文档库 最新最全的文档下载
当前位置:文档库 › 导数与函数的单调性极值与最值 练习题

导数与函数的单调性极值与最值 练习题

导数与函数的单调性极值与最值 练习题
导数与函数的单调性极值与最值 练习题

必备知识——导数与函数的单调性、极值与最值

1.(2019·厦门质检)函数y =1

2x 2-ln x 的单调递减区间为( )

A .(-1,1)

B .(0,1]

C .(1,+∞)

D .(0,2)

解析:选B 由题意知,函数的定义域为(0,+∞),由y ′=x -1

x

≤0,得0

所以函数的单调递减区间为(0,1].

2.函数f (x )的导函数f ′(x )有下列信息: ①f ′(x )>0时,-12; ③f ′(x )=0时,x =-1或x =2. 则函数f (x )的大致图象是( )

解析:选C 根据信息知,函数f (x )在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.

3.函数f (x )=(x 2-1)2+2的极值点是( ) A .x =1

B .x =-1

C .x =1或-1或0

D .x =0

解析:选C ∵f (x )=x 4-2x 2+3,

∴由f ′(x )=4x 3

-4x =4x (x +1)(x -1)=0, 得x =0或x =1或x =-1,

又当x <-1时,f ′(x )<0,当-10, 当01时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.

4.(2019·成都高三摸底测试)已知函数f (x )=x 3-ax 在(-1,1)上单调递减,则实数a 的取值范围为( )

A .(1,+∞)

B .[3,+∞)

C .(-∞,1]

D .(-∞,3]

解析:选B ∵f (x )=x 3-ax ,∴f ′(x )=3x 2-a .又f (x )在(-1,1)上单调递减,∴3x 2

-a ≤0在(-1,1)上恒成立,∴a ≥3,故选B.

5.(2019·赤峰模拟)设函数f (x )在定义域R 上可导,其导函数为f ′(x ),若函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )

A .函数f (x )有极大值f (2)和极小值f (1)

B .函数f (x )有极大值f (-2)和极小值f (1)

C .函数f (x )有极大值f (2)和极小值f (-2)

D .函数f (x )有极大值f (-2)和极小值f (2)

解析:选D 由题图可知,当x <-2时,f ′(x )>0;当x =-2时,f ′(x )=0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x =2时,f ′(x )=0;当

x >2时,f ′(x )>0.由此可得函数f (x )在x =-2处取得极大值,在x =2处取得极小

值.故选D.

6.下列函数中,在(0,+∞)上为增函数的是( ) A .f (x )=sin 2x B .f (x )=x e x C .f (x )=x 3-x

D .f (x )=-x +ln x

解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是??????k π-π4,k π+π4(k ∈Z);

对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x 在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2

-1,令f ′(x )>0,得x >33或x <-3

3

,∴函数f (x )=x 3-x 在? ?

???-∞,-33和? ??

??3

3,+∞上单调递增;对于D ,f ′(x )=-1+1x =

x -1

x

,令f ′(x )>0,得0

7.函数f (x )=ax 3+bx 2+cx +d 的图象如图,则函数y =ax 2+3

2bx

+c

3

的单调递增区间是( ) A .(-∞,-2] B.??????12,+∞ C .[-2,3]

D.????

??98,+∞ 解析:选D 由题图可知d =0.不妨取a =1,∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2

+2bx +c .由图可知f ′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =

-32,c =-18.∴y =x 2-94x -6,y ′=2x -94.当x ≥98时,y ′≥0,∴y =x 2

-94

x -6的单调递增区间为????

??98,+∞.故选D.

8.已知定义在R 上的函数f (x ),f (x )+x ·f ′(x )<0,若a bf (b )

D .af (b )>bf (a )

解析:选 C [x ·f (x )]′=x ′f (x )+x ·f ′(x )=f (x )+x ·f ′(x )<0,∴函数

x ·f (x )是R 上的减函数,∵a bf (b ).

