文档库 最新最全的文档下载
当前位置:文档库 › 高分子化学复习题简答题

高分子化学复习题简答题

高分子化学复习题简答题
高分子化学复习题简答题

第一章绪论

1、与低分子化合物相比,高分子化合物有什么特点?能否用蒸馏的方法提纯高分子化合物?答:与低分子化合物相比,高分子化合物主要特点有:(1)相对分子质量很大,通常在104~106之间;(2)合成高分子化合物的化学组成比较简单,分子结构有规律性;(3)各种合成

聚合物的分子形态是多种多样的;(4)一般高分子化合物实际上是由相对分子质量大小不等

的同系物组成的混合物,其相对分子质量只具有统计平均的意义及多分散性;(5)由于高

分子化合物相对分子质量很大,因而具有与低分子化合物完全不同的物理性质。

不能。由于高分子化合物分子间作用力往往超过高分子主链内的键合力,当温度升高到汽化

温度以前,就发生主链的断裂和分解,从而破坏了高分子化合物的化学结构,因而不能用蒸

馏的方法提纯高分子化合物。

2、何谓相对分子质量的多分散性? 如何表示聚合物相对分子质量的多分散性?

答: 聚合物是相对分子质量不等的同系物的混合物,其相对分子质量或聚合度是一平均值.这

种相对分子质量的不均一性称为相对分子质量的多分散性.相对分子质量多分散性可以用重

均分子量和数均分子量的比值来表示.这一比值称为多分散指数, 其符号为D. 即D =M w/M n.

分子量均一的聚合物其D为1.D越大则聚合物相对分子质量的多分散程度越大.

相对分子质量多分散性更确切的表示方法可用相对分子质量分布曲线表示.以相对分子质量

为横坐标, 以所含各种分子的质量或数量百分数为纵坐标, 即得相对分子质量的质量或数量

分布曲线.相对分子质量分布的宽窄将直接影响聚合物的加工和物理性能.

聚合物相对分子质量多分散性产生的原因注意由聚合物形成过程的统计特性所决定.

3、各举三例说明下列聚合物

(1)天然无机高分子,天然有机高分子,生物高分子。

(2)碳链聚合物,杂链聚合物。

(3)塑料,橡胶,化学纤维,功能高分子。

答:(1)天然无机高分子:石棉、金刚石、云母;天然有机高分子:纤维素、土漆、天然橡胶;

生物高分子:蛋白质、核酸

(2)碳链聚合物:聚乙烯、聚苯乙烯、聚丙烯;杂链聚合物:聚甲醛、聚酰胺、聚酯

(3)塑料:PE、PP、PVC、PS;橡胶:丁苯橡胶、顺丁橡胶、氯丁橡胶、丁基橡胶

化学纤维:尼龙、聚酯、腈纶、丙纶;功能高分子:离子交换树脂、光敏高分子、高分子催化剂

4、什么叫热塑性塑料?什么叫热固性塑料?试各举两例说明。

热塑性塑料是指可反复进行加热软化或熔化而再成型加工的塑料,其一般由线型或支链型聚合物作为基材。如以PE、PP、PVC,PS和PMMA等聚合物为基材的塑料。

热固性塑料是指只能进行一次成型加工的塑料,其一般由具有反应活性的低聚物作基材,在成型加工过程中加固化剂经交联而变为体型交联聚合物。一次成型后加热不能再软化或熔化,因而不能再进行成型加工。其基材为环氧树脂、酚醛树脂、不饱和聚酯树脂和脲醛树脂等。

5、高分子链的结构形状有几种? 它们的物理、化学性质有何不同?

答: 高分子链的形状主要有直线形、支链形和网状体形三种,其次有星形、梳形、梯形等(它

们可以视为支链或体形的特例).

直线性和支链形高分子靠范德华力聚集在一起, 分子间力较弱.宏观物理性质表现为密度小、

强度低.聚合物具有热塑性, 加热可融化, 在溶剂中可溶解. 其中支链形高分子由于支链的存

在使分子间距离较直线形的大, 故各项指标如结晶度、密度、强度等比直线形的低,而溶解性

能更好, 其中对结晶度的影响最为显著.

网状体形高分子分子链间形成化学键, 其硬度、力学强度大为提高. 其中交联程度低的具有

韧性和弹性, 加热可软化但不熔融, 在溶剂中可溶胀但不溶解. 交联程度高的, 加热不软化,

在溶剂中不溶解.

第二章逐步聚合反应

1、连锁聚合与逐步聚合的三个主要区别是什么?

⑴增长方式:连锁聚合总是单体与活性种反应,逐步聚合是官能团之间的反应,官能团可以来自于单体、低聚体、多聚体、大分子

⑵单体转化率:连锁聚合的单体转化率随着反应的进行不断提高,逐步聚合的单体转化率在反应的一开始就接近100%

⑶聚合物的分子量:连锁聚合的分子量一般不随时间而变,逐步聚合分子量随时间的增加而增加

2、从时间~转化率、相对分子质量~转化率关系讨论连锁聚合与逐步聚合间的相互关系与差别。

答:从转化率和时间的关系看:连锁聚合,单体转化率随时间延长而逐渐增加;逐步聚合,反应初期单体消耗大部分,随后单体转化率随时间延长增加缓慢。

从相对分子质量与转化率关系看:连锁聚合,在任何时刻均生成高分子量的聚合物;逐步聚合,反应初期只生成低聚物,随转化率增加,聚合物相对分子质量逐渐增加,高分子量的聚合物需数十小时才能生成。

3、如何用实验测定一未知单体的聚合反应是以逐步聚合还是以连锁聚合机理进行的.

答: 一般可以通过测定聚合物分子质量或单体转化率与反应时间的关系来鉴别. 随反应时间的延长, 相对分子质量逐渐增大的聚合反应属逐步聚合反应. 聚合很短时间后相对分子质量就不随反应时间延长而增大的聚合反应属连锁聚合. 单体迅速转化, 而转化率基本与聚合时间无关的聚合反应属逐步聚合.

4、举例说明链式聚合与加聚反应、逐步聚合与缩聚反应间的关系与区别。

答:绝大多数烯类单体的加聚反应属于连锁聚合,如聚甲基丙烯酸甲酯的合成、聚苯乙烯的合成,都属于加聚和连锁聚合。但反过来,并不是所有的连锁聚合都是加聚反应,如3-甲基-1-丁烯的聚合,反应是连锁聚合,但由于发生氢转移,其最终产物不是加聚物,不属于加聚反应。

绝大多数缩聚反应属于逐步聚合反应。如尼龙-6,6的合成,反过来,不是所有逐步聚合都属缩聚反应,如聚氨酯的合成,属逐步聚合,但产物却是加聚产物。

5、常用的逐步聚合方法有几种?各自的主要特点是什么?

熔融缩聚:

优点:生产工艺过程简单,生产成本较低。可连续法生产直接纺丝。聚合设备的生产能力高。缺点:反应温度高,要求单体和缩聚物在反应温度下不分解,单体配比要求严格;反应物料粘度高,小分子不易脱除。局部过热可能产生副反应,对聚合设备密封性要求高。

适用范围:广泛用于大品种缩聚物,如聚酯、聚酰胺的生产。

溶液缩聚:

优点:溶剂存在下可降低反应温度,避免单体和产物分解,反应平稳易控制。

可与产生的小分子共沸或与之反应而脱除。聚合物溶液可直接用作产品

缺点:溶剂可能有毒,易燃,提高了成本。增加了缩聚物分离、精制、溶剂回收等工序。生产高分子量产品时须将溶剂蒸出后进行熔融缩聚。

适用范围:适用于单体或缩聚物熔融后易分解的产品生产,主要是芳香族聚合物,芳杂环聚合物等的生产。

界面缩聚:

优点:反应聚条件缓和,反应是不可逆的。对两种单体的配比要求不严格。

缺点:必须使用高活性单体,如酰氯。需要大量溶剂。产品不易精制。

适用范围:适用于气液相、液—液相界面缩聚和芳香族酰氯生产芳酰胺等特种性能聚合物。

6、界面聚合体系的基本组成有哪些?对单体有何要求?水相通常为碱性, 原因何在?聚合速率是化学控制还是扩散控制?试举出几种利用界面聚合法进行工业生产的聚合物品种.

答:界面缩聚体系的基本组分有:互不相溶的两种溶剂例如水和CCl4;两种带活泼基团的

单体(通常为二元胺和二酰氯),分别溶于溶剂中,有时还加入表面活性剂(如季铵盐)。

所用单体必须是高活性的含活泼反应基团的双官能团化合物,例如含活泼氢的二元胺或双酚

A与含活泼氯的己二酰氯或光气(Cl-COCl)等。

水相为碱性是为了中和缩聚生成的HCl。从这个意义上说,碱性可提高缩聚率,使缩聚成为

不可逆反应。

由于含活泼氢官能团和酰氯之间的反应极快,故聚合速率主要取决与二胺和二酰氯扩散至两

相界面的扩散速率,因而界面缩聚属扩散控制(物理),为了促进单体在溶剂中的扩散,缩

聚反应常在搅拌下进行。利用界面缩聚进行生产的品种有聚碳酸酯,聚酰胺,聚苯酯和新

型聚间苯二甲酰间苯二胺纤维等。

7、界面缩聚的特点是什么?

⑴界面缩聚是不平衡缩聚,需采用高反应活性的单体,反应可在低温下进行,逆反应的速率很低,甚至为0。属于不平衡缩聚。缩聚中产生的小分子副产物容易除去,不需要熔融缩聚中的真空设备。同时,由于温度较低避免了高温下产物氧化变色降解等不利问题。

⑵反应温度低,相对分子质量高。

⑶反应总速率与体系中单体的总浓度无关,而仅决定于界面处的反应物浓度.只要及时更换界面,就不会影响反应速率。聚合物的相对分子质量与反应程度、本体中官能团物质的量之比关系不大, 但与界面处官能团物质的量有关.

⑷界面缩聚由于需要高反应活性单体,大量溶剂的消耗,使设备体积宠大,利用率低。因此,其应用受到限制。

8、试解释为什么聚氯乙烯在200oC以上加工会使产品颜色变深?为什么聚丙烯腈不能采用

熔融纺丝而只能采用溶液纺丝?

答:聚氯乙烯加入到200℃以上会发生分子内和分子间脱去HCl反应,使主链部分带有共轭

双键结构而使颜色变深。聚丙烯腈在高温条件下会发生环化反应而不会熔融,所以只能采用

溶液纺丝。

9、要控制线形缩聚反应的分子量,可以采取什么措施?

⑴调整两种官能团的配比⑵加入单官能团化合物

10、聚酯化反应制备线形缩聚物,什么情况下是二级反应?什么情况下是三级反应?工业生

产中属于几级反应?

外加酸是二级反应,自催化是三级反应,工业生产中属于二级反应

11、归纳体型缩聚反应的特点及必要而充分的条件;比较p c、p cf、p s三种凝胶点的大小并

解释原因。

答:体型缩聚反应的特点有三:(1)可分阶段进行;(2)存在凝胶化过程;(3)凝胶点之后,

聚合反应速率较线型缩聚反应的反应速率为低。

体型缩聚反应的必要而充分条件有二:至少有一种单体为带有三个或三个以上官能团的

化合物;单体组成的平均官能度必须大于2 。

三种凝胶点的大小顺序为P c﹥P s﹥P cf 。其原因是推导P c时将凝胶化过程时的聚合度

设为无穷大,而实际上仅在100以内;在推导P cf时并未考虑分子内的环化反应以及凝胶化

时实际反应条件对等活性假设的偏离等。

12、与线形缩聚反应相比较, 体形缩聚反应有哪些特点?

