x ?=-+=--=

>

,----------------11分

所以90ACB ∠≠ ,所以90NAC ∠≠ , 所以,以线段MN 为直径的圆不过点A . -14分 8.(16.19)已知点M 为椭圆22:3412C x y +=的右顶点,点,A B 是椭圆C 上不同的两点(均

(Ⅱ)试判断直线AB 是否过定点?若是,求出定点坐标;若否,说明理由.

解:(Ⅰ)椭圆C 的方程可化为22

14

3

x y +

=,则2a =,b 1c =. 故离心率为1

2

,焦点坐标为(1,0),(1,0)-.……………………………………4分

(Ⅱ)由题意,直线AB 斜率存在.可设直线AB 的方程为y kx m =+,11(,)A x y ,22(,)B x y ,

则11y kx m =+,22y kx m =+.

由22

,

3412

y kx m x y =+??+=?得222(34)84120k x kmx m +++-=. 判别式2222=644(34)(412)k m k m D -+-=2248(43)0k m -+>. 所以122834km x x k -+=+,2122

412

34m x x k -=+,

因为直线MA 与直线MB 斜率之积为1

4

所以

12121

224

y y x x ?=--, 所以12124()()(2)(2)kx m kx m x x ++=--.

化简得221212(41)(42)()440k x x km x x m -++++-=, 所以22

222

412(8)

(41)(42)4403434m km k km m k k

---+++-=++, 化简得22280m km k --=,即4m k =或2m k =-.

当4m k =时,直线AB 方程为(4)y k x =+,过定点(4,0)-.

4m k =代入判别式大于零中,解得11

22

k -

<<. 当2m k =-时,直线AB 方程为(2)y k x =-,过定点(2,0)M ,不符合题意舍去.

故直线AB 过定点(4,0)-.………………………………………………………13分

(Ⅱ)若动点P 在直线1x =-上,过P 作直线交椭圆C 于M ,N 两点,且MP PN =

,再过

P 作直线l ⊥MN .证明:直线l 恒过定点,并求出该定点的坐标.

解:(Ⅰ)因为点(20),在椭圆C 上,所以

2

240

1a b

+=,所以24a = 因为椭圆C 的离心率为1

2,所以12c a =,即222

14

a b a -=解得23b =, 所以椭圆C 的方程为22143

x y +=.……………5分 (Ⅱ)设0(1)P y -,,033

()22

y ∈-

,, ①当直线MN 的斜率存在时,设直线MN 的方程为0(1)y y k x -=+,11()M x y ,,

22()N x y ,,由2203412(1)x y y y k x ?+=?

-=+?,

得2

2

2

22

00

0(34)(88)(48412)0k x ky k x y ky k ++++++-=所以2

0122

88+34ky k x x k +=-+,

因为MP PN = ,即P 为MN 中点,所以12

=12x x +-,即202

88=234ky k k

+--+. 所以00

3

(0)4MN k y y =

≠, 因为直线l MN ⊥,所以043l y k =-

,所以直线l 的方程为004(1)3

y

y y x -=-+, 即041()34y y x =-+,显然直线l 恒过定点1

(0)4

-,

. ②当直线MN 的斜率不存在时,直线MN 的方程为1x =-, 此时直线l 为x 轴,也过点1

(0)4

-, 综上所述直线l 恒过定点1(0)4

-,. ……………14分

(Ⅰ)求椭圆标准方程;

(Ⅱ)若直线1(0)x my m =+≠交椭圆于A,C 两点,点A 关于x 轴的对称点'A ,求证'

A C M

三点共线。

11. (15,23)已知曲线.

(1)若曲线是焦点在轴上的椭圆,求范围;

(2)设,曲线与轴的交点为,(点位于点的上方),直线与曲线交于不同的两点,,直线与直线交于点,求证:,,三点共线.