9.(2019·广州模拟)若函数f (x )=e x

(sin x +a cos x )在? ??

??π4,π2上单调递增,则

实数a 的取值范围是( )

A .(-∞,1]

B .(-∞,1)

C .[1,+∞)

D .(1,+∞)

解析:选A f ′(x )=e x [sin x +cos x -a (sin x -cos x )],当a =0时,f ′(x )=e x

(sin x +cos x ),显然x ∈? ??

??

π4,π2,

f ′(x )>0恒成立,排除C 、D ;当a =1时,f ′(x )=2e x cos x ,x ∈?

??

??

π4,π2时,f ′(x )>0,故选A.

10.定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>1

2,则满足

2f (x )

A .{x |-1

B .{x |x <1}

C .{x |x <-1或x >1}

D .{x |x >1}

解析:选B 令g (x )=2f (x )-x -1,∵f ′(x )>1

2

,∴g ′(x )=2f ′(x )-1>0,∴

g (x )为单调增函数,∵f (1)=1,∴g (1)=2f (1)-1-1=0,∴当x <1时,g (x )<0,即

2f (x )

11.已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值

解析:选C 当k =1时,f (x )=(e x -1)(x -1),0,1是函数f (x )的零点.当0

时,f (x )=(e x -1)(x -1)<0,当x >1时,f (x )=(e x

-1)(x -1)>0,1不会是极值点.当

k =2时,f (x )=(e x -1)(x -1)2,零点还是0,1,但是当01时,f (x )>0,由极

值的概念,知选C.

12.(2019·湖北咸宁重点高中联考)设函数f (x )=1

2x 2-9ln x 在区间[a -1,a +

1]上单调递减,则实数a 的取值范围是( )

A .(1,2]

B .(4,+∞)

C .(-∞,2)

D .(0,3]

解析:选A ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),由x -9

x ≤0,得0

∴f (x )在(0,3]上是减函数,则[a -1,a +1]?(0,3],∴a -1>0且a +1≤3,解得1

13.函数f (x )=1

3

x 3+x 2-3x -4在[0,2]上的最小值是________.

解析:f ′(x )=x 2+2x -3,令f ′(x )=0得x =1(x =-3舍去),又f (0)=-4,

f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173

.

答案:-17

3

14.(2019·长治联考)定义在(0,+∞)上的函数f (x )满足x 2

f ′(x )+1>0,f (1)=6,则不等式f (l

g x )<1

lg x

+5的解集为________.

解析:构造g (x )=f (x )-1

x -5,则g ′(x )=f ′(x )+1

x 2=x 2f ′x +1

x 2

>0,所以

g (x )在(0,+∞)上单调递增,

∵f (1)=6,∴g (1)=0,

故g (x )<0的解集为(0,1),即f (x )<1

x

+5的解集为(0,1),由0

不等式的解集为(1,10).

答案:(1,10)

15.已知函数f (x )=e x

x

2-k ? ??

??

2x

+ln x ,若x =2是函数f (x )的唯一一个极值点,则

实数k 的取值范围为________.

解析:f ′(x )=x 2e x -2x e x x 4-k ? ??

??-2x 2+1x =x -2? ??

?

?e x

x -k x 2

(x >0).

设g (x )=e x

x (x >0),则g ′(x )=x -1

e

x

x

2

∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增.

∴g (x )在(0,+∞)上有最小值,为g (1)=e ,结合g (x )=e x

x

与y =k 的图象可知,

要满足题意,只需k ≤e.

答案:(-∞,e]

16.已知函数g (x )满足g (x )=g ′(1)e x -1-g (0)x +1

2x 2,且存在实数x 0,使得不等

式2m -1≥g (x 0)成立,则实数m 的取值范围为________.