答:体形缩聚有以下特点:

(1).缩聚的单体。体形缩聚反应中至少有一种单体是具有三个或三个以上官能度的, 而线形

缩聚反应的单体则是两个官能度。

(2)体形缩聚的过程。体形缩聚过程是随反应程度提高反应分为甲、乙、丙三个阶段。甲、

乙两个阶段均在凝胶点Pc之前. 在体形缩聚反应中凝胶点的预测十分重要, 因为化学合成

必须控制在Pc 之前, 以后的反应需在加工中进行. 而线形缩聚反应如所需产品是高聚物, 反应必须进行到很高的反应程度。

(3)产物结构。前者生成可溶可熔的线形高分子, 后者生成不溶不熔的体形高分子。 13、(4~5例)说明线型聚合物和体型聚合物在构象和性能方面的特点?

⑴ 线型聚合物 线型聚合物它没有支链,可能是锯齿型、无规线团、折叠链或螺旋链。其加热时可熔融,加入溶剂时可溶解。线型聚合物如聚氯乙烯(PVC)、聚苯乙烯(PS) 聚甲基丙烯酸甲酯(PMMA)、聚乙烯(PE)、聚丙烯(PP)聚四氟乙烯(PTFE)、聚碳酸酯(PC)、尼龙(PA)、涤纶(PET)、氯乙烯-醋酸乙烯共聚物(PVC-V AC)、乙烯-醋酸乙烯共聚物(EV A)等等。

⑵ 体型聚合物 体型聚合物它可能是星型、支链型、梳型、梯型或交联大分子。其加热时不能熔融,加入溶剂时不能溶解。体型聚合物如酚醛树脂(PF)、脲醛树脂(VF)、环氧树脂(EP 不饱和聚酯树脂)和聚氨酯(PU)等等。

14、工业上为制备高分子量的涤纶和尼龙-66常采用什么措施?

解答:原料不纯很难做到等摩尔比,工业上为制备高分子量的涤纶先制备对苯二甲酸甲酯,与乙二醇酯交换制备对苯二甲酸乙二醇酯,随后缩聚。

工业上为制备高分子量的尼龙-66先将两单体己二酸和己二胺中和成66盐,利用66盐在冷热乙醇中的溶解度差异可以重结晶提纯,保证官能团的等当量。然后将66盐配成60%的水溶液前期进行水溶液聚合,达到一定聚合度后转入熔融缩聚。 15、解释下列现象:

a) 聚丙稀酰胺在碱性溶液中水解速率逐渐减小. b) 聚丙稀酰胺在酸性溶液中水解速率逐渐增加.

答: (1).因为分子链上已水解的邻近基团-COO-基排斥亲核试剂OH-的进攻.

O 2

OH -CH 2CH CH 2CH CH 2CH

C C C O O O

-

(2).原因是水解生成的羧基与邻近的未水解的酰胺基反应生成酸酐环状过渡态,从而促进了酰胺基中-NH2的离去加速水解。

CH

C O

CH H 2C

O 2

+

CH CH 2CH C C

O O OH

H +, H 2O

+ NH 3

16、不饱和聚酯树脂的主要原料为乙二醇、马来酸酐和邻苯二甲酸酐。试说明三种原料各起什么作用?它们之间比例调整的原理是什么?用苯乙烯固化的原理是什么?如考虑室温固化时可选用何种固化体系?

答:乙二醇、马来酸酐和邻苯二甲酸酐是合成聚酯的原料。其中马来酸酐的作用是在不饱和聚酯中引入双键,邻苯二甲酸酐和马来酸酐的比例是控制不饱和聚酯的不饱和度和以后材料的交联密度的。苯乙烯固化是利用自由基引发苯乙烯聚合并与不饱和聚酯线形分子中双键共聚最终形成体形结构,如考虑室温固化可选用油溶性的过氧化苯甲酰-二甲基苯胺氧化还原体系。

17、写出合成下列聚合物的聚合反应简式(每错一个方程式扣1分):

⑴ 合成天然橡胶 ⑵ 聚3,3’-二氯甲基丁氧环 ⑶ 聚甲基丙烯酸甲酯 ⑷ 聚二甲基硅氧烷 ⑸ 聚甲苯基-2,4-二氨基甲酸丁二醇酯 解

n CH 2 CH C CH 2

CH 3CH 2 CH C CH 2CH 3[]n ⑵

n O CH 2CH 2CH 2C

CH 2Cl CH 2Cl

CH 2Cl

CH 2Cl

CH 2O C []n

CH 2 C CH 3

COOCH 3

[]n n CH 2 C CH 3COOCH 3 ⑷

n HO Si OH H [ O Si ]n OH +(n -1)H 2O

CH 3

CH 3CH 3CH 3

n HO(CH 2)4OH + (n +1) O C N

O C N [

N C H O O(CH 2)4O C N O H

]n CH 3

N C O CH 3

第三章 自由基聚合

1、自由基聚合反应转化率-时间曲线特征

诱导期:初级自由基为阻聚杂质所终止,无聚合物形成,聚合速率零。若严格取除杂质,可消除诱导期。

初期:单体开始正常聚合,转化率在5%~10%以下(研究聚合时)或10%~20%(工业上)以下阶段称初期;此时转化率与时间近似呈线性关系,聚合恒速进行。

中期:转化率达10%~20%以后,聚合速率逐渐增加,出现自动加速现象,直至转化率达50%~70%,聚合速率才逐渐减慢。

后期: 自动加速现象出现后聚合速率逐渐减慢,直至结束,转化率可达90%~100%。 2、自由基聚合与缩聚反应的特征比较 自由基聚合:

1)由基元反应组成,各步反应的活化能不同。引发最慢。 2)存在活性种。聚合在单体和活性种之间进行。 3)转化率随时间增长,分子量与时间无关。 4)少量阻聚剂可使聚合终止。 线形缩聚:

1)聚合发生在官能团之间,无基元反应,各步反应活化能相同。 2)单体及任何聚体间均可反应,无活性种。

3)聚合初期转化率即达很高,官能团反应程度和分子量随时间逐步增大。 4)反应过程存在平衡。无阻聚反应。

3、为什么自由基聚合时聚合物的相对分子质量与反应时间基本无关,缩聚反应中聚合物的相对分子质量随时间的延长而增大?

自由基聚合遵循连锁聚合机理:链增加反应的活化能很低,E p =20~34KJ/mol ,聚合反应一旦开始,在很短的时间内(0.01s~几秒)就有成千上万的单体参加了聚合反应,也就是生成一个相对分子质量几万~几十万的大分子只需要0.01s~几秒的时间(瞬间可以完成),体系中不是聚合物就是单体,不会停留在中间聚合度阶段,所以聚合物的相对分子质量与反应时间基本无关。

缩聚反应遵循逐步聚合机理:单体先聚合成低聚体,低聚体再聚合成高聚物。链增加反应的活化较高,E p =60KJ/mol 生成一个大分子的时间很长,几乎是整个聚合反应所需的时间,缩聚物的相对分子质量随聚合时间的延长而增大。

4、聚合时,聚合物的相对分子质量随时间的变化有何特征?与机理有何关系?单体转化率随时间的变化有何特征?与机理有何关系?

自由基聚合时,聚合物的相对分子质量与时间关系不大。这是因为链增长反应使聚合物的相

对分子质量增加,而链增长反应的活化能很低(Ep≈20~34kJ/mol)链增长反应的速率很高,

生成一个相对分子质量为几万至几十万的大分子的时间非常短只需要0.01s~几秒的时间,

是瞬间完成的,延长时间对聚合物的相对分子质量关系不大。

单体的转化率随聚合时间的延长而增加,这是因为自由基聚合的全过程可以区分为链引发、

链增长、链终止和链转移等四个基元反应,其中引发剂分解活化能Ed较高(约125~150

kJ/mol),链引发速率最慢,是控制整个聚合速率的关键,延长聚合时间主要是为了提高单

体的转化率。

5、分析采用本体聚合方法进行自由基聚合时,聚合物在单体中的溶解性对自动加速效应的

影响。解答:链自由基较舒展,活性端基包埋程度浅,易靠近而反应终止;自动加速现象出

现较晚,即转化率C%较高时开始自动加速。

在单体是聚合物的劣溶剂时,链自由基的卷曲包埋程度大,双基终止困难,自动加速现象出

现得早,而在不良溶剂中情况则介于良溶剂和劣溶剂之间,

6、在自由基聚合反应中,什么条件会出现自动加速现象?试讨论其产生的原因以及促使其

产生和抑制的方法。

答:本体聚合和添加少量溶剂的溶液聚合等反应往往会出现反应自动加速现象。造成自动加

速现象产生的根本原因是随着反应的进行,随转化率的升高体系黏度逐渐升高或溶解性能变

差,造成链终止速率kt变小,活性链寿命延长,体系活性链浓度增大;在非均相本体聚合

和沉淀聚合中,由于活性链端被包裹,链终止反应速率大大下降,也会出现明显的自动加速

现象;在某些聚合反应中,由于模板效应或氢键作用导致链增长速率kp增大,亦会出现反

应自动加速。

反应的自动加速大多由于体系中单位时间内引发的链和动力学终止的链的数目不等造成活

性链浓度不断增大所致。(随着转化率的升高体系黏度升高,导致大分子链端被非活性的分

子链包围或包裹,自由基之间的双基终止变得困难,体系中自由基的消耗速率减少而产生速

率却变化不大,最终导致自由基浓度迅速升高,其结果是聚合反应速率迅速增大,体系温度

升高。其结果又反馈回来使引发剂分解速率加快,又导致自由基浓度的进一步升高。于是形

成循环正反馈,使反应产生自动加速。)若能调节引发剂的种类和用量,使引发剂的分解速

率亦随转化率的升高而递减,则可抑制反应自动加速。此外,选用良溶剂、加大溶剂用量、

提高聚合温度或适当降低聚合物的相对分子质量等,都会减轻反应自动加速程度。反之,则

可使自动加速现象提前发生。例如在甲基丙烯酸价值本体聚合时添加少量聚甲基丙烯酸甲

酯,由于聚合物溶于单体,提高了聚合体系的黏度,导致了自动加速现象提早发生,从而可

缩短聚合反应时间。

7、氯乙烯、苯乙烯、甲基丙烯酸甲酯聚合时,都存在自动加速现象,三者有何差别?氯乙烯悬浮聚合时,选用半衰期适当(例如t1/2=1.5~2.0h)的引发剂或复合引发剂,基本上接近匀速反应,解释其原因。

答:氯乙烯聚合体系为沉淀聚合体系。聚氯乙烯在氯乙烯中虽不溶解,但能溶胀,使活性中心包裹不深,加之聚氯乙烯大分子生成的主要方式是氯乙烯链自由基向氯乙烯单体的转移反应,所以自动加速现象比一般的沉淀聚合体系产生的晚。选用半衰期适当的引发剂或复合引发剂接近匀速反应的原因是自动加速速率和正常聚合速率的衰减正好互补。

苯乙烯、甲基丙烯酸聚合体系为均相聚合体系,但由于单体对聚合物溶解性能的不同,聚合过程中,自动加速现象出现的早晚和表现程度各不相同。苯乙烯是聚苯乙烯的良溶剂,长链自由基在其中处于比较伸展的状态,转化率到30%出现自动加速现象。甲基丙烯酸甲酯是聚甲基丙烯酸甲酯的不良溶剂,长链自由基在其中有一定的卷曲,转化率达10%~15%开始出现自动加速现象。

8、在自由基聚合反应动力学研究中作了那些基本假定,解决了什么问题?(2分) 假定一:链自由基的活性与链长无关,解决了增长速率方程:Rp=kp[M ·][M]

假定二:数均聚合度很大,引发消耗的单体忽略不计,单体消耗在增长阶段,自由基聚合速率等于增长速率,解决了自由基聚合反应速率用增长速率表示

假定三:稳态假定,聚合反应初期,自由基的生成速率等于自由基的消失速率,自由基浓度不变,解决了自由基浓度的表达式。

由假定三,根据具体的引发方式和终止方式,求出自由基的浓度[M ·],如常用的引发剂热引发聚合:

R i =2fk d [I];R t =2k t [M ·]2

;R i =R t

[M ·]=(fk d /k t )1/2[I]1/2

再由假定二和假定一,将自由基浓度[M ·]带入增长速率方程: R p =k p [M ·][M]

= k p (fk d /k t )1/2[I]1/2

[M] 9、请指出在什么条件下自由基聚合反应速率R p 与引发剂浓度c(I)的反应级数为:⑴ 0级;⑵ 0.5级;⑶ 0.5~1级;⑷ 1级 ⑸ 0~0.5级。

答:⑴ 热聚合时,Rp ∝c(I)0,聚合速率与引发剂浓度无关。

⑵ 双基终止时,Rp ∝c(I)0.5,聚合速率对引发剂浓度为0.5级反应。

⑶ 单、双基终止兼而有之时,R p ∝c(I)0.5~

1,聚合速率对引发剂浓度为0.5~1级反应。

⑷ 单基终止时,R p ∝c(I),聚合速率对引发剂浓度为1级反应。

⑸ 选用偶氮苯三苯甲烷引发剂时,R p ∝c(I) 0~

0.5,聚合速率对引发剂浓度为0~0.5级反应。 10、写出下列自由基和单体的活性顺序。 (2分)

自由基的活性: VC ·>B · 单体的活性: B >VC

11、以过氧化二苯甲酰为引发剂, 写出甲基丙烯酸甲酯聚合的历程中各基元反应式。

(1)链引发

H 2C

C(CH 33

PhC O

O O O

2 PhC

O O

O O

2 Ph + CO 2

O

O H 2C

C COOCH 3

CH 3

+

(2)

2

C 链增长O O H 2C

C

3

CH 3

+H 2C

C(CH 3)3

COOCH 3

CH 3

(3)链终止2

偶合终止:CH 2

C

C

CH 3

歧化终止:

2

CH 2CHCH 3

CH C(CH 3)

+

k tc

td

CH 2C

COOCH 3CH 3

COOCH 3

CO OCH 3COOCH 3

3

CH 2C

CHOOCH 3

CH 3

CH 3

CH 3

或:以偶氮二异丁腈为引发剂, 写出氯乙烯聚合的历程中各基元反应式。

(1)链引发(CH 3)2C

N=N CN C(CH 3)2

2(CH 3)2C

+ N 2

CH 2

H 2C

CH +

CH Cl

(CH 3)2C

(CH 3)2C

CN

(2)H 2C

CH Cl

+

2

CH CH 2

CH Cl

(CH 3)2C

CN 链增长

(3)链终止CH 2CH

2

偶合终止:CH 2CH Cl CH CH 2

Cl 歧化终止:CH 2CH

Cl

2

CH 2CH 2Cl

CH CH

Cl

+

k td

12.单体(如苯乙烯)在储存和运输中,常加入阻聚剂.聚合前用何法除去阻聚剂?若取混有阻聚剂的单体聚合,将会发生什么后果?(10)

答: 苯乙烯等单体在储存和运输过程中,为防止其聚合,常加入对-苯二酚等物质作为阻聚剂.聚合前需先用烯NaOH 洗涤, 随后再用水洗至中性, 干燥后减压蒸馏提纯;否则将出现不聚或有明显的诱导期.

13、乙烯进行自由基聚合时,为什么需在高温(130℃~280℃)高压(150MPa ~250MPa )的苛刻条件下进行?

乙烯是烯类单体中结构最简单的单体,它没有取代基,结构对称,偶极矩为0,不易诱导极化,聚合反应的活化能很高,不易发生聚合反应;提高反应温度可以增加单体分子的活性,以达到所需要的活化能,有利于反应的进行。 乙烯在常温、常压下为气体,且不易被压缩液化,在高压250MPa 下,乙烯被压缩,使其密度近似液态烃的密度,增加分子间的碰撞机会,有利于反应的进行。

纯乙烯在300℃以下是稳定的,温度高于300℃,乙烯将发生爆炸性分解,分解为C 、H 2和CH 4等。

鉴于以上原因,乙烯进行自由基聚合时须在高温、高压的苛刻条件下进行。

14、乙烯进行自由基聚合时,为什么得到LDPE ?写出产生长支链和短支链有关的化学反应方程式?

原因 :乙烯高温、高压自由基聚合时,聚乙烯链自由基向聚乙烯大分子的转移反应不能忽略,链转移的结果使聚乙烯大分子产生长支链和C 2~C 4短支链。 有关的化学反应方程式: 分子间转移生成长支链:

~~~CH 2 CH 2 + ~~~CH 2 CH 2~~~

~~~CH 2 CH 3 + ~~~CH 2 CH ~~~

CH 2 CH + m CH 2 CH 2 CH 2 CH

增长

CH 2CH 2

CH 2

CH 2

终止

CH 2 CH CH 2CH 2CH 2CH 2

(支化PE)

分子内转移生成C2~C4短支链:

CH 2 CH 2 CH 2 CH 2 CH 2 CH

2 CH

2CH 2CH 3

CH 2 CH CH 2 CH 2 CH 2 CH CH 3

CH 2 CH 2 CH CH 2 CH 2

CH 3

CH 2

实验证明,在高压PE 大分子中,平均每1000个碳原子内有20~30个乙基或正丁基短支链,有4~10个长支链。

向大分子转移和分子内转移是高压PE 支化的原因。

15、什么叫自由基?自由基有几种类型?写出氯乙烯自由基聚合时链终止反应方程式。

共价键均裂,使均裂的两部分各带一个未成对独电子(自由电子),这些带有未成对独电子的部分(原子、离子或基团)称为自由基。

自由基有三种:原子自由基、基团自由基和离子自由基。 16、甲基丙烯酸甲酯自由基聚合时链终止方式如何?并写出甲基丙烯酸甲酯自由基聚合时歧化终止反应方程式。 甲基丙烯酸甲酯,由于空间位阻较大,以歧化终止为主,随聚合温度的升高,歧化终止的比例增加。甲基丙烯酸甲酯自由基聚合时,歧化终止反应为

R + C CH 2 R

CH 2 C COOCH 3CH 3CH 3

COOCH 3

R CH C

+ C CH R CH 3

COOCH 3

H CH 3 COOCH 3

R CH C H + C CH 2 R

CH 3

COOCH 3 CH 2 COOCH 3

第四章 自由基共聚合

1、根据预聚物性质与结构不同预聚物分为那几种?

根据预聚物性质与结构不同分为:无规预聚物和结构预聚物。 2、写出二元共聚物组成微分方程并讨论其适用的范围?

解答:21112

122

1112222r f f f F r f f f r f +=++,

(或d[M 1]/d[M 2]=[M 1]/[M 2]·{r 1[M 1]+[M 2]}/{r 2[M 2]+[M 1]})

1122121221

,k k r r k k =

=

使用范围:适用于聚合反应初期,并作以下假定。 假定一:体系中无解聚反应。

假定二:等活性。自由基活性与链长无关。

假定三:无前末端效应。链自由基前末端(倒数第二个)单体单元对自由基 活性无影响 假定四:聚合度很大。引发和终止对聚合物组成无影响。

假定五:稳态假定。体系中总自由基浓度和两种自由基浓度都不变

3、什么叫交替共聚物?要制备交替共聚物,对单体的结构有何要求?(2分) 两种结构单元交替排列的共聚物。

两个单体双键的电子密度大小相差得越大越有利于交替共聚 4、什么叫嵌段共聚物?用自由基聚合制备嵌段共聚物,对单体的竞聚率r 1、r 2有什么要求? 各种单体容易自增长,形成M 1一大段、M 2一大段的共聚物 r 1>1;r 2>1

5、按照大分子链的微观结构分类,共聚物分几类?它们在结构上有何区别?各如何制备? 共聚物分为无规共聚物、交替共聚物、嵌段共聚物和接枝共聚物四种。

无规共聚物中两种单体单元无规排列,M 1、M 2连续的单元数不多;交替共聚物中M 1、M 2两种单体单元严格相间排列;嵌段共聚物由较长的M 1链段和另一较长的M 2链段构成的大分子;接枝共聚物主链由一种(或两种)单体单元构成,支链由另一种(或另两种)单体单元构成。

无规共聚物、交替共聚物可由自由基共聚合制备;嵌段共聚物可由阴离子聚合制备;接枝共聚物可由聚合物的化学反应制备。

6、甲基丙烯酸甲酯、丙烯酸甲酯、苯乙烯、马来酸酐、醋酸乙烯、丙烯腈等单体分别与丁二烯共聚,试以交替倾向的次序排列上述单体,并说明原因。

根据r1r2乘积的大小,可以判断两种单体交替共聚的倾向。即r1r2趋向于0 ,两单体发生交替共聚;r1r2越趋于零,交替倾向越大。根据单体的r1、r2和r1r2值上述各单体与丁二烯产生交替共聚的次序为:马来酸酐>丙烯腈>丙烯酸甲酯>甲基丙烯酸甲酯>醋酸乙烯>苯乙烯。

第五章聚合方法

比较自由基聚合的四种聚合方法。

1、悬浮聚合的配方至少有哪几个组分?单靠搅拌能不能得到聚合物颗粒?加入悬浮稳定剂的

目的和作用是什么?常用的悬浮稳定剂有哪几种?影响聚合产物粒径大小因素有哪些?悬浮聚

合的主要缺点是什么?

答:①悬浮聚合的配方一般至少有四个组分,即单体,引发剂,水和悬浮稳定剂。

②搅拌的剪切力可使油状单体在水中分散成小液滴。当液滴分散到一定程度后,剧烈搅拌反

而有利于细小液滴的并和(成大液滴),特别是当聚合反应发生后,由于液滴中含有一定量

的聚合物,此时搅拌增大了这些液滴的碰撞粘结概率,最后导致聚合物结块,所以单靠搅拌

不能得到稳定的悬浮体系,因而体系中必须

③加入悬浮剂,以降低表面张力,使分散的小液滴表面形成一层保护膜,防止彼此并和和相

互粘结,从而使聚合在稳定的悬浮体系中的液滴中进行。如果只加悬浮剂,而不进行搅拌,

则单体就不会自动分散成小液滴;同样不能形成稳定的悬浮体系。

④可作悬浮剂的物质有:水溶性聚合物如聚乙烯醇,明胶和苯乙烯-马来酸酐共聚物等;水

不溶性无机物如磷酸钙,碳酸镁,碳酸钡和硫酸钡等。

⑤影响聚合物粒径的主要因素有:⑴搅拌速率速率越快,液滴越小⑵单体与水的比例越大,

粒径越大⑶悬浮文集的种类及添加量⑷搅拌叶片的宽度及位置。

⑥悬浮聚合的主要缺点为:⑴单位反应器的产量少⑵因聚合珠粒上必附有残余的悬浮稳定剂,其纯度不如本体聚合产物⑶无法进行连续式聚合。

2、什么是乳液聚合?乳液聚合的主要场所是什么?

答:乳液聚合是指借助机械搅拌和乳化剂的作用,使单体分散在水或非水介质中形成稳定的

乳液(粒子直径1.5~5 m)并加入少量引发剂而进行的聚合反应。

乳液聚合的主要场所是表面积很大的增溶胶束。 3、从醋酸乙烯酯单体到维尼纶纤维, 需哪些反应?各反应的要点和关键是什么? 写出反应式. 答:须经自由基聚合反应、醇解反应及缩醛化反应;各步反应要点和关键如下: (a).自由基聚合反应 nCH 2

CH

3

CH 2CH OCOCH 3

n

要点:用甲醇为溶剂进行溶液聚合以制取适当相对分子质量的聚醋酸乙烯酯溶液.

关键: 选择适宜的反应温度, 控制转化率, 用甲醇调节分子量以制得适当相对分子质量,且基本不存在不能被醇解的醋酸乙烯酯侧基. (b).醇解反应:

CH 2CH 3

n

CH 2CH n OH CH 3OH

要点: 用醇、碱或甲醇钠作催化剂, 在甲醇溶液中醇解. 关键: 控制醇解度在98 %以上.