解:(1)原曲线方程可化简得:

由题意可得:,解得:

(2)由已知直线代入椭圆方程化简得:,

,解得: 由韦达定理得:①,,② 设,, 方程为:,则, ,,

欲证三点共线,只需证,共线

成立,化简得:

将①②代入易知等式成立,则三点共线得证

()()()2

2

:528C m x m y m -+-=∈R C x m 4m =C y A B A B 4y kx =+C M N 1y =BM G A G N 2218852

x y m m +=--88528

058

02m m m

m ?>?--?

?>?-??>?-?

752m <<22(21)16240k x kx +++=2=32(23)k ?-2

32

k >

21621M N k x x k +=

+224

21

M N

x x k =+(,4)N N N x k x +(,4)M M M x kx +(1)G G x ,

MB 6

2M M

kx y x x +=-316M M x G kx ?? ?+??

,∴316M M x AG x k ??=-

?+??

,()2N N AN x x k =+

,A G N ,,AG AN

3(2)6

M

N N M x x k x x k +=-+(3)6()M N M N k k x x x x +=-+A G N ,

交于另一点Q ,问是否存在直线l ,使得四边形PABQ 的对角线互相平分?若存在,求出l 的方程;若不存在,说明理由.

(Ⅰ)解:由点)23,1(P 和1F 关于点)4

3,0(C 对称,得1(1,0)F -

所以椭圆E 的焦点为)0,1(1-F ,)0,1(2F ,由椭圆定义,得122||||4a PF PF =+=.

所以2a =,b 故椭圆E 的方程为2

2143

x

y +=

(II )解:结论:存在直线,使得四边形PABQ 的对角线互相平分. 理由如下:由题可知直线,直线PQ 的斜率存在, 设直线l 的方程为)1(-=x k y ,直线PQ 的方程为. 由 22

1,4

3(1),x y y k x ?+=???=-?

消去,得, 由题意,可知,设11(,)A x y ,22(,)B x y ,2

2

21438k k x x +=+,, 由22

1,433(1),2

x y y k x ?+=???

?-=-??消去, 得,

由,知,设),(33y x Q ,又2

23431281k

k k x +-=+,22

34331241k

k k x +--=?. 若四边形PABQ 的对角线互相平分,则PB 与AQ 的中点重合, 所以

2

1

2231+=+x x x ,即3211x x x -=-,故2212123()4(1)x x x x x +-=-. 所以 22222

222

84124123()4(1)343434k k k k k k k

----?=-+++.解得. 所以直线l 为3430x y --=时,四边形PABQ 的对角线互相平分.……… 14分 (注:利用四边形PABQ 为平行四边形,则有||||PQ AB =,也可解决问题)

l l 3

(1)2

y k x -

=-y 2222(34)84120k x k x k +-+-=0?>212241234k x x k -=+y 2222

(34)(812)41230k x k k x k k +--+--=0?>1

2k ≠-

)23,1(P 34k =

(Ⅰ)求椭圆M 的方程;

(Ⅱ)是否存在菱形ABCD ,同时满足下列三个条件:①点A 在直线2

y =上;②点B ,C ,

D 在椭圆M 上;③直线BD 的斜率等于1.如果存在,求出A 点坐标;如果不存在,说明理

由.

解:(Ⅰ)由题意得:2221,.b c a

a b c =???=???-=?

解得:2

23,

1.a b ?=??=?? 所以 椭圆M 的方程为2

213

x y +=.………………4分 (Ⅱ)不存在满足题意的菱形ABCD ,理由如下:………………5分 假设存在满足题意的菱形ABCD .

设直线BD 的方程为y x m =+,11(,)B x y ,22(,)D x y ,

线段BD 的中点00(,)Q x y ,点(,2)A t .

由2233,

x y y x m

?+=?=+?得224230y my m -+-=.………………8分 由()()

2

221630m m ?=-->,解得22m -<<.………………9分 因为 122m

y y +=

, 所以 1

2024

y y m y +==. 因为四边形ABCD 为菱形,所以 Q 是AC 的中点. 所以C 点的纵坐标022212

C m

y y =-=

-<-. ………………12分 因为点C 在椭圆M 上,所以1C y ≥-.这与1C y <-矛盾.………………13分 所以 不存在满足题意的菱形ABCD .

