文档库 最新最全的文档下载
当前位置:文档库 › 局部放电原理

局部放电原理

局部放电原理
局部放电原理

局部放电的产生机理

高压电力设备绝缘内部由于各种原因,存在一些气泡、杂质等。这些气泡、杂质、导体的毛刺等,就是发生局部放电的根源。

一、 绝缘内部含有气泡、杂质的等值电路

一个平行板电容器含有一个气泡,如图1-1(a )所示,而对应的等值电路 图如图1-1(b )所示。

c C b C c R b

R a

C a R

(a ) (b )

图1-1 局部放电的等效电路

(a )含有一个气泡的试样 (b )等效电路

图1-1(b )中c C 、c R 代表气泡的电容、电阻;b C 、b R 代表与气泡串联介质的电容、电阻;a C 、a R 代表其他介质的电容电阻。由于每次放电时间大约为10-8-10-7s ,是频率很高的脉冲信号,所以,这个信号在上述等值电路中的响应,不需要考虑电阻b c a R R R 、、的作用,在等值电路中将其省去,等值电路将由a b c C C C 、、所组成。下面局部放电分析将以纯电容组成的等值电路为例。

二、局部放电分析

当平行板电容器电极加上交流工频电压时,气泡上的电容c C 、b C 分压,并随外施电压变化而变化,如图1-2(a )中虚线'c u 所示。当'c u 的值足够大时,气泡上的瞬时电压c u 达到击穿电压cB u ,气泡发生放电,并使气泡中气体电离,产生正负离子或电子。这些带电的质点在电场的作用下,迁移到气泡壁上,形成与外加电压相反的内部电压c u ?, 如图1-2(b )所示。这时气泡上的总电压是两者叠加的结果,即气泡上的总电压r u =cB u -c u ?

图1-2 局部放电过程的示意图

(a ) 气泡上的电压;(b )气泡中放电产生的反向电压;(c )放电的脉冲信号

当r u

'1c c cB n u u u -?+=-

cB u -是气泡的反向击穿电压。通常气泡是对称的,cB u -=cB u 时,气泡又重新击穿放电。这次放电所产生的带电离子或电子迁移方向和前面放电时迁移方向相反,于是带电质点到达气泡壁时,中和掉原来的积累电荷,使内部建立的电压

减少了c u ?。这时'1(1)c c cB n u u u --?+<-,气泡放电又停止。

直到气泡上的外加电压下降到'2c u ,满足下列条件时,气泡又发生放电

'2(1)c c cB n u u u --?+=-

当外加电压过零时,气泡上所积累的电荷全部被中和掉。下半周又开始和上半周一样的放电过程,1/4周期出现n 次放电脉冲。

上面分析放电过程是在理想的情况下,局部放电产生的脉冲,但实际情况和理想情况有很大的区别。首先,实际情况放电脉冲不会那样对称、整齐,而是大小不同;正负半周也不会完全相同。因为实际放电不只是一个气泡放电,可能多个气泡放电;实际情况放电不止一处,可能多处;实际情况每次放电也不会都一样,而且多处放电更不会一样。但是放电在正负半周内基本上是一样的、对称的,如图1-3所示。其次,实际上在外加电压刚达到起始放电时,放电脉冲只出现在瞬时电压绝对值上升靠近峰值附近,大约4590??-和225270??-间,而在第二和第四象限几乎看不到放电脉冲。随着电压升高,放电变得很剧烈,放电脉冲才向过零点扩展。这是因为气泡壁的电阻不是无限大,在放电气体电离时,气泡壁电阻将明显下降,使积累电荷泄露,由它建立的反向电压就达到气泡的击穿。所以,在外加电压瞬时下降,即二、四象限内,就不一定出现放电脉冲。只有放电很剧烈时,产生大量的放电电荷,且每次放电时间很短,放电才有可能扩展到二、四象限内。

图1-3 内部气泡放电图形

三、局部放电的参数及其关系

(一)放电起始电压及熄灭电压

试品上外加电压从零升起,开始时看不到局部放电,在升压过程中从实验装置上观察到局部放电量超过某一规定值的最低电压,称为局部放电起始电压u i 。

当试品上的外加电压从超过局部放电起始电压的较高值逐渐下降时,局部放电量小于某一规定值的最高电压称为局部放电熄灭电压u e 。

(二)局部放电量和视在放电量的关系

在局部放电时,介质内部移动的电荷,称为实际放电量。因为实际放电是在介质内部进行,其放电量是无法测量的。

但每局部放电一次,气泡上电压下降一个?u c ,也就是电容C b 上电压增加一个?u c ,随着电压增加,必须供给一个电荷增量q ,称q 为介质视在放电量,它

可由专门仪器测量。测量时模拟实际放电的瞬变电荷注入试样施加外加电压的两端,在此两端出现的脉冲电压与局部放电时相同,则注入的电荷即为视在放电电荷量,也称为视在放电量q ,单位为PC 。在一个试样中可能同时出现大小不同的视在放电量,但把稳定出现的最大视在放电量称为局部放电的放电量。

实际放电量与视在放电量存在一定的关系。气泡放电时实际放电量为q c 。由于q c 的存在,气泡上的电压变化为?u c ,则

u a b c c c a b

C C q C C C ?=?++() 上式中a b C C >>,

()c c c b q U C C ≈?+ (1-1) 局部放电一次时间很短,远小于电源回路的时间常数,及电源来不及补充电荷,而使C a 上电荷进行补充。C a 两端出现电压变化?u a ,C b 上也有电压变化?u b ,

a b a c a b a a b b

C C C u u u u u C C +?=?+?=?≈? 这时试样两端电荷变化量即为视在放电量

()a b a a a c b b c

C C q u C u C C C ?=?+≈?+ (1-2) 将公式(6-1)代入(6-2)得

b a

c b c

C q q C C =+ (1-3) 由公式(1-3)说明,视在放电量q a 总小于实际放电量q c 。

(三)放电能量

局部放电消耗能量可能是介质老化的原因之一,常把放电能量作为衡量局部放电的一个参数。一次局部放电能量为W

0.7i W qu = (1-4)