解析:g ′(x )=g ′(1)e x -1-g (0)+x , 令x =1,得g ′(1)=g ′(1)-g (0)+1, ∴g (0)=1,g (0)=g ′(1)e 0-1=1,∴g ′(1)=e , ∴g (x )=e x -x +12x 2,g ′(x )=e x

-1+x ,

当x <0时,g ′(x )<0,当x >0时,g ′(x )>0, ∴当x =0时,函数g (x )取得最小值g (0)=1. 根据题意得2m -1≥g (x )min =1,∴m ≥1. 答案:[1,+∞)

知识点一-导数与函数的单调性

1.函数的单调性:在某个区间( a,b )内,如果f (x) . 0 ,那么函数y = f (x)在这个区间内单调递增;如果f (x) :::0,那么函数y = f(x)在这个区间内单调递减?如果f(x)=0,那么函数y = f(x)在这个区间上是常数函数? 注:函数y = f (x)在(a,b )内单调递增,贝U f (x)亠0,f (x) . 0是y = f (x)在(a,b )内单调递增的充分不必要条件? 2.函数的极值:曲线在极值点处切线的斜率为0,并且,曲线在极大值点左侧切线的斜率为正,右侧为 负;曲线在极小值点左侧切线的斜率为负,右侧为正. 一般地,当函数 y = f(x)在点沧处连续时,判断f(X。)是极大(小)值的方法是: (1)如果在X。附近的左侧f ' (x) 0 ,右侧f'(x)::: ,那么f(X0)是极大值. (2)如果在X o附近的左侧f '(X):::0 ,右侧f'(x) 0,那么f(X0)是极小值. 注:导数为0的点不一定是极值点 知识点一:导数与函数的单调性 方法归纳: 在某个区间(a,b )内,如果f (x) ?0,那么函数y = f (x)在这个区间内单调递增;如果「(x) :::0,那 么函数y二f(x)在这个区间内单调递减?如果f (x) =0,那么函数y二f(x)在这个区间上是常数函数?注:函数y = f (x)在(a,b )内单调递增,贝U f (x) _ 0 , f (x) 0是y = f (x)在(a,b )内单调递增的 充分不必要条件? 例1】(B类)已知函数f(x)=x3 bx2 cx d的图象过点P(0, 2),且在点M(-1, f(-1))处的切线方程为6x「y ?7 = 0 ? (I)求函数y = f(x)的解析式;(n)求函数y=f(x)的单调区间? 【解题思路】注意切点既在切线上,又原曲线上?函数f(x)在区间[a,b]上递增可得:f'(x)_0 ;函数 f (x)在区间[a,b]上递减可得:f'(x) E0. 3 【例2】(A类)若f(x)二ax x在区间[—1,1]上单调递增,求a的取值范围? 【解题思路】利用函数 f (x)在区间[a,b]上递增可得:f'(x)_0;函数f(x)在区间[a,b]上递减可得: f '(x)岂0.得出恒成立的条件,再利用处理不等式恒成立的方法获解 a 【例 3 】(B 类)已知函数f(x)=l nx,g(x) (a 0),设F(x^ f (x) - g(x). x (I)求函数F(x)的单调区间;

高中数学:导数与函数的极值、最值练习

高中数学:导数与函数的极值、最值练习 (时间:30分钟) 1.函数f(x)=ln x-x在区间(0,e]上的最大值为( B ) (A)1-e (B)-1 (C)-e (D)0 解析:因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时, f′(x)<0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln 1-1=-1. 2.(豫南九校第二次质量考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( C ) (A)4 (B)2或6 (C)2 (D)6 解析:因为f(x)=x(x-c)2, 所以f′(x)=3x2-4cx+c2, 又f(x)=x(x-c)2在x=2处有极小值, 所以f′(2)=12-8c+c2=0,解得c=2或6, c=2时,f(x)=x(x-c)2在x=2处有极小值; c=6时,f(x)=x(x-c)2在x=2处有极大值; 所以c=2. 3.函数f(x)=3x2+ln x-2x的极值点的个数是( A ) (A)0 (B)1 (C)2 (D)无数 解析:函数定义域为(0,+∞),且f′(x)=6x+-2=,不妨设g(x)=6x2-2x+1. 由于x>0,令g(x)=6x2-2x+1=0,则Δ=-20<0, 所以g(x)>0恒成立,故f′(x)>0恒成立, 即f(x)在定义域上单调递增,无极值点. 4.(银川模拟)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>),当x∈(-2,0)时,f(x)的最小值为1,则a的值等于( D ) (A)4 (B)3 (C)2 (D)1 解析:由题意知,当x∈(0,2)时,f(x)的最大值为-1. 令f′(x)=-a=0,得x=,