右顶点,且四边形OABC 为菱形时,求此菱形的面积;⑵当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由。

解:⑴由题()2,0B ,因OABC 为菱形,故AC 与OB 互相垂直平分。

设()1,A m ,代入椭圆方程可解得m =。

故11

||||22||22

OABC S OB AC m =

?=??= ⑵假设OABC 为菱形,可设AC :()0,0y kx m k m =+≠≠,

由2244x y y kx m

?+=?=+?可得()222

148440k x kmx m +++-=。 设()()1122,,,A x y C x y ,则1224214x x km k +=-+,122y y +=122

214x x m

k m k

+?+=+, 故224,1414km

m M k k ??-

?++??

,因此14OM k k =-。 因114k k ??

?-

≠- ???

,故AC 与OB 不垂直。矛盾。 因此当点B 不是W 的顶点时,四边形OABC 不可能是菱形。

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案 一、选择题: 1、双曲线 22 1102x y -=的焦距为( ) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( ) A . 2 3 B .3 C .27 D .4 3.已知动点M 的坐标满足方程|12512|132 2-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 4.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( ) A. 1或5 B. 1或9 C. 1 D. 9 5、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三 角形,则椭圆的离心率是( ). A. B. C. 2 D. 1 6.双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A . 163 B .83 C .316 D .3 8 7. 若双曲线22 21613x y p -=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( ) (A)2 (B)3 (C)4 8.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对

圆锥曲线常见题型与答案

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中 222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 例题: (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( ) A .421=+PF PF B .6 21=+PF PF C .1021=+PF PF D .122 2 2 1 =+PF PF (答:C ); (2) 方程8=表示的曲线是_____ (答:双曲线的左支) (3)已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) (4)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值围为____ (答:11(3,)(,2)22---U ); (5)双曲线的离心率等于25 ,且与椭圆14 922=+y x 有公共焦点,则该双曲线的方程_______(答:2 214x y -=); (6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为 _______(答:226x y -=) 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平面几何方法处理; 圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±; ③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为 2a ,短轴长为2b ; ④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 p e c b a ,,,,

圆锥曲线大题(有答案)

三、解答题 1.( 2013年上海市春季高考数学试卷 (含答案))本题共有2个小题,第1小题满分 已知椭圆C 的两个焦点分别为 只(1,0)、F 2(1, 0),短轴的两个端点分别为 B (1) 若RBB2为等边三角形,求椭圆c 的方程; ujir (2) 若椭圆C 的短轴长为2 ,过点F 2的直线I 与椭圆C 相交于P 、Q 两点,且F 1P 2 2 【答案】[解](1)设椭圆C 的方程为x 2 y 2 1(a b 0). a b a 2b 2 4 2 1 根据题意知。… ,解得a 2 4, b 2 ' a 2 b 2 1 3 3 2 2 故椭圆C 的方程为X y 1. 4 1 3 3 2 ⑵ 容易求得椭圆C 的方程为X y 2 1. 2 当直线I 的斜率不存在时,其方程为x 1,不符合题意; 当直线I 的斜率存在时,设直线I 的方程为y k(x 1). 设 P(X 1,yJ ,Q(X 2, y 2),则 unr uuir uir uur 因为F 1P F 1Q ,所以F 1P FQ 0,即 4分,第2小题满分9分. B 2 uur FQ ,求直线I 的方程? y k(x 由x 2 2 — y 2 1)x 2 4k 2x 2(k 2 1) 0. x X 2 4k 2 2k 2严 2(k 2 2k 1) uir uuir (X 1 1,yJ, FQ (X 2 1小) 1) 得(2k 2 1