式中 q —视在放电量

i u —放电起始电压(有效值)

由式(1-4)说明,一次放电能量与视在放电能量q 有简单的关系式,测出起始放电电压i u 就可以计算出放电所产生的能量W ,也可表明放电强度。

(四)放电重复率

放电时,每秒放电脉冲次数,称为放电重复率。当外施电压升高时,局部放

电次数也增加,放电重复率也随之增加。

(五)平均放电电流I

局部放电的时间间隔T内,通过视品二端的电荷绝对值的和除以T,称为局

部放电电流I,即

1

()

I n q

T

(六)放电功率P

在一段时间内由于局部放电在视品二端测出的平均功率P,称为放电功率,用W表示。

变压器局部放电试验

变压器局部放电试验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

变压器局部放电试验 试验及标准 国家标准GB1094-85《电力变压器》中规定的变压器局部放电试验的加压时间步骤,如图5所示。其试验步骤为:首先试验电压升到U 2下进行测量,保持5min ;然后试验电压升到U 1,保持5s ;最后电压降到U 2下再进行测量,保持30min 。U 1、 U 2的电压值规定及允许的放电量为 U U 2153=.m 电压下允许放电量Q <500pC 或 U U 213 3=.m 电压下允许放电量Q <300pC 式中 U m ——设备最高工作电压。 试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。 测量应在所有分级绝缘绕组的线端进行。对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。 在电压升至U 2及由U 2再下降的过程中,应记下起始、熄灭放电电压。 在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q 。放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。整个试验期间试品不发生击穿;在U 2的第二阶段的30min 内,所有测量端子测得的放电量Q ,连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。 如果放电量曾超出允许限值,但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min 的期间内局部放电量不超过允许的限值,试品才合格。利用变压器套管电容作为耦合电容C k ,并在其末屏端子对地串接测量阻抗Z k 。

局部放电试验原理

局部放电试验 第一节局部放电特性及原理 一、局部放电测试目的及意义 局部放电:是指设备绝缘系统中部分被击穿的电气放电,这种放电可以发生在导体(电极)附近,也可发生在其它位置。 局部放电的种类: ①绝缘材料内部放电(固体-空穴;液体-气泡); ②表面放电; ③高压电极尖端放电。 局部放电的产生:设备绝缘内部存在弱点或生产过程中造成的缺陷,在高压电场作用下发生重复击穿和熄灭现象-局部放电。 局部放电的特点: ①放电能量很小,短时间内存在不影响电气设备的绝缘强度; ②对绝缘的危害是逐渐加大的,它的发展需要一定时间-累计效应-缺陷扩大-绝缘击穿。 ③对绝缘系统寿命的评估分散性很大。发展时间、局放种类、产生位置、绝缘种类等有关。 ④局部放电试验属非破坏试验。不会造成绝缘损伤。 局部放电测试的目的和意义: 确定试品是否存在放电及放电是否超标,确定局部放电起始和熄灭电压。发现其它绝缘试验不能检查出来的绝缘局部隐形缺陷及故障。 局部放电主要参量: ①局部放电的视在电荷q: 电荷瞬时注入试品两端时,试品两端电压的瞬时变化量与试品局部放电本身所引起的电压瞬变量相等的电荷量,一般用pC(皮库)表示。 ②局部放电试验电压: 按相关规定施加的局部放电试验电压,在此电压下局部放电量不应超过规定的局部放电量值。 ③规定的局部放电量值: 在规定的电压下,对给定的试品,在规程或规范中规定的局部放电参量的数值。 ④局部放电起始电压Ui: 试品两端出现局部放电时,施加在试品两端的电压值。 ⑤局部放电熄灭电压Ui: 试品两端局部放电消失时 的电压值。(理论上比起始电 压低一半,但实际上要低很多 5%-20%甚至更低) 二、局部放电机理: 内部放电:绝缘材料中含有气隙、油隙、杂质等,在电场的作用下会出现介质内部或介质与电极之间的放电。等效原理图:

局部放电测试方法

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产

生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图3-5 。图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与