导数的应用—单调性与极值的习题课

导数的应用—单调性与极值的习题课 【复习目标】 1.理解导数在研究函数的单调性和极值中的作用; 2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。 3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的 单调性,会求不超过三次的多项式函数的单调区间; 4.结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三 次的多项式函数的极大值、极小值,体会导数方法在研究函数性质中的一般性和有效性。 【重点难点】 ①利用导数求函数的极值;②利用导数求函数的单调区间;④利用导数证明函数的单调性; ⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题; 【基础过关】1. 函数的单调性 ⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则) (x f 为 .(逆命题不成立) (2) 如果在某个区间内恒有0)(='x f ,则)(x f . 注:连续函数在开区间和与之相应的闭区间上的单调性是一致的. (3) 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ; ② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根; ③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺 序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间; ④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区 间内的增减性. 2.可导函数的极值 ⑴ 极值的概念 设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称 )(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点. ⑵ 求可导函数极值的步骤: ① 求导数)(x f '; ② 求方程)(x f '=0的 ; ③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负, 那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函 数y =)(x f 在这个根处取得 . 【基础训练】 例1.如果函数()y f x =的图像如右图,那么导函数, ()y f x =的图像可能是( ) 例2. 曲线x x y ln 22-= 的单调减区间是( )

导数与函数的单调性练习题

2.2.1导数与函数的单调性 基础巩固题: 1.函数f(x)= 21 ++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.021 C.a>2 1 D.a>-2 答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>2 1 . 2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( ) A .a ≥0 B .a <-4 C .a ≥0或a ≤-4 D .a >0或a <-4 答案:C 解析:∵f ′(x )=2x +2+a x ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1) 上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),02 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +

导数与函数的单调性、极值、最值

教学过程 一、课堂导入 问题:判断函数的单调性有哪些方法?比如判断2x y=的单调性,如何进行? 因为二次函数的图像我们非常熟悉,可以画出其图像,指出其单调区间,再想一下,有没有需要注意的地方? 如果遇到函数x y3 x 3- =,如何判断单调性呢?你能画出该函数的图像吗? 定义是解决问题的最根本方法,但定义法较繁琐,又不能画出它的图像,那该如何解决呢?

二、复习预习 函数是描述客观世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?

三、知识讲解 考点1 利用导数研究函数的单调性 如果在某个区间内,函数y=f(x)的导数f′(x)>0,则在这个区间上,函数y=f(x)是增加的;如果在某个区间内,函数y=f(x)的导数f′(x)<0,则在这个区间上,函数y=f(x)是减少的. 利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,减少失分.

求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小. 注意定义域优先的原则,求函数的单调区间和极值点必须在函数的定义域内进行. ①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点; ②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点; ③若f′(x)在x0两侧的符号相同,则x0不是极值点.

(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. (3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.

word完整版导数的单调性与极值题型归纳

导数的应用(单调性与极值) 一、求函数单调区间 3-3x的单调递减区间是________________ x1、函数y= x的单调递增区间是_______________ -3)e(x)=(x2、函数f 3、函数f(x)=ln x-ax(a>0)的单调递增区间为() 11A.(0,) B.(,+∞) aa1B.C.(-∞,) D.(-∞,a) a 4、函数y=x-2sin x在(0,2π)内的单调增区间为________. 2x x5、求函数f(x)=x(e-1)-的单调区间. 2 a6、已知函数f(x)=+x+(a-1)ln x+15a,其中a<0,且a≠-1.讨论函数f(x)的x单调性.