解得k 2 1 ,即k 7 所以,a 2. 又由已知,c 1, 所以椭圆C 的离心率e C 1 2 a V 2 2 2 X 2 由 知椭圆C 的方程为—y 1. 设点Q 的坐标为(x,y). ⑵ 当直线l 与x 轴不垂直时,设直线l 的方程为y kx 2 . 因为M,N 在直线I 上,可设点M,N 的坐标分别为(石,心 2),(x 2,kx 2 2),则 2 2 (k 1)x 1x 2 (k 2 1)(x 1 x 2) k 1 7 k 2 1 2 k 2 1 0, 故直线l 的方程为x 7y 1 0 或 x 7y 2. (2013年高考四川卷(理)) 2 已知椭圆 C : x 2 a 2 y 2 1,(a b 0)的两个焦点分别为 R( b 1,0),F 2(1,0),且椭圆 (I )求椭圆 C 的离心率; (n )设过点 A(0,2)的直线 I 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且 1 ,2 2 | AQ|2 | AM | 2 ,求点 Q 的轨迹方程? |AN |2 【答案】解:2a PF 1 PF 2 (1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于 0,1 , 0, 1两点,此时Q 点坐标为 0,2

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

新课标高考《圆锥曲线》大题专题含答案

新课标高考《圆锥曲线》大题专题含答案

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考江西卷(理)) 过点2,0) 引直线l 与曲线2 1y x = +相交于 A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线 l 的斜 率 等 于 ( ) A .y E B B C CD =++3 B .3 C .3± D .32 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 双曲线 2 214 x y -=的顶点到其渐近线的距离等于 ( ) A .25 B .4 5 C 25 D 453 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 已知中心在原 点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程 是 ( ) A .22 145 x -= B .22 145 x y -= C . 22 125 x y -= D . 22 125 x -=

4 .(2013年高考新课标1(理)) 已知双曲线C : 22 2 21x y a b -=(0,0a b >>)的离心率为52 ,则C 的渐近 线 方 程为 ( ) A .14y x =± B .13 y x =± C . 12 y x =± D .y x =± 5 .(2013年高考湖北卷(理)) 已知04π θ<<,则双曲线 22 122:1 cos sin x y C θθ -=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦 距相等 D .离心率相等 6 .(2013年高考四川卷(理)) 抛物线2 4y x =的焦点到双曲线 2 21 3 y x -=的渐近线的距 离 是 ( ) A .12 B .3 2 C .1 D 3

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

高考圆锥曲线中的定点与定值问题(题型总结超全)

专题08解锁圆锥曲线中的定点与定值问题 一、解答题 1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标. 【答案】(1)(2) 【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得 。设x轴上的定点为,可得 ,由定值可得需满足,解得可得定点坐标。 解得。 ∴椭圆的标准方程为. (Ⅱ)证明: 由题意设直线的方程为, 由消去y整理得, 设,,

要使其为定值,需满足, 解得 . 故定点的坐标为 . 点睛:解析几何中定点问题的常见解法 (1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意. 2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2 :2C y px =(0,p p >为常数)交于不同的两点,M N ,当1 2 k =时,弦MN 的长为15(1)求抛物线C 的标准方程; (2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4- 【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设()()() 2221122,2,,2,,2M t t N t t Q t t ,则1 2 MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++= ()1212:220NQ x t t y t t -++=. 由()1,0-在直线MN 上1 1 t t ?= (1); 由()1,1-在直线MQ 上22220t t tt ?+++=将(1)代入()121221t t t t ?=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ?-+-+-=,即可得出直线NQ 过定点.

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练 1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式 (Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解: (Ⅰ)由题意知,(A a . 因为OA t =,所以2 2 2a a t +=.由于0t > 由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为 1c t +=. 又因点A 在直线BC 上,故有 1a c +=,将(1)代入上式,得1a c =, 解得2c a =+ (Ⅱ)因为(2D a +,所以直线CD 的斜率为 1CD k = ===-. 所以直线CD 的斜率为定值. 2.设F 是抛物线2 :4G x y =的焦点. (I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u r g ,延长AF ,BF 分别交抛物线G 于点C D ,,求 四边形ABCD 面积的最小值. 2.解:(I )设切点2 004x Q x ?? ???,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为 2000()42x x y x x -=-. 即2 04 24x x y x =-. 因为点(0)P -4,在切线上. 所以2 044 x -=-,2 016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,. 由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