(c). 缩醛化反应(包括分子内和分子间)

H 2CCH

H 2C

CH 2H 2CCH

H 2C

CH O

O

C H 2

要点:用酸作催化剂在甲醛水溶液中反应. 关键: 缩醛化程度必须接近90%

用纤维用和悬浮聚合分散剂用的聚乙烯醇的差别在于醇解度不同.前者要求醇解度高(98%~99%), 以便缩醛化.后者要求醇解度中等(87%~89%), 以使水溶性好. 4、乳液聚合的特点是什么?

⑴ 以水为介质价廉安全,聚合物的相对分子质量可以很高,但体系的粘度可以很低,故有利于传热、搅拌和物料输送,便于连续操作。

⑵ 聚合物胶乳可以作为粘合剂、涂料或表面处理剂等直接利用。

⑶乳液聚合体系中基本上消除了自动加速成现象;乳液聚合的聚合速率可以很高,聚合物的相对分子质量也很高。

⑷用于固体聚合物时需要加电解质破乳、水洗和干燥等工序,过程复杂,生产成本较悬浮聚合高。 ⑸ 产品中的乳化剂难以除净,影响聚合物的电性能。 5、乳液聚合动力学的特点是什么? ⑴ 聚合场所在增溶单体的胶束中。

⑵ 终止方式为链自由基和初级自由基(或短链自由基)的双基终止,可看作单基终止。因此,不存在自动加速现象。

⑶ 无链转移反应,而且是单基终止。因此,Xn=v

⑷ 根据动力学方程,增加乳胶粒的数目N ,可同时提高聚合速率和聚合物的平均聚合度。

A

N N c k R 210(M)

3

p p ?=

ρ

ν2(M)p N c k X n

?==

6、简述理想乳液聚合体系的组分、聚合前体系中的三相和聚合的三个阶段的标志?

理想乳液聚合体系是由难溶于水的单体、介质水、水溶性引发剂和阴离子型乳化剂四部分组成。聚合前体系中有三相:水相、油相和胶束相。 乳液聚合三个阶段的标志:

乳胶粒生成期(增速期):水溶性引发剂,在水相中分解成初级自由基,可使溶于水中的单体迅速引发,形成单体自由基或短链自由基,并进入增溶单体的胶束中继续进行链增长。未增溶单体的胶束消失,乳胶粒数目固定(1014~15),聚合转化率从0达15%。

恒速期:聚合反应在乳胶粒中继续进行链增长,乳胶粒中的单体不断消耗,由单体液滴经水相不断扩散而加以补充。单体液滴仍然起供应单体的仓库的作用,至单体液滴消失。由于乳胶粒数目固定,其中单体浓度恒定,聚合速率恒定。此时,乳胶粒中单体和聚合物各点一半,称为单体-聚合物乳胶粒,聚合转化率从15% 达50%。

降速期:当转化率达50%左右时,单体液滴全部消失,单体液滴中单体全部进入乳 胶粒,形成单体聚合物乳胶粒。单体液滴的消失标志着聚合的第二阶段的结束和第三阶段的开始,此时再无单体补充,聚合只能消耗单体聚合物乳胶粒中的单体,随聚合反应的进行,单体浓度的降低,聚合速率降低,直至单体耗尽,聚合结束,最后形成聚合物乳胶粒。 第六章 离子聚合

1、阴离子活性聚合的最重要的两个应用是什么?(2分) 制备单分散聚合物;制备嵌段共聚物

2、能进行阴离子聚合的单体有哪些?

答:能进行阴离子聚合的单体包括三种类型: (1)带吸电子取代基的-α烯烃;(2)带共轭取代基的-α烯烃;

(3)某些含杂原子(如O 、N 杂环)的化合物如环氧乙烷、环氧丙烷、四氢呋喃等(既可进行阴离子聚合,也可进行阳离子聚合)。

3、将下列单体和引发剂进行匹配,并说明聚合反应类型。

单体:CH 2=CHC 6H 5;CH 2=CHCl ;CH 2=C(CH 3)2;CH 2=C(CH 3)COOCH 3 引发剂:(C 6H 5CO 2)2;萘钠;BF 3 + H 2O ;Ti(OEt)4+AlEt 3

解答:CH 2=CHC 6H 5 以(C 6H 5CO 2)2引发属于自由基聚合,以萘钠引发属于阴离子聚合,以BF 3 +H 2O 引发属于阳离子聚合,但是副反应多,工业上较少采用,用Ti(OEt)4+AlEt 3进行配位阴离子聚合;CH 2=CHCl 以(C 6H 5CO 2)2引发属于自由基聚合,除此之外,不可发生阴、阳离子聚合反应;CH 2=C(CH 3)2以BF 3 + H 2O 引发属于阳离子聚合,并且该单体只可发生阳离子聚合;CH 2=C(CH 3)COOCH 3以(C 6H 5CO 2)2引发属于自由基聚合,以萘钠引发属于阴离子聚合,不可发生阳离子聚合。

4

5、下列烯类单体适于何种机理聚合(自由基聚合,阳离子聚合,阴离子聚合)?简述原因。 (1)CH 2=CHCl ; (2)CH 2=CHC 6H 5;(3)CH 2=C(CH 3)2;(4)CF 2=CFCl ; (5)CH 2=C(CN)COOR ;(6)CH 2=CHNO 2;(7)CH 2=CH-CH=CH 2; 答:(1)和(4)均适于自由基聚合,因Cl 原子的吸电性和共轭效应均较弱,F 原子体积很小可视同H 原子看待。

(2)和(7)均可进行自由基聚合、阳离子聚合和阴离子聚合。因为共轭体系π电子的容易极化和流动。

(3)适于阳离子聚合,因CH3为供电子基团,CH3与双键有超共轭效应。

(5)适于阴离子和自由基聚合,因有两个吸电子基团,并兼有共轭效应。

(6)适于阴离子聚合,因有NO2是强个吸电子基团,并兼有共轭效应。

6、什么是自由基聚合、阳离子聚合和阴离子聚合?

解:自由基聚合:通过自由基引发进行链增长得到高聚物的聚合反应。

阴离子聚合:由阴离子引发并进行增长的聚合反应。

阳离子聚合:由阳离子引发并进行增长的聚合反应。

7、与自由基聚合相比较,试说明离子聚合反应在引发剂种类、单体结构的特征和溶液剂性质等三方面的特征?

离子型聚合与自由基聚合都属连锁聚合的范畴,但两者有很大差别。

⑴引发剂种类自由基聚合的引发剂是易产生自由基的物质如过氧化物,偶氮化合物。而离子聚合的引发剂是“酸”或“碱”等,易产生离子的物质。

⑵单体结构自由基聚合的单体是含有弱的吸电子取代基和共轭取代基的烯类单体.阴离子聚合的单体是含有强的吸电子取代基和共轭取代基的烯类单体.阳离子聚合的单体是含有强的推电子取代基和共轭取代基的烯类单体。

⑶溶剂的性质在自由基聚合中,溶剂的引入降低了单体浓度,从而降低了聚合速率;由于链自由基向溶剂的转移反应,降低了聚合物的相对分子质量.在离子聚合中,溶剂的引入不仅降低了单体的浓度,还严重影响着增长活性中心的形态和结构,从而影响聚合速率和聚合物的相对分子质量及其分布,同时还影响着聚合物的立构规整性。

第七章配位聚合

1、下列单体进行配位聚合后,写出可能的立构规整聚合物的结构式,并说明通过哪种聚合

反应历程可以得到相应的立构规整度高的聚合物。

① CH2=CH-CH3 ②

CH2=CH-CH=CH2

答: ① CH2=CH-CH3

可能的立构规整聚合物:

(1) 全同立构

CH2

CH2

3

CH2

3

3

(2) 间同立构

CH2CH2

CH3

CH CH2

CH3

CH3

CH2CH

CH3 (3) 无规立构

CH2CH2

CH3

CH CH2

CH3

CH3

CH2

CH3

通过配位聚合能够得到立构规整高的聚合物.

② CH2=CH-CH=CH2

可能的立构规整聚合物:

(1)1,2 加成

CH2CH

CH

2

又分为全同立构,间同立构和无规立构三种情况(2) 反式1,4加成

CH2

C H C CH2 H

(3) 顺式1,4 加成

CH2

C H C CH2 H

通过配位聚合可得到立构规整度高的聚合物.

第八章聚合物的化学反应

1.聚合物化学反应有哪两种基本类型?

答:(1)相对分子质量基本不变的反应,通常称为相似转变。仅限于侧基或端基反应等。(2). 相对分子质量变大变小的反应, 如交联、接枝、嵌段、扩链、降解、老化等.

2、简述聚合物老化的原因

答: 聚合物或其制品在使用或贮存过程中, 由于环境的影响,其性能逐渐变坏(变软发黏或变硬变脆)的现象统称为聚合物的老化. 导致老化的原因主要是力、光、热、氧、潮气、霉及化学试剂的侵蚀等许多因素的综合作用.

3、有些聚合物老化后龟裂变黏, 有些则变硬发脆. 这是为什么?

答: 聚合物老化后降解为较低相对分子质量产物时则变黏. 聚合物老化后分子间发生交联时则易变硬发脆.

4、聚合物降解有几种类型?热降解有几种情况?

答:聚合物的降解有热降解、机械降解、超声波降解、水解、化学降解、生化降解、光氧化降解、氧化降解等.

热降解有解聚、无规断链和取代基的消除反应等.

5、简要说明物理因素(结晶度、溶解性、温度)对聚合物化学反应的影响.

答: (1)结晶性:对于部分结晶的聚合物而言,由于在其结晶区域(即晶区)分子链排列规整,分子链间相互作用强,链与链之间结合紧密,小分子不易扩散进晶区,因此反应只能发生在非晶区;

(2)溶解性:聚合物的溶解性随化学反应的进行可能不断发生变化,一般溶解性好对反应有利,但假若沉淀的聚合物对反应试剂有吸附作用,由于使聚合物上的反应试剂浓度增大,反而使反应速率增大;

(3)温度:一般温度提高有利于反应速率的提高,但温度太高可能导致不期望发生的氧化、裂解等副反应.

6、聚乳酸OCH2(CH3)2C

O

n为什么作为外科缝合线,伤口愈合后不必拆除?

答: 因聚乳酸在体内易水解为乳酸, 由代谢循环排出体外.

7.用化学反应式说明离子交换树脂的制备过程.

答:

H 2C CH +

H 2C CH

CH H 2

C 体型共聚物小珠

3-H +

(阳离子交换树脂)

CH 2Cl

23Cl -

(阴离子交换树脂)

8.何谓离子交换树脂?写出合成强酸型阳离子交换树脂有关化学反应方程式。

nCH 2 CH + mCH CH CH 2 CH CH 2 CH CH 2 CH

CH 2 CH CH 2 CH CH 2 CH

CH 2 CH CH 2

CH

CH 2 CH CH 2 CH 2 CH CH 2 CH + H 2O 2 CH

SO 3H

9、试说明离子交换树脂在水的净化和海水淡化方面的应用?

离子交换树脂可以净化水和使海水淡化,因为当水或溶液通过阳离子交换树脂后,水中的阳离子Na +, Ca 2+,Mg 2+等进入到树脂上,树脂上的H +进入到水中或溶液中,因而,水中的阳离子只剩下H +;而后再将水通过阴离子交换树脂,水中的阴离子Cl -,CO 2-,SO 42-等进入到树脂中,树脂上的OH -进入到水中或溶液中,因而水中的阴离子只剩下OH -从而使水净化,海水淡化。用离子交换树脂处理过的水称为去离子水,它在工业、实验室和锅炉用水得到广泛应用。用离子交换树脂处理水比用蒸馏方法效率高,设备简单,节约电能。

10、什么是功能高分子材料? 试举出5种以上的按功能不同划分的功能高分子材料. 答: 功能高分子材料主要指那些能对物质、能量和信息具有传递转换或贮存作用的高分子材料。它分为两大类,即结构型功能高分子和复合型功能高分子.?