二、导函数图像与原函数图像关系 1 导函数正负决定原函数递增递减导函数大小等于原函数上点切线的斜率 导函数大小决定原函数陡峭平缓 1、若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a, b]上的图象可能是() 2、若函数y=f(x)的导函数在区间[a,b]上是先增后减的函数,则函数y=f(x)在区间[a,b]上的图象可能是() 2x cos x)·,则函数y=g(g在其任一点+1(x,y)处切线斜率为(x)=3、设曲线yx) (的部分图象可以为

) 的图象,如图所示,则(xx)的导函数f′()f4、函数 ( 0是极小值点B.x=x=1是最小值点 (1,2)上单增在xf D 是极小值点=.C x2 .函数()三、恒成立问题2

123+bx+cxf(x)=x-b-∞,+∞)上是增函数,求.若f(x)1、已知函数在(2; 的取值范围

利用导数求函数的单调区间

利用导数求函数的单调区间 一学习目标: 1结合实例,找出函数的单调性与导数的关系; 2会利用导数研究函数的单调性,会求简单函数的单调区间。 二重点、难点: 重点:求函数的单调区间. 难点:求含参数函数的单调区间。. 三教材分析 本节课主要对函数单调性求法的学习; 它是在学习导数的概念的基础上进行学习的,同时又为导数的应用学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写) 它是历年高考的热点、难点问题 四教学方法 开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法 五教学过程 预习学案: 1.函数单调性的定义是什么?函数的单调区间怎样求? 2.讨论以下问题 (1)求函数y=x的导数,判断其导数的符号; (2)求函数y=x2的导数,判断其导数的符号. 3.根据上述问题,思考导数的符号与函数的单调性之间的关系,并加以总结: 设函数y=f(x)在区间(a,b)内可导: 如果在(a,b)内,______________,则f(x)在此区间是增函数; 如果在(a,b)内,______________,则f(x)在此区间是减函数. 4.根据上述总结,思考一下,函数在某个区间上是单调递增函数,是不是其导数就一定大于零呢?如果函数在某个区间上是单调递减函数,是不是其导数就一定小于零?能否举个例子说明一下?

小测验: 1.当0>x 时,()x x x f 4+ =的单调减区间 2.函数53 123++-=x x y 的单调增区间为_______________,单调减区间为______________. 利用导数求函数的单调区间(讲授学案)——冯秀转 题型:求函数的单调区间 例1、求下列函数的单调区间; (1)x x y 23+= (2)()221 ln x x x f -= 注意:求函数单调区间时必须先考虑函数的定义域. (小结)求函数单调区间的步骤: 练习:求()x e x x f 2=的单调区间。

导数与单调性极值最基础值习题

导数与单调性极值最基础值习题 评卷人得分 一.选择题(共14小题) 1.可导函数y=f(x)在某一点的导数值为0是该函数在这点取极值的() A.充分条件B.必要条件 C.充要条件?D.必要非充分条件 2.函数y=1+3x﹣x3有( ) A.极小值﹣1,极大值3?B.极小值﹣2,极大值3 C.极小值﹣1,极大值1 D.极小值﹣2,极大值2 3.函数f(x)=x3+ax2﹣3x﹣9,已知f(x)的两个极值点为x1,x2,则x1?x2=() A.9 B.﹣9C.1 D.﹣1 4.函数的最大值为() A.?B.e2C.e D.e﹣1 5.已知a为函数f(x)=x3﹣12x的极小值点,则a=() A.﹣4 B.﹣2 C.4 D.2 6.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=() A.﹣2或2? B.﹣9或3 C.﹣1或1 D.﹣3或1 7.设函数f(x)=xex,则() A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点 C.x=﹣1为f(x)的极大值点?D.x=﹣1为f(x)的极小值点 8.函数y=x3﹣2ax+a在(0,1)内有极小值,则实数a的取值范围是() A.(0,3)?B.(0,)?C.(0,+∞)?D.(﹣∞,3) 9.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于() A.11或18?B.11 C.18?D.17或18 10.设三次函数f(x)的导函数为f′(x),函数y=x?f′(x)的图象的一部分如图所