变压器局部放电试验基础和原理-新版.pdf

变压器试验基础与原理 1.概述 随着电力系统电压等级的不断提高,为使输变电设备和输电线路的建设和使 用更加经济可靠,就必须改进限制过电压的措施,从而降低系统中过电压(雷电冲击电压和操作冲击电压)的水平。这样,长期工作电压对设备绝缘的影响相对地显得越来越重要。 电力产品出厂时进行的高电压绝缘试验(如:工频电压、雷电冲击电压、操 作冲击电压等试验),其所施加的试验电压值,只是考核了产品能否经受住长期 运行中所可能受到的各种过电压的作用。但是,考虑这种过电压值的试验与运行中长期工作电压的作用之间并没有固定的关系,特别对于超高电压系统,工作电压的影响更加突出。所以,经受住了过电压试验的产品能否在长期工作电压作用 下保证安全运行就成为一个问题。为了解决这个问题,即为了考核产品绝缘长期运行的性能,就要有新的检验方法。带有局部放电测量的感应耐压试验(ACSD 和ACLD)就是用于这个目的的一种试验。 2.局部放电的产生 对于电气设备的某一绝缘结构,其中多少可能存在着一些绝缘弱点,它在- 定的外施电压作用下会首先发生放电,但并不随即形成整个绝缘贯穿性的击穿。 这种导体间绝缘仅被局部桥接的电气放电被称为局部放电。这种放电可以在导体附近发生也可以不在导体附近发生(GB/T 7354-2003《局部放电测量》)。 注1:局放一般是由于绝缘体内部或绝缘表面局部电场特别集中而引起的。 通常这种放电表现为持续时间小于1微秒的脉冲。 注2:“电晕”是局放的一种形式,她通常发生在远离固体或液体绝缘的导体 周围的气体中。 注3:局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生 电磁辐射、超声、发光、发热以及出现新的生成物等。 高压电气设备的绝缘内部常存在着气隙。另外,变压器油中可能存在着微量 的水份及杂质。在电场的作用下,杂质会形成小桥,泄漏电流的通过会使该处发热严重,促使水份汽化形成气泡;同时也会使该处的油发生裂解产生气体。绝缘内部存在的这些气隙(气泡),其介电常数比绝缘材料的介电常数要小,故气隙 上承受的电场强度比邻近的绝缘材料上的电场强度要高。另外,气体(特别是空

局部放电试验

局部放电测量指导书 一、适用范围 本指导书适用于电力设备在交流电压下进行局部放电试验,包括测量在某一定电压下的局部放电量、设备局部放电的起始电压和熄灭电压。 二、测量基本方法与步骤 2.1试验方法:根据接线方式可分为并联法、串联法,即检测阻抗与被试品串联进行测量,称为串联法;检测阻抗与被试品并联进行测量,称为并联法,此时,需加测量用耦合电容器。对于变压器来说,一般通过套管末屏处测量,类似并联法。 (1)并联法: 2.2试验步骤: 2.2.1试验接线:应根据被试品的特点完成接线,检查试验加压回路、测量系统回路;

2.2.2试验回路校准:在加压前应对测试回路中的仪器进行例行校正,以确定接入试品时测试回路的刻度系数,该系数受回路特性及试品电容量的影响。在已校正的回路灵敏度下,观察未接通高压电源及接通高压电源后是否存在较大的干扰,如果有干扰应设法排除。 2.2.3试验前试品应按有关规定进行预处理: (1)使试品表面保持清洁、干燥,以防绝缘表面潮气或污染引起局放。 (2)在无特殊要求情况下,试验期间试品应处于环境温度。 (3)试品在前一次机械、热或电气作用以后,应静放一段时间再进行试验,以减少上述因素对本次试验结果的影响。 2.2.4测定局放起始电压和熄灭电压 拆除校准装置,其他接线不变,在试验电压波形符合要求的情况下,电压从远低于预期的局放起始电压加起,按规定速度升压直至放电量达到某一规定值(一般为局放仪在测量时可观测到的设备放电)时,此时的电压即为局放起始电压。其后电压再增加10%,然后降压直到放电量等于上述规定值,对应的电压即为局放熄灭电压。测量时,不允许所加电压超过试品的额定耐受电压,另外,重复施加接近于它的电压也有可能损坏试品。 2.2.5测定局部放电量 (1)无预加电压的测量 试验时试品上的电压从较低值起逐渐增加到规定值,保持一定 时间再测量局放量,然后降低电压,切断电源。有时在电压升

局部放电试验理论与实际应用

局部放电试验理论与实际应用 1 基本概念 1.1局部放电的产生和放电过程 采用固体绝缘的电工产品,如塑料电缆、电机、胶纸套管以及浇注变压器等,都难免在绝缘结构中含有气隙,产生气隙的原因很多,有的是在产品制造中就残留在绝缘结构中;有的是在使用中有机材料进一步固化或裂解而放出气体形成的;有的是在使用中承受机械力如震动、热胀冷缩等造成的局部开裂。这些气隙在电场作用下就会产生局部放电。 最简单的情况是在介质内部含有一个气隙,如图1所示。 图中c代表气隙,b是与气隙串联部分的介质,a是除了b之外其他部分的介质。假定这一介质是处于平行板电极之中,在交流电场作用下,气隙和介质中的电过程可以用图2所示的等效电路来分析。 从等效电路图可见,在工频电场中气隙的电场强度比介质中电场强度高,而另