(1)具有化学活性的功能高分子,如高分子试剂、高分子催化剂、固定酶、离子交换树脂等;

(2)具有光学性能的功能高分子,如感光树脂、光刻胶、液晶高分子等;

(3)具有电学性能的功能高分子,如导电高分子、热电高分子、光电高分子等;(4) 具有导磁性能的高分子,如磁性塑料、磁性橡胶等;

(5)具有声学性能的功能高分子,如声电换能高分子,吸噪声防震高分子等; (6)具有热响应性能的功能高分子,如形状记忆高分子等;

(7)具有医疗作用的功能高分子,如高分子医药、高分子人工脏器等

中北大学高分子化学课程试题答案

中北大学高分子化学课程试题答案 试题编号: 01 (A ) 课程代号: 2040301 课程学时: 56 一、基本概念题(共15分,每题3分) ⒈聚合物的化学反应 天然聚合物或由单体经聚合反应合成的聚合物为一级聚合物,若其侧基或端基为反应性基团,则在适当的条件下可发生化学反应,从而形成新的聚合物(为二级聚合物),由一级聚合物变为二级聚合物的 化学反应,谓之。 ⒉缩聚反应 含有两个或两个以上官能团的低分子化合物,在官能团之间发生反应, 缩去小分子的同时生成高聚物的可逆平衡反应,谓之。 ⒊乳化作用 某些物质能降低水的表面张力,能形成胶束,胶束中能增溶单体,对单体液滴有保护作用,能使单 体和水组成的分散体系成为稳定的难以分层的乳液,这种作用谓之。 ⒋动力学链长 一个活性中心,从引发开始到真正终止为止,所消耗的单体数目,谓之。 ⒌引发剂半衰期 引发剂浓度分解至起始浓度的一半所需的时间,谓之。 二、填空题(共20分,每空1分) ⒈自由聚合的方法有本体聚合、悬浮聚合、溶液聚合和乳液聚合。 ⒉逐步聚合的方法有熔融缩聚、溶液缩聚、界面缩聚和固相缩聚等。 ⒊聚氨酯大分子中有氨基甲酸酯基、异氰酸酯基、脲基甲酸酯基和缩二脲 基等基团。 ⒋聚合反应按反应机理可分为连锁聚合、逐步聚合、开环聚合和聚合物的 化学反应。 ⒌聚合物按大分子主链的化学组成可分碳链聚合物、杂链聚合物、元素有机聚合物和无 机聚合物。 三、简答题(共20分每题5分) ⒈乳液聚合的特点是什么? ⑴以水为介质价廉安全,乳液聚合中聚合物的相对分子质量可以很高,但体系的粘度可以很低,故有利于传热,搅拌和物料输送,便于连续操作。 ⑵聚合物胶乳可以作为粘合剂、涂料或表面处理剂等直接利用。 ⑶用于固体聚合物时需要加电解质破乳、水洗和干燥等工序,工艺过程较复杂,生产成本较 悬浮聚合高。 ⑷乳液聚合体系中基本上消除了自动加速成现象;乳液聚合的聚合速率可以很高,聚合物的 相对分子质量也很高。 ⑸产品中的乳化剂难以除净,影响聚合物的电性能。 ⒉乙烯进行自由基聚合时,为什么得到低密度PE?写出产生长支链和短支链有关的化学反应 方程式? 原因:乙烯高温、高压自由基聚合时,聚乙烯链自由基向聚乙烯大分子的转移反应不能忽略, 链转移的结果使聚乙烯大分子产生长支链和C2~C4短支链。

高分子化学试卷4答案

《高分子化学》模拟试题(四)答案 一、名词解释(共15分,每小题3 分,) 1.聚合物的无规热降解:对于一般聚合物而言,其使用温度的最高极限为150℃,如超过150℃可能发生降解反应。聚合物在热的作用下大分子链发生任意断裂,使聚合度降低,形成低聚体,但单体收率很低(一般小于3%),这种热降解称为无规降解。⒉缩合反应和缩聚反应:缩合反应——含有一个官能团的化合物,在官能团之间发生反应,缩去一个小分子生成新的化合物的可逆平衡反应。缩聚反应——而含有两个(或两个以上)官能团的化合物,在官能团之间发生反应,在缩去小分子的同时,生成高聚物的可逆平衡反应。 2.. 乳化剂的临界胶束浓度CMC:乳化剂能够形成胶束的最低浓度,称为临界胶束浓度,记作CMC。 3.凝胶点:体型缩聚反应进行到一定程度时,体系黏度将急剧增大,迅速转变成不溶、不熔、具有交联网状结构的弹性凝胶的过程,即出现凝胶化现象。此时的反应程度叫凝胶点。 4.共聚合和共聚物:两种或两种以上单体混合物,经引发聚合后,形成的聚合物其大分子链中,含有两种或两种以上单体单元的聚合过程,称为共聚合反应,。大分子链中,含有两种或两种以上单体单元的聚合物,称为共聚物 5.聚醚型聚氨酯:以二异氰酸酯和端羟基聚醚为原料,经逐步加成聚合反应形成的大分子链中含有氨基甲酸酯基和聚醚链段的一类聚氨酯。 二、填空题(共20分,每空1分)

⒈ 阴离子聚合的单体有 丙烯腈 、偏二腈基乙烯、偏二氯乙烯 和 甲基丙烯酸甲酯 等。 ⒉ 聚合物降解的原因有 热降解 、 化学降解 、 机械降解 和聚合物的老化四种。 ⒊ 乳化剂有 阴离子型 、 阳离子型 、 两性 和 非离子型 四种。 ⒋ 阳离子聚合的引发体系有 含氢酸 、 Lewis 和 有机金属化合物 等。 ⒌ 逐步聚合反应包括 缩聚 和 逐步加成聚合 两类。 ⒍ 聚合物聚合度变大的化学反应有 扩链反应 、 交联反应 和 接枝反应 等。 三、简答题(共20分,每题5分,简答下列各题) ⒈ 写出下列常用引发剂的结构式和分解反应式: ⑴ 偶氮二异庚腈 ⑵ 氢过氧化异丙苯 并说明这些引发剂的引发活性和使用场合。 解:⑴ 偶氮二异庚腈(2分) 油溶液性、高活性,适用于本体聚合、悬浮聚合和溶液聚合。 ⑵ 氢过氧化异丙苯 2CH 3 CH CH 2 C + N CH 3CH 3CN CH 3 CH CH 2 C N N C CH 2 CH CH 3 CH 3CH 3CH 3CH 3 CN CN

高分子化学试题库

1 高分子化学试题库 一、基本概念题 聚合物的化学反应天然聚合物或由单体经聚合反应合成的聚合物为一级聚合物,若其侧基或端基为反应性基团,则在适当的条件下可发生化学反应,从而形成新的聚合物(为二级聚合物),由一级聚合物变为二级聚合物的化学反应,谓之。 缩聚反应含有两个或两个以上官能团的低分子化合物,在官能团之间发生反应, 缩去小分子的同时生成高聚物的可逆平衡反应,谓之。 乳化作用某些物质能降低水的表面张力,能形成胶束,胶束中能增溶单体,对单体液滴有保护作用,能使单体和水组成的分散体系成为稳定的难以分层的乳液,这种作用谓之。 动力学链长一个活性中心,从引发开始到真正终止为止,所消耗的单体数目,谓之。 引发剂半衰期引发剂浓度分解至起始浓度的一半所需的时间,谓之。 离子交换树脂离子交换树脂是指具有反应性基团的轻度交联的体型无规聚合物,利用其反应性基团实现离子交换反应的一种高分子试剂。 界面缩聚反应将两种单体分别溶于两种互不相溶的溶剂中,形成两种单体溶液,在两种溶液的界面处进行缩聚反应,并很快形成聚合物的这种缩聚称为界面缩聚。 阴离子聚合增长活性中心是带负电荷的阴离子的连锁聚合,谓之。 平均聚合度平均一个大分子链上所具有的结构单元数目,谓之。 阻聚剂某些物质能与初级自由基和链自由基作用生成非自由基物质,或生成不能再引发单体的低活性自由基,使聚合速率为0, 这种作用称为阻聚作用。具有阻聚作用的物质,称为阻聚剂。 平衡缩聚:缩聚反应进行一段时间后,正反应的速率与逆反应的速率相等,反应达到平衡,平衡时生成物的浓度的乘积与反应物浓度的乘积之比是个常数(称为平稳常数),用K表示。该种缩聚反应谓之。 无定型聚合物:如果聚合物的一次结构是复杂的,二次结构则为无规线团,无规线团聚集在一起形成的聚合物谓之。 反应程度P:已参加反应的官能团的物质的量(单位为mol)占起始官能团的物质的量的百分比,称为反应程度,记作P。 杂链聚合物:大分子主链中除碳原子外,还有O、S、N、P、S i和苯环等杂原子的聚合物。交替共聚物:共聚物大分子链中两种单体单元严格相间排列的共聚物。 体型缩聚的凝胶点Pc:体型缩聚中出现凝胶时的反应程度叫凝胶点,或称临界反应程度,记作Pc 。 引发剂的引发效率f:引发剂分解产生初级自由基,但初级自由基不一定都能引发单体形成单体自由基,用于引发单体形成单体自由基的百分率,称为引发剂的引发效率,记作f,(f <1=。 向大分子转移常数Cp:链自由基可能向已形成的大分子发生转移反应。转移结果,链自由基形成一个大分子,而原来的大分子变为一个链自由基。Cp=ktr,p/kp,它表征链自由基向大分子转移速率常数与增长速率常数之比。 逐步加成聚合反应:形成大分子的方式如同连锁聚合那样是通过单体反复加成而进行的,而动力学过程如同缩聚那样是随着反应时间的延长聚合物的相对分子质量逐步增大,聚合物的结构酷似缩聚物。 聚合度变大的化学反应:聚合物的扩链、嵌段、交联和接枝使聚合物聚合度增大,称为聚合度变大的化学反应。 聚合物相对分子质量稳定化法:聚合物相对分子质量达到要求时,加入官能团封锁剂,使缩聚物两端官能团失去再反应的能力,从而达到控制缩聚物相对分子质量的目的的方法。乳化

高分子化学考试模拟试卷及参考答案

高分子化学导论考试模拟试题 一、 写出合成下列高聚物一般常用的单体及由单体生成聚合物的反应式,指出反应所属类型(自由基型、阳离子型、阴离子型、共聚等反应中任何一种即可,对于需要多步反应的,可分步注明反应类型),并简要描述该高聚物最突出的性能特点。 1.丁腈橡胶; 解:单体为:H2C C H C H CH2 和 H2C CH CN 自由基聚合反应 H2C C H C H CH2+H2C CH CN H2 C C H C H H2 C H2 C H C CN m n AIBN 耐油性极好,耐磨性较高,耐热性较好,粘接力强。 2. 氯磺化聚乙烯; 解:反应式: CH2CH2 Cl2,SO2 -HCl CH2CHCH2CH2 SO2Cl 优异的耐臭氧性、耐大气老化性、耐化学腐蚀性等,姣好的物理机械性能、耐老化性能、耐热及耐低温性、耐油性、耐燃性、耐磨性、及耐电绝缘性。 3. 聚环氧乙烷; 解:阴离子开环聚合(醇钠催化)或者阳离子开环聚合(Lewis酸或者超强酸催化) H2C O CH2CH 2 CH2O n 良好的水溶性和生物相容性。4.SBS三嵌段共聚物;

解:阴离子聚合 m H2C CH RLi H2 C H C R Li m n H2C C H C H CH2 H2 C CH R H2 C m C H C H H2 C Li n p H2C CH H2 C CH R H2 C m C H C H H2 C H2 C n H C Li p 双阴离子引发: 2m H2C CH ,Na n H2C C H C H CH2 H2 C C H C H H2 C Na Na H2 C CH H2 C m C H C H H2 C H2 C n H C p 具有优良的拉伸强度,表面摩擦系数大,低温性能好,电性能优良,加工性能好等特性,成为目前消费量最大的热塑性弹性体。 5. 环氧树脂(双酚A型); 解:缩聚反应,单体 HO C CH3 CH3OH 和 H2C H C O CH2Cl 反应式:

高分子化学试题合辑附答案

《高分子化学》课程试题 得分 一、基本概念(共15分,每小题3分) ⒋动力学链长 ⒌引发剂半衰期 二、填空题(将正确的答案填在下列各题的横线处)( 每空1 分,总计20分) ⒈自由聚合的方法有本体聚合、溶液聚合、乳液聚合和悬浮聚合。 ⒉逐步聚合的方法有熔融缩聚、溶液缩聚、固相缩聚和界面缩聚。 ⒊聚氨酯大分子中有、、 和基团。 ⒋聚合反应按反应机理可分为连锁聚合、逐步聚合、 开环聚合和聚合物之间的化学反应四类。 ⒌聚合物按大分子主链的化学组成碳链聚合物、杂链聚合物、元素无机聚合物和元素有机聚合物四类。 得分 三、简答题(共20分,每小题5分) ⒈乳液聚合的特点是什么 ⒊什么叫自由基自由基有几种类型写出氯乙烯自由基聚合时链终止反应方程式。 四、(共5分,每题1分)选择正确答案填入( )中。 ⒈自由基共聚合可得到( 1 4 )共聚物。 ⑴无规共聚物⑵嵌段共聚物⑶接技共聚物⑷交替共聚物 ⒉为了得到立构规整的PP,丙烯可采用( 4 )聚合。 ⑴自由基聚合⑵阴离子聚合⑶阳离子聚合⑷配位聚合

⒊工业上为了合成聚碳酸酯可采用( 1 2 )聚合方法。 ⑴熔融缩聚⑵界面缩聚⑶溶液缩聚⑷固相缩聚 ⒋聚合度基本不变的化学反应是( 1 ) ⑴PVAc的醇解⑵聚氨酯的扩链反应⑶高抗冲PS的制备⑷环氧树脂的固化 ⒌表征引发剂活性的参数是( 2 4 ) ⑴k p(⑵t1/2⑶k i⑷k d 五、计算题(共35分,根据题目要求计算下列各题) ⒈(15分)用过氧化二苯甲酰(BPO)作引发剂,60℃研究甲基丙烯酸甲酯的本体聚合。 已知:C (偶合终止系数)=;D (歧化终止系数)=; f =; k p=×102 L/ ;k d =×10-6 s-1; k t=×106 L/ ;c(I)=mol / L; C M=×10-5;C I=2×10-2; 甲基丙烯酸甲酯的密度为g./ cm3; X。 计算:聚甲基丙烯酸甲酯(PMMA)的平均聚合度 n 《高分子化学》课程试题 一、基本概念(共14分,5. 2分, 其余3分) ⒋自由基共聚合反应 ⒌引发剂 二、填空题(将正确的答案填在下列各题的横线处)( 每空1 分,总计20分) ⒈自由聚合的单体有、、和等。 ⒉单体可分为、和三大类。 ⒊表征乳化剂性能的指标是、和。 ⒋阴离子聚合的引发体系有强碱、碱金属和碱金属配合物。 ⒌某些聚合物按大分子主链中含的特征基团可命名为聚酯、聚酰胺、和 聚醚聚合物等。

高分子化学试题及答案汇总

一、名词解释 1、热塑性聚合物:聚合物大分子之间以物理力聚而成,加热时可熔融,并能溶于适当溶剂中。热塑性聚合物受热时可塑化,冷却时则固化成型,并且可以如此反复进行。 2、热固性聚合物:许多线性或支链形大分子由化学键连接而成的交联体形聚合物,许多大分子键合在一起,已无单个大分子可言。这类聚合物受热不软化,也不易被溶剂所溶胀。 3、官能度:一分子聚合反应原料中能参与反应的官能团数称为官能度。 4、自动加速现象:聚合中期随着聚合的进行,聚合速率逐渐增加,出现自动加速现象,自动加速现象主要是体系粘度增加所引起的。 5、动力学链长:每个活性种从引发阶段到终止阶段所消耗的单体分子数定义为动力学链长,动力学链在链转移反应中不终止。 6、胶束成核:在经典的乳液聚合体系中,由于胶束的表面积大,更有利捕捉水相中的初级自由基和短链自由基,自由基进入胶束,引发其中单体聚合,形成活性种,这就是所谓的胶束成核。 7、笼蔽效应:在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基始终处于含大量溶剂分子的高黏度聚合物溶液的包围之中,一部分初级自由基无法与单本分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低。 8、引发剂效率:引发聚合部分引发剂占引发剂分解消耗总量的分率称为引发剂效率。 9、活性聚合:当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。 10、竞聚率:是均聚和共聚链增长速率常数之比,r1=k11/k12,r2=k22/k21,竞聚率用来直观地表征两种单体的共聚倾向。 11、阻聚剂:能够使每一自由基都终止,形成非自由基物质,或形成活性低、不足以再引发的自由基的试剂,它能使聚合完全停止。 12、凝胶点:多官能团单体聚合到某一程度,开始交联,粘度突增,气泡也难上升,出现了所谓凝胶,这时的反应程度称做凝胶点。 13、反应程度:参加反应的官能团数占起始官能团数的分率。 14、半衰期:物质分解至起始浓度(计时起点浓度)一半时所需的时间。 二、填空题 1.尼龙66的重复单元是-NH(CH2)6NHCO(CH2)4 CO- 。 2.过氧化苯甲酰可作为的自由基聚合的引发剂。 3.自由基聚合中双基终止包括岐化终止和偶合终止。 4.聚氯乙烯的自由基聚合过程中控制聚合度的方法是控制反应温度。 5.苯醌可以作为自由基聚合以及阳离子聚合的阻聚剂。 6.竞聚率是指单体均聚和共聚的链增长速率常数之比(或r1=k11/k12, r2=k22/k21) 。 7.邻苯二甲酸和甘油的摩尔比为1.50 : 0.98,缩聚体系的平均官能度为 2.37 ;邻苯二甲酸酐与等物质量 的甘油缩聚,体系的平均官能度为 2 (精确到小数点后2位)。 8、聚合物的化学反应中,交联和支化反应会使分子量变大而聚合物的热降解会使分子量变小。 9、己内酰胺以NaOH作引发剂制备尼龙-6 的聚合机理是阴离子聚合。 10.一对单体共聚时,r1=1,r2=1,其共聚行为是理想共聚。 11.两对单体可以共聚的是①Q和e值相近②Q值相近而e值相差大; 12在高分子合成中,容易制得有实用价值的嵌段共聚物的是阴离子活性聚合 13、乳液聚合的第二个阶段结束的标志是单体液滴的消失; 14、自由基聚合实施方法中,使聚合物分子量和聚合速率同时提高,可采用乳液聚合聚合方法。 6、自基聚合的特点:慢引发,快增长,速终止; 7、引发剂效率小于1的原因是( 诱导分解)和(笼壁效应)。 8、聚合方法分为两大类,大多数乙烯基单体发生连锁聚合,大多数非乙烯基单体发生逐步聚合。 9、玻璃化温度是无定形聚合物的使用上限温度;玻璃化温度是橡胶使用的下限温度;熔点是结晶聚合物的使用上限温度。 10、链锁聚合反应一般由链引发、链增长、链终止等基元反应组成。(顺序错不扣分) 11、根据自由基聚合机理,自由基聚合体系内往往由单体和聚合物两部分组成。

《高分子化学》课程试题答案

《高分子化学》课程试题答案 试题编号: 05 (B ) 课程代号: 2040301 课程学时: 56 一、基本概念题(共10分,每题2分) ⒈ 聚酰胺化反应:二元胺与二元羧酸缩聚,缩去小分子水形成聚酰胺的聚合反应。 ⒉ 悬浮聚合:溶有引发剂的单体,借助于悬浮剂的悬浮作用和机械搅拌,使单体以小液滴的形式分散在介质水中而聚合为高聚物的过程。 ⒊ 阴离子型乳化剂的临界胶束浓度:阴离子型乳化剂,在某一温度下,形成胶束的最低浓度,记作用CMC 。。⒋ 非均相溶液聚合:单体溶于溶剂中,聚合物不溶于该溶剂中而沉淀出来, 该聚合体系为非均相溶液聚合体系。⒌ 光引发聚合:不加引发剂,烯类单体在光的作用下,形成单体自由基而聚合的过程称为热引发聚合,简称光聚合。 二、问答题(共20分,每小题5分,根据题目要求简答下列各题) ⒈(5分)以偶氮二异庚腈为引发剂写出苯乙烯自由基聚合时有关的基元反应方程式。 CH 3 C N N C CH 3 2 CH 3 C + N CH 3CN CH 3CH 3CN CN CH 3 C CH 3CN CH 3 C CH 2 CH CH 3CN + CH 2 CH n C H 2 CH +CH 3 C CH 2 CH CH 3CN CH 2 CH CH 3 C CH 2 CH CH 3 CN []n 2CH 2 CH CH 3 C CH 2 CH CH 3 CN []n

C []n CH 2 CH CH 3 C CH 2 CH CH 3CN []n CH CH 2 CH CH 2 CH 3 CN CH 3 ⒉ (5分)为什么自动加速现象使聚合反应的速率和聚合物的相对分子质量增加? 自动加速的原因是随着反应的进行,体系粘度渐增或链自由基溶解性能变差,链段重排受阻,活性中心被包埋,双基终止困难;而此时,单体的扩散未受阻碍,链增长反应不受影响,造成k t 变小,k p 基本不变,21t p )(/k k 增大。 聚合速率方程和动力学链长方程中都有21t p )(/k k 2121t d p p (I)(M))(=//c c k fk k R 2 121t d p (I)(M)?)(2=//c c k fk k ν 因而,自动加速现象使聚合反应的速率和聚合物的相对分子质量同时增加。 ⒊ (5分)何谓重复单元,结构单元,单体单元?写出PET 的重复单元和结构单元。 聚合物大分子中那些以共价键相互连接重复出现的结构单位称为重复结构单元 (简称重复单元或链节)。重复单元中小的不可再分的与单体结构有关的结构单位称为结构单元。原子种类与数量与单体相同(化学组成相同),仅电子结构有所改变的结构单元称为单体单元。 PET 的重复单元和结构单元 ⒋ (5分)设:) (M )(M =,)(M d )(M d =2121c c R c c ρ,由共聚物组成微分方程, 推导截距-斜率公式2 2 1-=-r ρR r ρR R 。 解:(每错一个方程式扣1分) 共聚物组成微分方程 ) (M +)(M )(M +)(M )(M )(M =)(M d )(M d 122211?2121c c r c c r c c c c

高分子化学简答题知识交流

高分子化学简答题

精品资料 1. 根据预聚物性质与结构不同预聚物分为那几种? 答:根据预聚物性质与结构不同分为:无规预聚物和结构预聚物。 2.反应程度与转化率是否为同一概念? 答:反应程度与转化率根本不同。转化率:参加反应的单体量占起始单体量的分数;反应程度:是参加反应的官能团数占起始官能团数的分数。 3.要控制线形缩聚反应的分子量,可以采取什么措施? 答:⑴调整两种官能团的配比⑵加入单官能团化合物 4.什么叫交替共聚物?要制备交替共聚物,对单体的结构有何要求? 答:两种结构单元交替排列的共聚物。两个单体双键的电子密度大小相差得越大越有利于交替共聚 5.聚酯化反应制备线形缩聚物,什么情况下是二级反应?什么情况下是三级反应?工业生产中属于几级反应? 答:外加酸是二级反应,自催化是三级反应,工业生产中属于二级反应。6.自由基聚合与缩聚反应的特征比较 答:自由基聚合: 1)由基元反应组成,各步反应的活化能不同,引发最慢。 2)存在活性种,聚合在单体和活性种之间进行。 3)转化率随时间增长,分子量与时间无关。 4)少量阻聚剂可使聚合终止。 线形缩聚: 1)聚合发生在官能团之间,无基元反应,各步反应活化能相同。 2)单体及任何聚体间均可反应,无活性种。 3)聚合初期转化率即达很高,官能团反应程度和分子量随时间逐步增大。 4)反应过程存在平衡。无阻聚反应。 7.常用的逐步聚合方法有几种?各自的主要特点是什么? 答:熔融缩聚: 优点:生产工艺过程简单,生产成本较低。可连续法生产直接纺丝。聚合设备的生产能力高。缺点:反应温度高,要求单体和缩聚物在反应温度下不 仅供学习与交流,如有侵权请联系网站删除谢谢2