圆锥曲线大题归类

圆锥曲线大题归类 一.定点问题 例1.已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M : (x -3)2+(y -1)2=3相切. (1)求椭圆C 的方程; (2)若不过点A 的动直线l 与椭圆C 交于P ,Q 两点,且AP →·AQ → =0,求证:直线l 过定点,并求该定点的坐标. [解析](1)圆M 的圆心为(3,1),半径r = 3. 由题意知A (0,1),F (c,0), 直线AF 的方程为x c +y =1,即x +cy -c =0, 由直线AF 与圆M 相切,得|3+c -c |c 2+1 =3, 解得c 2=2,a 2=c 2+1=3, 故椭圆C 的方程为x 23+y 2=1. (2)方法一:由·=0知AP ⊥AQ ,从而直线AP 与坐标轴不垂直, 故可设直线AP 的方程为y =kx +1,直线AQ 的方程为y =-1k x +1. 联立??? y =kx +1, x 23+y 2=1,整理得(1+3k 2)x 2+6kx =0,

解得x =0或x =-6k 1+3k 2 , 故点P 的坐标为(-6k 1+3k 2,1-3k 2 1+3k 2 ), 同理,点Q 的坐标为(6k k 2+3,k 2-3k 2+3 ) ∴直线l 的斜率为k 2-3k 2+3-1-3k 2 1+3k 26k k 2+3--6k 1+3k 2 =k 2-14k , ∴直线l 的方程为y =k 2-14k (x -6k k 2+3)+k 2-3k 2+3 , 即y =k 2-14k x -12. ∴直线l 过定点(0,-12). 方法二:由·=0知AP ⊥AQ ,从而直线PQ 与x 轴不垂直,故可设直线l 的方程为y =kx +t (t ≠1), 联立????? y =kx +t ,x 23+y 2=1, 整理得(1+3k 2)x 2+6ktx +3(t 2-1)=0. 设P (x 1,y 1),Q (x 2,y 2)则????? x 1+x 2=-6kt 1+3k 2, x 1x 2=3(t 2-1)1+3k 2, (*) 由Δ=(6kt )2-4(1+3k 2)×3(t 2-1)>0,得 3k 2>t 2-1.由·=0,

(完整版)圆锥曲线知识点+例题+练习含答案(整理)

圆锥曲线 一、椭圆:(1)椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。 其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。 注意:||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; (2)椭圆的标准方程、图象及几何性质: 3.常用结论:(1)椭圆)0(122 22>>=+b a b y a x 的两个焦点为21,F F ,过1F 的直线交椭圆于B A ,两 点,则2ABF ?的周长= (2)设椭圆)0(122 22>>=+b a b y a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线 交椭圆于Q P ,两点,则Q P ,的坐标分别是 =||PQ 二、双曲线:

(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。 其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。 注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。 ||221F F a =表示两条射线;||221F F a >没有轨迹; (2)双曲线的标准方程、图象及几何性质: 中心在原点,焦点在x 轴上 中心在原点,焦点在y 轴上 标准 方程 )0,0(122 22>>=-b a b y a x )0,0(122 22>>=-b a b x a y 图 形 顶 点 )0,(),0,(21a A a A - ),0(),,0(21a B a B - 对称轴 x 轴,y 轴;虚轴为b 2,实轴为a 2 焦 点 )0,(),0,(21c F c F - ),0(),,0(21c F c F - 焦 距 )0(2||21>=c c F F 222 b a c += 离心率 )1(>= e a c e (离心率越大,开口越大) 渐近线 x a b y ± = x b a y ± = 通 径 22b a (3)双曲线的渐近线: ①求双曲线122 2 2 =-b y a x 的渐近线,可令其右边的1为0,即得022 2 2 =-b y a x , 因式分解得到0x y a b ±=。 ②与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222y x ; (4)等轴双曲线为222t y x =-2