一方面气体的击穿场强即气隙发生击穿时的电场强度一般都比固体的击穿场强低。因此,在外加电压足够高时,气隙首先被击穿,而周围的介质仍然保持其绝缘特性,电极之间并没有形成贯穿性的通道,这种现象就称为局部放电。 在液体和固体的组合绝缘结构中,如油纸电容套管、油纸电缆、油浸式流变、压变、油纸电容器(耦合电容器)、油浸变压器等等,由于在制造中采取了真空干燥浸渍等工艺,可以使绝缘体中基本上不含有气隙,但却不可避免地存在着充满绝缘油的气隙。这些油的介电常数通常也比固体介质为小,而击穿场强又比固体介质低,因此,在油隙中也会发生局部放电,不过与气隙相比要在高得多的电场强度下才会发生。 还应当注意的是,即使在介质中不含有气隙或油隙,只要是介质中的电场分布是极不均匀的,也就可能发生局部放电。例如埋在介质中的针尖电极或电极表面上的毛刺,或其他金属屑等异物附近的电场强度,要比介质中其他部位的电场强度高得多。当局部的电场强度达到介质的本征击穿场强时,介质局部击穿而形成了局部放电。 如果外施电压是正弦交流电压,当电压瞬时值上升使得气隙上的电压Uc达到气隙的击穿电压Ucb时,气隙发生击穿放电。由于放电的时间极短,可以看作气隙上的电压由于放电而在瞬间下降了ΔUc,于是气隙上的实际电压低于气隙的击穿电压,放电暂停。此后气隙上的电压又随外加电压瞬时值的上升而上升,直到气隙上的电压又回升到气隙的击穿电压Ucb时,气隙又发生击穿放电,此时气隙上的电压又下降ΔUc,于是放电又暂停。假定气隙表面电阻很高,前一次放电产生的空间电荷没有泄漏掉,则这时气隙中的放电电荷建立的反向电压为-2ΔUc。依此类推,如果在外加电压的瞬时值达到峰值之前发生了n次放电,每次产生的电荷都量相等的,则在气隙中放电电荷建立的电压为-nΔUc。在外加电压过峰值后,气隙上的外加电 压分量U 外逐渐减小,当U 外 =∣-nΔUc∣时,气隙上的实际电压为零。 外施电压的瞬时值继续下降,当∣U 外 -nΔUc∣=Ucb时,即气隙上实际的电压 达到击穿电压时,气隙又发生放电,不过放电电荷移动的方向决定于在此以前放电 电荷所建立的电场E 内 ,于是减少了原来放电所积累的电荷,使气隙上的实际电压 为∣U 外 -(n-1)ΔUc∣<Ucb于是放电暂停。此后随外施电压继续下降到负半周, 当重新达到∣-U 外 -(n-1)ΔUc∣=Ucb时,气隙又发生放电,放电后气隙上的电压

局部放电的在线监测

局部放电的在线监测 一、绝缘内部局部放电在线监测的基本方法 局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声、发光、发热以及出现新的生成物等。因此针对这些现象,局部放电监测的基本方法有脉冲电流测量、超声波测量、光测量、化学测量、超高频测量以及特高频测量等方法。其中脉冲电流法放电电流脉冲信息含量丰富,可通过电流脉冲的统计特征和实测波形来判定放电的严重程度,进而运用现代分析手段了解绝缘劣化的状况及其发展趋势,对于突变信号反应也较灵敏,易于准确及时地发现故障,且易于定量,因此,脉冲电流法得到广泛应用。目前,国内不少单位研制的局部放电监测装置普遍采用这种方法来提取放电信号。该方法通过监测阻抗、接地线以及绕组中由于局部放电引起的脉冲电流,获得视在放电量。它是研究最早、应用最广泛的一种监测方法,也是国际上唯一有标准(IEC60270)的局放监测方法,所测得的信息具有可比性。图4-4为比较典型的局部放电在线监测(以变压器为例,图中CT表示电流互感器)原理框图。 图4-4 脉冲电流法监测变压器局部放电原理框图 随着技术的发展,针对不同的监测对象,近年来发展了多种局部放电在线监测方法。如光测量、超高频测量以及特高频测量法等。利用光电监测技术,通过光电探测器接收的来自放电源的光脉冲信号,然后转为电信号,再放大处理。不同类型放电产生的光波波长不同,小电晕光波长≤400nm呈紫色,大部为紫外线;强火花放电光波长自<400nm扩展至>700nm,呈桔红色,大部为可见光,固体、介质表面放电光谱与放电区域的气体组成、固体材料的性质、表面状态及电极材料等有关。这样就可以实现局部放电的在线监测。同样,由于脉冲放电是一种较高频率的重复放电,这种放电将产生辐射电磁波,根据这一原理,可以采用超高频或特高频测量法监测辐射电磁波来实现局部放电在线监测。 日本H.KAwada等人较早实现了对电力变压器PD的声电联合监测(见图4-5)。由于被测信号很弱而变电所现场又具有多种的电磁干扰源,使用同轴电缆传递信号会接受多种干扰,其中之一是电缆的接地屏蔽层会受到复杂的地中电流的干扰,因此传递各路信号用的是光纤。通过电容式高压套管末屏的接地线、变压器中性点接地线和外壳接地线上所套装的带铁氧体(高频磁)磁心的罗戈夫斯基线圈供给PD脉冲电流信号。通过装置在变压器外壳不同位置的超声压力传感器,接受由PD源产生的压力信号,并由此转变成电信号。在自动监测器中设置光信号发生器,并向图中所示的CD及各个MC发出光信号。最常用的是,用PD 所产生的脉冲电流来触发监测器,在监测器被触发之后,才能监测到各超声传感器的超声压力波信号。后由其中的光信号接收器接收各个声、电信号。 综合分析各个传感器信号的幅值和时延,可以初步判断变压器内部PD源的位置。如果

电缆局放试验的特点和要求

电缆局放试验的特点和要求 一、电缆局放试验的特点(与其它高压输变电设备产品相比) (1)试品电容量大。整盘电缆的出厂试验电容量更可观。 例如:变压器,套管,绝缘子等大都是nF级电容,高压电容器有uF级的电容,但属集中参数。 电缆:35kV,630mm25km 1.4μF/5km 110kV,1600mm210km 2.85μF/10km 220kV,2000mm210km 2.25μF/10km 500kV,2500mm210km 2.04μF/10km 试品电容大,导致:1.高压试验容量巨大,普通试验变压必须改为采用串联谐振电抗;2.局放检测灵敏度降低。(图1) (2)电缆试品占空间大 以110kV电缆为例,电缆螺旋状卷绕在外缘直径5米的大铁盘上。试验时带2个水终端长达约3米。500kV电缆水终端长达6米多。电缆卷绕后如螺旋卷天线,试品展开空间又大,都是易受空间电磁场感应影响的因素。这样对屏蔽室要求高。 (3)电缆的等效电路是电容分布参数电路 分布参数试品在进行脉冲电流的检测中有高频脉冲的传播,反射,叠加等传输特性反映到显示器上,影响检测结果。 应用电缆上局放脉冲的传播特性来进行局放故障定位。(图2)