高分子化学试题

高分子化学试题 一、名词解释 第一章绪论(Introduction) 高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。 单体(Monomer):合成聚合物所用的-低分子的原料。如聚氯乙烯的单体为氯乙烯 重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本单元。 结构单元(Structural Unit):单体在大分子链中形成的单元。 单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。 聚合度(DP、X n)(Degree of Polymerization) :衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值。 聚合物分子量(Molecular Weight of Polymer):重复单元的分子量与重复单元数的乘积;或结构单元数与结构单元分子量的乘积。 数均分子量(Number-average Molecular Weight):聚合物中用不同分子量的分子数目平均的统计平均分子量。 重均分子量(Weight-average Molecular Weight):聚合物中用不同分子量的分子重量平均的统计平均分子量。 粘均分子量(Viscosity-average Molecular Weight):用粘度法测得的聚合物的分子量。 分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。 多分散性(Polydispersity):聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。 分布指数(Distribution Index) :重均分子量与数均分子量的比值,用来表征分子量分布的宽度或多分散性。 连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合(Step Polymerization):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 塑料(Plastics):具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。 橡胶(Rubber):具有可逆形变的高弹性聚合物材料。在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低,分子量往往很大,大于几十万。

高分子化学模拟试题B答案

模拟题B 答案 一、基本概念题(共20分,每小题4分) ⒈ 体型缩聚及其凝胶点c P :在缩聚反应中,参加反应的单体只要有一种单体具有两个以上官能团(f >2),缩聚反应将向三个方向发展,生成支化或交联结构的体型大分子的缩聚反应,称为体型缩聚。体型缩聚中出现凝胶时的反应程度叫凝胶点,或称临界反应程度,记作P c 。 ⒉ 引发剂及其引发效率f :含有弱键的化合物,它们在热的作用下,共价键均裂而产生自由基的物质,称为引发剂。引发剂分解产生初级自由基,但初级自由基不一定都能引发单体形成单体自由基,用于引发单体形成单体自由基的百分率,称为引发剂的引发效率,记作f ,(f <1)。 ⒊ 向溶剂转移常数S C :链自由基可能向溶剂发生转移反应。转移结果,链自由基活性消失形成一个大分子,而原来的溶剂变为一个自由基。p S tr,S =k k C ,它表征链自 由基向溶剂转移速率常数与增长速率常数之比。 ⒋ 逐步加成聚合反应:形成大分子的方式如同连锁聚合那样是通过单体反复加成而进行的,而动力学过程如同缩聚那样是随着反应时间的延长聚合物的相对分子质量逐步增大,聚合物的结构酷似缩聚物。⒌ 聚合物的化学反应:单体通过聚合反应合成的聚合物以及天然的聚合物称为一级聚合物。一级聚合物并非都是化学惰性的,如果其侧基或端基官能团是反应性基团(具有再反应的能力),那么在适当的条件下,端基或侧基仍可以发生化学反应变为新的基团,从而形成新的聚合物,这种新的聚合物称为二级聚合物。由一级聚合物变为二级聚合物的聚合过程称为聚合物的化学反应,或者叫高分子的化学反应。 二、(共10分,每错一处扣1分)选择正确答案填入( )中。 1.(本题1分)某工厂为了生产PV Ac 涂料,从经济效果和环境考虑,他们

高分子化学试卷库(01B)答案

《高分子化学》试题答案 试题编号:01 (B) 课程代号:2040301 课程学时:56 一、基本概念(共14分,5. 2 分,其余3分) ⒈聚合物的无规降解 聚合物在热的作用下,大分子链发生任意断裂,使聚合度降低,形成低聚体,但单体收率很低(一般小于3%),这种热降解称为无规降解。 ⒉体型缩聚反应 缩聚反应体系中只要有一种单体是含有两个以上官能团的化合物,缩聚反应将向着三个方向发展生成体型缩聚物,生成体型缩聚物的缩聚反应谓之。 ⒊乳化剂 能降低水的表面张力,对单体液滴起保护作用,能形成胶束,增溶单体,能使单体和水体系成为一种非常稳定的难以分层的乳液的物质。 ⒋自由基共聚合反应 两种或两种以上单体混合物,经引发聚合后,形成的聚合物其大分子链中,含有两种或两种以上单体单元的聚合过程,称为自由基共聚合反应,简称自由基共聚。 ⒌引发剂 含有弱键的化合物在热的作用下共价键均裂,产生自由基的物质。 二、填空题(共20分,每空1分) ⒈自由聚合的单体有乙烯、氯乙烯、醋酸乙烯和甲基丙烯酸甲酯等。 ⒉单体可分为乙烯及其衍生物、含有两个或两个以上官能团的小分子化合物和环状化合物三大类。 ⒊表征乳化剂性能的指标是临界胶束浓度、亲水亲油平衡值和三相平衡点。

⒋ 阴离子聚合的引发体系有 碱金属 、 碱金属配合物 和 强碱 等。 ⒌ 某些聚合物按主链中含有的特征基团可命名为 聚酯 、聚酰胺 、聚氨酯 和 聚醚等。 ⒍ 根据共聚物大分子链中单体单元的排列顺序,共聚物分为 无规共聚物 、 交替共聚物 、 嵌段共聚物 和 接枝共聚物 。 三、简答题(共20分,每题5分) ⒈ 乳化剂不参加聚合反应,但它的存在对聚合反应有很大影响,为什么? 乳化剂虽不参加反应,但能形成胶束,参与形成乳胶粒。而乳胶粒是乳液聚合反应的场所。根据乳液聚合动力学方程可知,乳化剂用量大,形成的乳胶粒数N 多,聚合反应速率p R 快,聚合物的平均聚合度n X 大。 ρ 2)(N M c k X p n ?= ⒉ 什么叫聚合物相对分子质量的多分散性? 即使纯粹的聚合物也是由化学组成相同,相对分子质量不同的同系物组成的混合物。聚合物相对分子质量的不均一性,称其为相对分子质量的多分散性。我们所说的聚合物的平均相对分子质量具有统计平均的意义。 ⒊ 何谓自动加速现象?并解释产生的原因。 在自由基聚合体系中,当达到一定转化率时,聚合体系中出现聚合速率突然加快,聚合物的平均相对分子质量也随之增大的现象称为自动加速现象。 造成自动加速的原因是随着反应的进行,体系粘度渐增,链自由基由伸展状态变为卷曲状态,溶解性能变差,链段重徘受阻,活性中心被包埋,双基终止困难t k 变小;而此时,单体的扩散未受阻碍,链增长反应不受影响,p k 基本不变,2 1t p ) (/k k 增大,聚合 A N N c k R 210×(M) =3 p p

高分子化学复习题——简答题

第一章绪论 1、与低分子化合物相比,高分子化合物有什么特点能否用蒸馏的方法提纯高分子化合物 答:与低分子化合物相比,高分子化合物主要特点有:(1)相对分子质量很大,通常在104~ 106之间;(2)合成高分子化合物的化学组成比较简单,分子结构有规律性;(3)各种合成 聚合物的分子形态是多种多样的;(4)一般高分子化合物实际上是由相对分子质量大小不等 的同系物组成的混合物,其相对分子质量只具有统计平均的意义及多分散性;(5)由于高 分子化合物相对分子质量很大,因而具有与低分子化合物完全不同的物理性质。 不能。由于高分子化合物分子间作用力往往超过高分子主链内的键合力,当温度升高到汽化 温度以前,就发生主链的断裂和分解,从而破坏了高分子化合物的化学结构,因而不能用蒸 馏的方法提纯高分子化合物。 2、何谓相对分子质量的多分散性如何表示聚合物相对分子质量的多分散性 答: 聚合物是相对分子质量不等的同系物的混合物,其相对分子质量或聚合度是一平均值. 这种相对分子质量的不均一性称为相对分子质量的多分散性.相对分子质量多分散性可以用 重均分子量和数均分子量的比值来表示.这一比值称为多分散指数, 其符号为D. 即D =M w/M n. 分子量均一的聚合物其D为越大则聚合物相对分子质量的多分散程度越大. 相对分子质量多分散性更确切的表示方法可用相对分子质量分布曲线表示.以相对分子质量 为横坐标, 以所含各种分子的质量或数量百分数为纵坐标, 即得相对分子质量的质量或数 量分布曲线.相对分子质量分布的宽窄将直接影响聚合物的加工和物理性能. 聚合物相对分子质量多分散性产生的原因注意由聚合物形成过程的统计特性所决定. 3、各举三例说明下列聚合物 (1)天然无机高分子,天然有机高分子,生物高分子。 (2)碳链聚合物,杂链聚合物。 (3)塑料,橡胶,化学纤维,功能高分子。 答:(1)天然无机高分子:石棉、金刚石、云母;天然有机高分子:纤维素、土漆、天然橡胶; 生物高分子:蛋白质、核酸 (2)碳链聚合物:聚乙烯、聚苯乙烯、聚丙烯;杂链聚合物:聚甲醛、聚酰胺、聚酯 (3)塑料:PE、PP、PVC、PS;橡胶:丁苯橡胶、顺丁橡胶、氯丁橡胶、丁基橡胶 化学纤维:尼龙、聚酯、腈纶、丙纶;功能高分子:离子交换树脂、光敏高分子、高分子催化 剂 4、什么叫热塑性塑料什么叫热固性塑料试各举两例说明。 热塑性塑料是指可反复进行加热软化或熔化而再成型加工的塑料,其一般由线型或支链型聚合物作为基材。如以PE、PP、PVC,PS和PMMA等聚合物为基材的塑料。 热固性塑料是指只能进行一次成型加工的塑料,其一般由具有反应活性的低聚物作基材,在成型加工过程中加固化剂经交联而变为体型交联聚合物。一次成型后加热不能再软化或熔化,因而不能再进行成型加工。其基材为环氧树脂、酚醛树脂、不饱和聚酯树脂和脲醛树脂等。 5、高分子链的结构形状有几种它们的物理、化学性质有何不同 答: 高分子链的形状主要有直线形、支链形和网状体形三种,其次有星形、梳形、梯形等(它 们可以视为支链或体形的特例). 直线性和支链形高分子靠范德华力聚集在一起, 分子间力较弱.宏观物理性质表现为密度小、强度低.聚合物具有热塑性, 加热可融化, 在溶剂中可溶解. 其中支链形高分子由于支 链的存在使分子间距离较直线形的大, 故各项指标如结晶度、密度、强度等比直线形的低, 而溶解性能更好, 其中对结晶度的影响最为显著. 网状体形高分子分子链间形成化学键, 其硬度、力学强度大为提高. 其中交联程度低的具有 韧性和弹性, 加热可软化但不熔融, 在溶剂中可溶胀但不溶解. 交联程度高的, 加热不软化, 在溶剂中不溶解. 第二章逐步聚合反应