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

(完整版)高考圆锥曲线题型归类总结(最新整理)

)直接法:直接利用条件建立之间的关系; 和直线的距离之和等于 ),端点向圆作两条切线

的距离比它到直线的距离小于 :和⊙:都外切,则动圆圆心 代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨 是抛物线上任一点,定点为,分所成的比为 参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。 过抛物线的焦点作直线交抛物线于

?OA OB ⊥?121K K ?=-?0OA OB ?= ?12120 x x y y += ②“点在圆内、圆上、圆外问题” “直角、锐角、钝角问题” “向量的数量积大于、等于、小于0问题”?? >0; ?1212x x y y + ③“等角、角平分、角互补问题” 斜率关系(或);?120K K +=12K K = ④“共线问题” (如: 数的角度:坐标表示法;形的角度:距离转化法); AQ QB λ= ?(如:A 、O 、B 三点共线直线OA 与OB 斜率相等);? ⑤“点、线对称问题” 坐标与斜率关系;? ⑥“弦长、面积问题” 转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);?六、化简与计算;七、细节问题不忽略; ①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 7、思路问题:大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而

圆锥曲线历年高考题附答案解析

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2 b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆 x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A .43 B .75 C .85 D .3 4.(2006高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006卷)曲线221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006高考卷)若抛物线2 2y px =的焦点与椭圆22 162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设

高考圆锥曲线大题

圆锥曲线经典大题 1.已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当 直线l 的斜率是12 时,AC →=4AB →. (1)求抛物线G 的方程; (2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围. 2.如图,已知(10)F ,,直线:1l x =-,点P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ ?=?. (Ⅰ)求动点P 的轨迹C 的方程。 (Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . (1)已知1MA AF λ=,2MB BF λ=,求12λλ+的值; (2)求MA MB ?的最小值. 3.设点F 是抛物线G :x 2=4y 的焦点. (1)过点P (0,-4)作抛物线G 的切线,求切线的方程; (2)设A ,B 为抛物线G 上异于原点的两点,且满足 0·=FB FA ,分别延长 AF ,BF 交抛物线G 于C ,D 两点,求四边 形ABCD 面积的最小值. 4.设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,. (Ⅰ)求证:A M B ,,三点的横坐标成等差数列; (Ⅱ)已知当M 点的坐标为(22)p -, 时,AB =

5.设椭圆22 2:12 x y M a +=(a >的右焦点为1F ,直线2 :2 2-= a a x l 与x 轴交于点 A ,若112OF AF +=0(其中O 为坐标原点) . (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆 ()12:2 2=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求?的 最大值. 6.已知双曲线C 的方程为22221(0,0)y x a b a b -=>>,离心率e =顶点到渐近线 (I ) (II ) 求双曲线C 的方程; (II)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分 别位于第一、二象限,若1 ,[,2]3 AP PB λλ=∈,求AOB ?面积的取值范围。 7.一条双曲线2 212 x y -=的左、右顶点分别为A 1,A 2,点11(,)P x y ,11(,)Q x y -是双 曲线上不同的两个动点。(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程式;(2)若过点H(0, h)(h>1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且12l l ⊥ ,求h 的值。 8.已知:椭圆122 22=+b y a x (0>>b a ),过点)0,(a A -,),0(b B 的直线倾斜角 为 6 π ,原点到该直线的距离为23.(1)求椭圆的方程;(2)斜率大于零的直线 过)0,1(-D 与椭圆交于E ,F 两点,若2=,求直线EF 的方程;(3)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点 )0,1(-D ?若存在,求出k 的值;若不存在,请说明理由.

圆锥曲线大题题型归纳3

圆锥曲线大题题型归纳 基本方法: 1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题; 3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根; 4. 点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式; 5. 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题; 基本思想: 1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关; 4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。 题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题 例1、 已知F 1,F 2为椭圆2100x +2 64 y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少? 点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。 变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且

相关文档
相关文档 最新文档