(4)交联聚乙烯是优质绝缘材料。 用于500kV级的交联乙烯电缆最大工作场强可达3.1kV/mm(35kV电缆): 5.3kV/mm,(110kV电缆):10.1kV/mm,(220kV电缆):13.5kV/mm,(500kV 电缆但它又易受局部放电作用的发生劣化。 这样电缆局放试验标准的允许放电量要求比其它设备或其它品种绝缘低好多,所以要求试验灵敏度高,即背景噪声水平小。 这样将全面要求:屏蔽室,接地,电源,设备性能都精确优良。 目前,国外正在开发800kV/1000kV级XLPE电缆的应用,这就需要更高参数,极低背景噪声水平的局放屏蔽试验系统。 总之:在技术上,高压交联电缆的局放检测,公认是各种试品局放试验中要求最高的。 二、电缆局放试验设备的要求 (1)串联谐振电抗器(图3) 电缆局放试验用可调高压串联谐振电抗器代替普通变压器,试验时供电抗(L)调到与试品电缆电容(C)谐振。从而电抗与电缆的无功功率相互补偿(抵消),电源网络只需承担电抗器,电缆和回路有功损耗部分(R=R LR+R CR+R1)该损耗功率为电抗器输出功率的1/Q倍 对交联电缆,Q=40-80 因而,达到了节能,节约投资,缩小设备体积。当然,该串联谐振设备应在额定工作电压下无局放(例为<2PC) (2)电源采用独立变压器(图4、5)

第章高频局部放电检测技术

《电网设备状态检修技术(带电检测分册)》 弟五章咼频局部放电检测技术 目录

第 1 节高频局部放电检测技术概述 发展历程 高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。 高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。 罗格夫斯基线圈(Rogowski coils ,简称罗氏线圈)用于电流检测领域已有几十年历史。早在1887 年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。罗格夫斯基线圈检测技术在20 世纪90 年代被英国的公立电力公司(CEGB用在名为“ El-Cid ”的新技术里,用于测试发电机和电动机的定子[1]。罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963 年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。20 世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显着的成果。如法国ALSTHO公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80 年代英国Rocoil 公司实现了罗格夫斯基线圈系列化和产业化。总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20 世纪60 年代兴起,在80 年代取得突破性进展,并有多种样机挂网试运行,90 年代开始进入实用化阶段。尤其进入21 世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。20 世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。例如意大利的博洛尼亚大学的. Montanari 和 A.

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图 3-5 。图中C x 代表试品电容,Z m (Z' m )代表测量阻抗,C k代表耦合电容,它的作用是为 C x与Z m之间提供一个低阻抗的通道。Z代表接在电源与测量回路间的低通滤波器,Z可以让工频电压作用到试品上,但阻止被测的高频脉冲或电源中的高频分量通过。 图3-5(a)为并联测量回路,试验电压U经Z施加于试品C x,测量回路由C k与Z m串联而成,并与C x并联,因此称为并联测量回路。试品上的局部放电脉冲经C k耦合到Z m上,经放大器A送到测量仪器M。这种测量回路适合于试品一端接地的情况,在实际工作中应用较多。 图3-5(b)为串联测量回路,测量阻抗Z m串联接在试品C x低压端与地之间,并经由C k形成放电回路。因此,试品的低压端必须与地绝缘。 图3-5(c)为桥式测量回路,又称平衡测量回路。试品C x与耦合电容C k均与地绝缘,测量阻抗Z m与Z m分别接在C x与C k的低压端与地之间。测量仪器M测量Z m与Z m’上的电压差。

局部放电测试分析仪

PDM-1506数字化局部放电测试分析仪的介绍: 局部放电现象,主要指的是高压电气设备、电力设备的绝缘在足够强的电场作用下局部范围内发生的放电。轻微的局部放电对电力设备绝缘的影响较小,绝缘强度的下降较慢;而强烈的局部放电,则会使绝缘强度很快下降使高压电力设备绝缘损坏。 成都智云测控仪器有限公司生产的PDM-1506数字化局部放电测试分析仪是对电气设备等产生的局部放电信号进行检测、记录、显示、单波分析、图谱自动识别、图谱智能学习等于一体的数字化智能设备。基于工业级平板测量仪器设计,集多种信号调理、数据采集、信号分析于一体,集成液晶触摸显示屏,可通过触摸屏直接进行操作。内置大容量锂电池,无需供电即可现场使用。 本仪器按照DL/T846.4-2004《局部放电测量仪》、GB7354-2003、《局部放电测量》、JJG(机械)145-93《局部放电检测装置》检定规程的要求研制。设备便携、坚固,适宜于野外试验、工业现场等应用场景。配置WIFI、LAN接口,可组网应用。 特点: ★工业平板电脑的应用:工业级平板测量仪器,内置大容量锂电池,10英寸触摸屏,集成USB3.0接口、网口、外部天线,适宜于配电站现场、机房等应用场景。 ★便于携带、体积小、无现场供电干扰:传统的局部放电检测仪体积大,占用空间大,不易于携带;该发明与传统局放仪器相比,优势特点明显。 ★高性能局放信号数据采集: 通道数:1~4通道/台,各通道高速同步并行采集; 采样率:50MSps; A/D分辨率:14Bit; 输入范围:±1mV~±30V; 信号带宽:0~10MHz; 信号滤波:多阶连续信号滤波器,支持多档频率的带通滤波; ★大容量无损记录:可一次记录数百周期的局部放电信号,数据全部记录在采集设备缓存中,通过专用数据分析软件逐段浏览分析,便于对比。 ★高速实时监测:仪器支持高速实时监测显示,在较长周期的监测过程中,在无损记录的同时,设备可实时读取数据,并经过典型压缩后,进行实时传输和显示,保证用户在第一时间查阅到真实的测量信号波形。 ★典型局部放电信号单波识别分析:设备内置多种标准放电图谱库,可对局部放电信号进行单波对比识别,判断放电类型,方便维护或者维修被测电气设备。 ★智能化图谱学习系统:对于图谱库中未存在的放电类型,可智能学习并保存新图谱,为以后的实验提供分析判断依据。 应用: ★绝缘材料内部放电(固体-空穴;液体-气泡)测试分析; ★电力设备、器材表面放电测试分析; ★高压电极尖端放电测试分析;