高分子化学模拟题完版

一.名词解释 1.聚合度:聚合物大分子链上所含结构单元数目的平均值。 2.平均官能度:至反应体系中平均每一分子上带有的能参加反应的官能团(或新中心)的数目 3.反应程度:参加反应的官能团数占起始官能团数的分率。 4.凝胶点:体型缩聚反应进行到一定程度时,体系粘度将急剧增大,迅速转变成不溶、不 熔、具有交联网状结构的弹性凝胶的过程,即出现凝胶化现象,此时的反应程度叫凝胶点。 (出现凝胶化现象时的反应程度) 5.偶合终止:两链自由基的独电子相互结合成共价键的终止反应 6.歧化终止:某链自由基夺取另一自由基的氢原子或其他原子的终止反应 7.双基终止:链自由基的独电子与其它链自由基中的独电子或原子作用形成共价键的终止 反应 8.引发剂效率:引发聚合部分引发剂占引发剂分解消耗总量的分率叫引发剂效率 9.自动加速现象:聚合中期随着聚合的进行,聚合速率逐渐增加,出现自动加速现象,自 动加速现象主要是体系粘度增加所引起的 10.动力学链长:每个活性种从引发阶段到终止阶段所消耗的单体分子数定义为动力学链 长,动力学链在链转移反应中不终止 11.链转移常数:是链转移速率常数和增长速率常数之比,代表链转移反应与链增长反应 的竞争能力。 12.竞聚率:是均聚和共聚链增长速率常数之比,竞聚率用来直观地表征两种单体的共聚倾 向。(由共轭效应、极性效应、位阻效应三个因素决定) 13悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油 溶性引发剂、分散剂四部分组成。 14乳液聚合:是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、 水溶性乳化剂组成。 15胶束成核:在经典的乳液聚合体系中,由于胶束的表面积大。更有利县城捕捉水相中的 初级自由基和短链自由基,自由基进入胶束,引发其中单体聚合,形成活性种,这就是所谓的胶束成核。 16均相成核:又称水相成核,当选用水溶性较大的单体,溶于水的单体被引发聚合成的短 链自由基将含有较多的单体单元,并有相当的亲水性,水相中多条这样较长的短链自由基互 相聚集在一起,絮凝成核,以此为核心,单体不断扩散入内,聚合成乳胶粒,这个过程即为 均相成核。

高分子化学简答题

1. 根据预聚物性质与结构不同预聚物分为那几种? 答:根据预聚物性质与结构不同分为:无规预聚物和结构预聚物。 2.反应程度与转化率是否为同一概念? 答:反应程度与转化率根本不同。转化率:参加反应的单体量占起始单体量的分数;反应程度:是参加反应的官能团数占起始官能团数的分数。 3.要控制线形缩聚反应的分子量,可以采取什么措施? 答:⑴调整两种官能团的配比⑵加入单官能团化合物 4.什么叫交替共聚物?要制备交替共聚物,对单体的结构有何要求? 答:两种结构单元交替排列的共聚物。两个单体双键的电子密度大小相差得越大越有利于交替共聚 5.聚酯化反应制备线形缩聚物,什么情况下是二级反应?什么情况下是三级反应?工业生产中属于几级反应? 答:外加酸是二级反应,自催化是三级反应,工业生产中属于二级反应。 6.自由基聚合与缩聚反应的特征比较 答:自由基聚合: 1)由基元反应组成,各步反应的活化能不同,引发最慢。 2)存在活性种,聚合在单体和活性种之间进行。 3)转化率随时间增长,分子量与时间无关。 4)少量阻聚剂可使聚合终止。 线形缩聚: 1)聚合发生在官能团之间,无基元反应,各步反应活化能相同。 2)单体及任何聚体间均可反应,无活性种。 3)聚合初期转化率即达很高,官能团反应程度和分子量随时间逐步增大。 4)反应过程存在平衡。无阻聚反应。 7.常用的逐步聚合方法有几种?各自的主要特点是什么? 答:熔融缩聚: 优点:生产工艺过程简单,生产成本较低。可连续法生产直接纺丝。聚合设备的生产能力高。缺点:反应温度高,要求单体和缩聚物在反应温度下不分解,

单体配比要求严格;反应物料粘度高,小分子不易脱除。局部过热可能产生副反 应,对聚合设备密封性要求高。 溶液缩聚: 优点:溶剂存在下可降低反应温度,避免单体和产物分解,反应平稳易控制。 可与产生的小分子共沸或与之反应而脱除。聚合物溶液可直接用作产品。缺点: 溶剂可能有毒,易燃,提高了成本。增加了缩聚物分离、精制、溶剂回收等工序。 生产高分子量产品时须将溶剂蒸出后进行熔融缩聚。 界面缩聚:优点:反应聚条件缓和,反应是不可逆的。对两种单体的配比要求不 严格。缺点:必须使用高活性单体,如酰氯。需要大量溶剂,产品不易精制。 8.分析采用本体聚合方法进行自由基聚合时,聚合物在单体中的溶解性对自动加 速效应的影响。 答:链自由基较舒展,活性端基包埋程度浅,易靠近而反应终止;自动加速现象 出现较晚,即转化率C%较高时开始自动加速。 在单体是聚合物的劣溶剂时,链自由基的卷曲包埋程度大,双基终止困难,自动 加速现象出现得早,而在不良溶剂中情况则介于良溶剂和劣溶剂之间, 9.连锁聚合与逐步聚合的三个主要区别是什么? ⑴增长方式:连锁聚合总是单体与活性种反应,逐步聚合是官能团之间的反 应,官能团可以来自于单体、低聚体、多聚体、大分子 ⑵单体转化率:连锁聚合的单体转化率随着反应的进行不断提高,逐步聚合 的单体转化率在反应的一开始就接近100% ⑶聚合物的分子量:连锁聚合的分子量一般不随时间而变,逐步聚合的分子 量随时间的增加而增加 10.什么是自由基聚合、阳离子聚合和阴离子聚合? 答:自由基聚合:通过自由基引发进行链增长得到高聚物的聚合反应。阴离子聚 合:由阴离子引发并进行增长的聚合反应。阳离子聚合:由阳离子引发并进行增 长的聚合反应。 11. 乳液聚合的特点是什么? 答:⑴以水为介质价廉安全,乳液聚合中聚合物的相对分子质量可以很高,但体系的粘度可以很低,故有利于传热,搅拌和物料输送,便于连续操作。 ⑵聚合物胶乳可以作为粘合剂、涂料或表面处理剂等直接利用。

高分子化学模拟试卷(五)答案

《高分子化学》模拟试卷(五)答案 一、基本概念题(共15分,每题3分) ⒈连锁聚合:连锁聚合是指聚合反应一旦开始,反应便可以自动地一连串的进行下去,生成一个大分子的时间是极其短暂的,是瞬间完成的,只需要0。01s到几秒的时间。因此聚合物的相对分子质量与时间的关系不大。但是,单体的转化率是随时间的延长而提高的。这类聚合反应称为连锁聚合。 ⒉正常聚合速率:在低转化率(<5%~10%)条件下,聚合速率遵循速率方程所表现的速率为正常聚合速率,随聚合时间的延长单体浓度和引发剂浓度降低,聚合速率降低。 ⒊向大分子转移:链自由基向大分子夺取一个基团,结果,链自由基终止为一个大分子,而原来的大分子变为一个链自由基,这就是链自由基向大分子的转移反应。 ⒋共聚物组成:在共聚过程中,先后生成的共聚物组成不一致,共聚物组成一般随转化率而变,存在着组成分布和平均组成的问题。共聚物组成,包括瞬时组成、平均组成、序列排布。共聚物大分子链中单体单元的比例即为共聚物组成。 ⒌聚合物的老化:聚合物在使用或贮存过程中,由于环境的影响,性能变坏,强度和弹性降低,颜色变暗、发脆或者发粘等现象叫聚合物的老化。 二、(共10分,每错一处扣1分)选择正确答案填入( )中。 1.(本题1分)某工厂用PVC为原料制搪塑制品时,从经济效果和环境考 虑,他们决定用(⑶)聚合方法。 ⑴本体聚合法生产的PVC ⑵悬浮聚合法生产的PVC ⑶乳液聚合法生产的PVC ⑷溶液聚合法生产的PVC ⒉(本题1分)为了提高棉织物的防蛀和防腐能力,可以采用烯类单体与棉纤 维辐射技术或化学引发接枝的方法,最有效的单体是(⑶) ⑴ CH2=CH-COOH ⑵ CH2=CH-COOCH3 ⑶ CH2=CH-CN ⑷ CH2=CH-OCOCH3 ⒊(本题1分)在乙酸乙烯酯的自由基聚合反应中加入少量苯乙烯,会发生( ⑴聚合反应加速;⑵聚合反应停止; ⑶相对分子量降低;⑷相对分子量增加。 ⒋(4分)丙烯酸单体在85℃下采用K2S2O8为引发剂,在水溶液中引发聚合,可 的产品。若要制得的产品,在聚合配方和工艺上可采取(⑴⑵⑶⑷)手

最新高分子化学试卷及答案A

齐齐哈尔大学试卷 考试科目:高分子化学试卷编号:A 适用对象:高分子材料061-2使用学期:2008—2009—1 第三学期 课程编码:01313001共6道大题总分100分共3页 考生须知: 1)姓名必须写在装订线左侧,其它位置一律作废。 2)请先检查是否缺页,如缺页应向监考教师声明,否则后果由考生负责。 3)答案一律写在答题纸上,可不抄题,但要标清题号。 4)用兰色或黑色的钢笔、圆珠笔答题。 监考须知:请将两份题签放在上层随答题纸一起装订。 一、单项选择题(总分10分,每小题2分) 1.自由基本体聚合反应时,会出现凝胶效应,而离子聚合反应则不会,原因在于 A 引发反应方式不同 B 聚合温度不同 C 链增长方式不同 D 终止反应方式不同 2.缩聚反应中,所有单体都是活性中心,其动力学特点是 A 单体逐步消失,产物分子量很快增大 B 单体慢慢消失,产物分子量逐步增大 C 单体很快消失,产物分子量逐步增大 D 单体慢慢消失,产物分子量迅速增大 3.下列哪个聚合物最容易解聚成单体 A PE B PVC C PAN D PMMA 4.涤纶树脂的醇解是______反应。 A 功能化 B 聚合度相似转变 C 化学降解 D 改善性能 5.一对单体难于发生共聚反应的条件是_________。 A r1r2=1 B r1<1,r2<1 C r1=0,r2=0 D r1≥1,r2≥1

二、聚合物制备反应方程式(总分20分,每小题2分) 1. 聚异戊二烯 2. nH2N(CH2)6NH2 + nHOOC(CH2)4COOH 3. nHOROH + nOCNR'NCO 4.有机玻璃 5.聚醋酸乙烯酯 6. nCH2=CHCN 7. nNH2(CH2)5COOH 8. PS 9. PE 10. nCF2=CF2 三、判断题(总分10分,每小题2分) 1. 苯乙烯可以进行自由基、阴离子、阳离子聚合,对吗? 2.阳离子聚合机理的特点可以总结为快引发、快增长、易转移、无终止。对吗? 3. AIBN + CH2=C(CN)2能进行聚合反应,对吗? 4.质子酸硫酸是阴离子引发剂,对吗? 5. 脲醛树脂的合成,属于自由基反应历程,对吗? 四、简答题(总分32分,每小题4分) 1.什么是动力学链长? 2.什么是诱导期? 3.什么是竟聚率? 4.什么是老化? 5.什么是悬浮聚合? 6.什么是加聚反应与缩聚反应? 7.什么是阻聚剂和阻聚作用? 8.什么是配位聚合? 五、问答题(总分20分,每小题5分) 1.为什么进行离子聚合和配位聚合反应时需预先将原料和聚合溶器净化,干燥,除 去空气,并在密封条件下聚合? 2.写出数均分子量,重均分子量,粘均分子量的数学表达式。并指出三者间数值大小顺序? 3. 写出自由基聚合反应的几步基元反应?(用通式简写) 4.说明缩合反应与线型缩聚,体型缩聚对单体官能度的要求有何不同? 六、计算题(总分8分,每小题4分) 1. 1.8mol邻苯二甲酸酐,1mol丙三醇,0.1mol的1,2-丙二醇组成缩聚体系。用Carothers方程计算出该缩聚体系的凝胶点。

相关文档