交流局部放电原理

交流局放试验 一、使用标准 GB/T 7354-2003 局部放电测量 二、局部放电原理 1、定义及产生原因 在电场作用下,绝缘系统中只有部分区域产生放电,但尚未击穿,这种现象称之为局部放电。局部放电可能发生在导体边上,也可能发生在绝缘体的表面和内部。局部放电产生的原因主要有以下几种: a)电场不均匀; b)电介质不均匀; c)绝缘体中含有气泡或其他杂质。气体的相对电容率接近于1,各种固体、液体介质的相对电容率都比它大1倍以上,而固体、 液体介质的击穿场强一般要比气体介质的大几倍到几十倍,在 绝缘体上施加电压时,绝缘体内部的气泡更容易被击穿,因此 绝缘体中有气泡存在时产生局部放电的最普遍原因。绝缘体中 的气泡可能是产品制造过程中留下来的,也可能是有些设备在 运行过程中的热胀冷缩,在不同材料的分界面上产生裂缝,或 者是材料老化分解出气体造成的。 2、局部放电模拟电路及放电过程简介 假设一个试样含有一个气泡,如图1(a)所示,而对应的等值电路图如图2(b)所示。

(a)含有一个气泡的试样(b)等效电路 图1 局部放电的等效电路 图1(b)中Cc 、Rc代表气泡的电容、电阻;Cb、Rb代表与气泡串联介质的电容、电阻;Ca、Ra代表其他介质的电容、电阻。由于每次放电时间大约为10-8 -10-7 s,是频率很高的脉冲信号,所以,这个信号在上述等值电路中的响应,不需要考虑电阻Ra、Rb、Rc的作用,在等值电路中将其省去,等值电路将由Ca、Cb、Cc所组成。下面局部放电分析将以纯电容组成的等值电路为例。 当平行板电容器电极加上交流工频电压时,气泡上的电容Cb、Cc分压,并随外施电压变化而变化,如图2(a)中虚线U'c 所示。当U'c的值足够大时,气泡上的瞬时电压Uc达到击穿电压Uc B,气泡发生放电,并使气泡中气体电离,产生正负离子或电子。这些带电的质点在电场的作用下,迁移到气泡壁上,形成与外加电压相反的内部电压Uc,如图2(b)所示。这时气泡上的总电压是两者叠加的结果,即气泡上的总电压Ur=Uc B-△Uc

局部放电试验一般步骤

局部放电试验一般步骤 局部放电试验是非破坏性试验项目,从试验顺序而言,应放在所有绝缘试验之后。通常是以工频耐压作为预加电压持续数秒,然后降到局部放电测量电压(一般为Um/√3的倍数,变压器为倍,互感器为~倍),持续时间几分钟,测局部放电量; 预加电压是模拟运行中的过电压(例如雷击),预加电压激发的局部放电量不应由局部放电试验电压所延续,即系统上有过电压时所激发的局部放电量不会由长期工作电压所延续。这一方法是使变压器或互感器在Um/√3长期工作电压下无局部放电量,以保证变压器能安全运行,使局部放电起始电压与局部放电熄灭电压都能高于Um/√3。 具体步骤: 1.选择试验线路确定试验电源 局部放电试验回路的连接方法,应依照国标GB7354-2003《局部放电测量》及行标 DL417-91《电力设备局部放电现场测量导则》进行。 选择试验线路的同时应参考目前拥有试验电源及容量 对试验电源的要求: 电压互感器: 为防止励磁电流过大,电压互感器试验的预加电压,推荐采用150Hz或其它合适频率的试验电源。一般可采用电动机—发电机组产生的中频电源,三相电源变压器开口三角接线产生的150Hz电源,或其它形式产生的中频电源。 当采用磁饱和式三倍频发生器作电源时,因容易造成波形严重畸变,使峰值与真有效值电压之间的幅值关系不是√2倍的倍数关系,可能造成一次绕组实际电压峰值过高,造成试品损坏,故必须在被试品的高压侧接峰值电压表监测电压。 电压波形应接近正弦波形。当波形畸变时,应以峰值除以√2作为试验电压值。 电流互感器: 一般可选用频率为50Hz的试验电源。 变压器: 一般采用50Hz的倍频或其它合适的频率。三相变压器可三相励磁,也可单相励磁。 2、确定局放允许水平选择标准脉冲进行校准 依据DL/T596-1996《电力设备预防性试验规程》和有关反事故技术措施之规定,结合地区局部放电标准和行业标准,确定试品的局部放电允许水平(试验判据)。

局部放电的波形和识别图谱

局部放电的波形和识别图谱( 补充件) A1前言 局部放电电气检测的基本原理是在一定的电压下测定试品绝缘结构中局部放电所产生的高频电流脉冲。在实际试验时,应区分并剔除由外界干扰引起的高频脉冲信号,否则,这种假信号将导致检测灵敏度下降和最小可测水平的增加,甚至造成误判断的重后果。 在某一既定的试验环境下,如区别干扰信号,采取若干必要的措施,以保证测试的正确性,就成为一个较重要的问题。目前行之有效的办法是提高试验人员识别干扰波形的能力,正确掌握试品放电的特征、与施加电压及时间的规律。经验表明:判断正确与否在很大程度上取决于测试者的经验。掌握的波形图谱越多,则识别和解决的法也越快越正确。目前,有用计算机进行频谱分析帮助识别,但应用计算机的先决条件同样需要预知各种干扰波和试品放电波形的特征。现根据我国多年来的实际经验和国外曾经发表过的一些图谱,汇编成文,供参考。应该指出,所介绍的放电波形,多属处理成典型化的图形,不可能包含全部可能发生的容。 A2局部放电的干扰、抑制及识别的法

图A1 干扰及其进入试验回路的途径 Tr —试验变压器;C x —被试品;C k —耦合电容器;Z m —测量阻抗; DD —检测仪;M —邻近试验回路的金属物件;U A —电源干扰; U B —接地干扰;U C —经试验回路杂散电容C 耦合产生的干扰; U D —悬浮电位放电产生的干扰;U E —高压各端部电晕放电的干扰; I A —试验变压器的放电干扰;I B —经试验回路杂散电感M 耦合产生的辐 射干扰;I C —耦合电容器放电的干扰 A2.1干扰类型和途径 干扰将会降低局部放电试验的检测灵敏度,试验时,应使干扰水平抑制到最低水平。干扰类型通常有:电源干扰、接地系统干扰、电磁辐射干扰、试验设备各元件的放电干扰及各类接触干扰。这些干扰及其进入试验回路的途径见图A1 。 a. 电源干扰。检测仪及试验变压器所用的电源是与低压配电网相连的,配电网的各种高频信号均能直接产生干扰。因此,通常采用屏蔽式电源隔离变压器及低通滤波器抑制,效果甚好。 b. 接地干扰。试验回路接地式不当,例如两点及以上接地的接地网系统中,各种高频信号会经接地线耦合到试验回路产生干扰。这种干扰一般与试验电压高低无关。试验回路采用一点接地,可降低这种干扰。

实验 局部放电测量

实验4局部放电测量0 实验目的 了解局部放电产生的基本原理。 学习局部放电的测量方法及仪器的正确使用。 分析局部放电起始电压、视在放电量与设备绝缘质量的关系。 了解各种局部放电信号的特点。 1.局部放电的产生和实验原理 电气设备绝缘内部常存在一些弱点,例如在一些浇注、挤制或层绕绝缘内部容易出 现气隙或气泡。空气的击穿场强和介电常数都比固体介质小,因此在外施电压作用下这 些气隙或气泡会首先发生放电,这就是电气设备的局部放电。放电的能量很弱,不会影 响到设备的短时绝缘强度,但日积月累会引起绝缘老化,最后可能导致整个绝缘在正常 电压下发生击穿。近数十年来,国内外已经越来越重视对设备进行局部放电测量。 图1固体介质内部气隙放电的三电容模型(a)通过气孔的介质剖面(b)等效电路 局部放电的产生机理常用三电容模型来解释,如图1所示。 图中C g代表气隙的电容;C b代表与C g串联部分的介质电容;C a代表其余部分的电容。若在电极上施加交流电压u t,则出现在C g上的电压为u g,即: u = [C b/(C g+C b)]u t= [C b/(C g+C b)]U max sinωt(1) g 因为气隙很小,C g比C b大很多,故u g比u t小很多。局部放电时气隙中的电压和电流变化如图2所示。 u 随u t升高,当u t上升到u s(起始放电电压),u g达到C g的放电电压U g时,C g气隙放g 电,于是C g上的电压很快从U g下降到U r,放电熄灭,则:

U = [C b/(C g+C b)]u c r 式中u c为相应的外施电压;U r为残余电压(0≤U r

实验 局部放电测量

实验4 局部放电测量 0 实验目的 了解局部放电产生的基本原理。 学习局部放电的测量方法及仪器的正确使用。 分析局部放电起始电压、视在放电量与设备绝缘质量的关系。 了解各种局部放电信号的特点。 1.局部放电的产生和实验原理 电气设备绝缘内部常存在一些弱点,例如在一些浇注、挤制或层绕绝缘内部容易出现气隙或气泡。空气的击穿场强和介电常数都比固体介质小,因此在外施电压作用下这些气隙或气泡会首先发生放电,这就是电气设备的局部放电。放电的能量很弱,不会影响到设备的短时绝缘强度,但日积月累会引起绝缘老化,最后可能导致整个绝缘在正常电压下发生击穿。近数十年来,国内外已经越来越重视对设备进行局部放电测量。 图1 固体介质内部气隙放电的三电容模型(a)通过气孔的介质剖面(b)等 效电路 局部放电的产生机理常用三电容模型来解释,如图1所示。 图中C g代表气隙的电容;C b代表与C g串联部分的介质电容;C a代表其余部分的电容。若在电极上施加交流电压u t,则出现在C g上的电压为u g,即:

u g= [C b/(C g+C b)]u t= [C b/(C g+C b)]U max sinωt(1)因为气隙很小,C g比C b大很多,故u g比u t小很多。局部放电时气隙中的电压和电流变化如图2所示。 u g随u t升高,当u t上升到u s(起始放电电压),u g达到C g的放电电压U g时,C g气隙放电,于是C g上的电压很快从U g下降到U r,放电熄灭,则: U r= [C b/(C g+C b)]u c 式中u c为相应的外施电压;U r为残余电压(0≤U r

局部放电试验常规步骤

局部放电试验一般步骤 一、局部放电试验一般步骤 局部放电试验是非破坏性试验项目,从试验顺序而言,应放在所有绝缘试验之后。通常是以工频耐压作为预加电压持续数秒,然后降到局部放电测量电压(一般为Um/√3的倍数,变压器为1.5倍,互感器为1.1~1.2倍),持续时间几分钟,测局部放电量; 预加电压是模拟运行中的过电压(例如雷击),预加电压激发的局部放电量不应由局部放电试验电压所延续,即系统上有过电压时所激发的局部放电量不会由长期工作电压所延续。这一方法是使变压器或互感器在Um/√3长期工作电压下无局部放电量,以保证变压器能安全运行,使局部放电起始电压与局部放电熄灭电压都能高于Um/√3。 具体步骤: 1.选择试验线路确定试验电源 局部放电试验回路的连接方法,应依照国标GB7354-2003《局部放电测量》及行标DL417-91《电力设备局部放电现场测量导则》进行。 选择试验线路的同时应参考目前拥有试验电源及容量 对试验电源的要求: 1.1电压互感器: 为防止励磁电流过大,电压互感器试验的预加电压,推荐采用150Hz或其它合适频率的试验电源。一般可采用电动机—发电机组产生的中频电源,三相电源变压器开口三角接线产生的150Hz电源,或其它形式产生的中频电源。 当采用磁饱和式三倍频发生器作电源时,因容易造成波形严重畸变,使峰值与真有效值电压之间的幅值关系不是√2倍的倍数关系,可能造成一次绕组实际电压峰值过高,造成试品损坏,故必须在被试品的高压侧接峰值电压表监测电压。 电压波形应接近正弦波形。当波形畸变时 ,应以峰值除以√2作为试验电压值。 1.2电流互感器:

一般可选用频率为 50Hz的试验电源。 1.3变压器: 一般采用50Hz的倍频或其它合适的频率。三相变压器可三相励磁,也可单相励磁。 2、确定局放允许水平选择标准脉冲进行校准 依据DL/T 596-1996《电力设备预防性试验规程》和有关反事故技术措施之规定,结合地区局部放电标准和行业标准,确定试品的局部放电允许水平(试验判据)。 确定试验判据以后,可选择标准脉冲进行试验回路的校准。如局放允许水平为50PC,可选择50PC标准脉冲进行校准 3、加压测量 3.1互感器试验: 试验电压应在不大于1/3规定测量电压下接通电源,再开始缓慢均匀上升到预加电压保持10秒后,降到规定测量电压,保持1分钟以上,再读取放电量;最后降到1/3测量电压以下,方能切除电源。 3.2变压器试验: 试验电压应在不大于1/3规定测量电压下接通电源,再开始缓慢均匀上升至规定测量电压,保持5分钟;然后试验电压升到预加电压,5秒后降到规定测量电压,30分钟内无上升趋势时即可降低电压到1/3测量电压以下,切除电源。如对所测量局放不稳定的变压器,应延长测量时间,在不危及变压器安全的前提下,达到局放稳定时为止。对 局放大的变压器,应测量局放的起始放电电压和熄灭放电电压,以便确定故障的性质。 起始放电电压:电压从低值缓慢均匀上升,一直到放电量刚刚超过局放规定值,此时所加电压即为起始放电电压 熄灭放电电压:当电压升过起始放电电压后(一般高10℅),然后将电压缓慢均匀下降,直到放电量刚刚小于局放规定值,此时所加电压即为熄灭放电电压 4、局部放电的观测 读取视在放电量值时应以重复出现的、稳定的最高脉冲信号计算视在放电量。真正的局放信号具有一定的对称性和周期性,偶而出现的较高的脉冲可以忽

局部放电原理

局部放电的产生机理 高压电力设备绝缘内部由于各种原因,存在一些气泡、杂质等。这些气泡、杂质、导体的毛刺等,就是发生局部放电的根源。 一、 绝缘内部含有气泡、杂质的等值电路 一个平行板电容器含有一个气泡,如图1-1(a )所示,而对应的等值电路 图如图1-1(b )所示。 c C b C c R b R a C a R (a ) (b ) 图1-1 局部放电的等效电路 (a )含有一个气泡的试样 (b )等效电路 图1-1(b )中c C 、c R 代表气泡的电容、电阻;b C 、b R 代表与气泡串联介质的电容、电阻;a C 、a R 代表其他介质的电容电阻。由于每次放电时间大约为10-8-10-7s ,是频率很高的脉冲信号,所以,这个信号在上述等值电路中的响应,不需要考虑电阻b c a R R R 、、的作用,在等值电路中将其省去,等值电路将由a b c C C C 、、所组成。下面局部放电分析将以纯电容组成的等值电路为例。 二、局部放电分析 当平行板电容器电极加上交流工频电压时,气泡上的电容c C 、b C 分压,并随外施电压变化而变化,如图1-2(a )中虚线'c u 所示。当'c u 的值足够大时,气泡上的瞬时电压c u 达到击穿电压cB u ,气泡发生放电,并使气泡中气体电离,产生正负离子或电子。这些带电的质点在电场的作用下,迁移到气泡壁上,形成与外加电压相反的内部电压c u ?, 如图1-2(b )所示。这时气泡上的总电压是两者叠加的结果,即气泡上的总电压r u =cB u -c u ?

图1-2 局部放电过程的示意图 (a ) 气泡上的电压;(b )气泡中放电产生的反向电压;(c )放电的脉冲信号 当r u