示,则正确的是() A.f(x)的极大值为,极小值为 B.f(x)的极大值为,极小值为 C.f(x)的极大值为f(﹣3),极小值为f(3) D.f(x)的极大值为f(3),极小值为f(﹣3) 11.若f(x)=x3+2ax2+3(a+2)x+1有极大值和极小值,则a的取值范围是( )A.﹣a2或a<﹣1C.a≥2或a≤﹣1?D.a>1或a<﹣2 12.函数y=xe﹣x,x∈[0,4]的最小值为() A.0 B.?C.?D. 13.函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是()A.5,﹣15 B.5,﹣4C.﹣4,﹣15?D.5,﹣16 14.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是( ) A.﹣37 B.﹣29 C.﹣5 D.以上都不对 评卷人得分 二.填空题(共10小题) 15.函数f(x)=x3﹣3x2+1的极小值点为. 16.已知f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,则a+b=. 17.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c= . 18.已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则实数a 的取值范围是. 19.已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的

用导数求函数的单调性

用导数求函数的单调性 南江县第四中学 何其孝 指导老师:范永德 一、第一段:点明课题、展示目标、自主学习 1、展示学习目标 (1)理解)0(0(x)f <>'时,f(x)在0x x =附近单调性; (2)掌握用导数求函数的单调区间。 2、板书课题:用导数求函数的单调性 3、学生围绕学习目标看教材第89-93页,进行自主学习。(约10分钟) 二、第二段:合作探究、启发点拨 1、探究1:怎样从导数的几何意义,判断)0(0(x)f <>'时,f(x)在0x x =附近单调性?点拨:以直代曲 探究2:用导数求函数单调性的步骤 点拨:(1)求定义域 (2)求导函数(x)f ' (3)求)0(0(x)f <>',判断函数的单调性 (4)写出f(x)的单调区间 2、应用举例 例 判断下列函数的单调性,写出f(x)区间 (1) )(0,x x,-sinx f(x)π∈= (2) 12432f(x)23+-+=x x x

解:f′(x)=6x2 + 6x -24 当f′(x)>0,解得:2 1712171+->--',判断函数的单调性 (4)写出f(x)的单调区间 作业:课本第98页 习题3.3A 组1、(3) (4) 2、(3) (4)

第三十九讲:函数的极值最值与导数

第三十九讲 函数的极值、最值与导数 一、引言 1.用导数求函数的极大(小)值,求函数在连续区间上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为高考试题的又一热点. 2.考纲要求:了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值和极小值,能求出最大值和最小值;会利用导数解决某些实际问题. 3.考情分析:2010年高考预测对本专题内容的考查将继续以解答题形式与解析几何、不等式、平面向量等知识结合,考查最优化问题,加强了能力考查力度,使试题具有更广泛的实际意义,更体现了导数作为工具分析和解决一些函数性质问题的方法. 二、考点梳理 1.函数的极值: 一般地,设函数()y f x =在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说()0f x 是函数()y f x =的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说()y f x =是函数()y f x =的一个极小值.极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 理解极值概念要注意以下几点: (1)极值是一个局部概念.由定义可知,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (2)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值.如下图所示,1x 是极大值点,4x 是极小值点,而4()f x >)(1x f . 2.函数极值的判断方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,

《函数的单调性与极值》教学案设计

《函数的单调性与极值》教学案设计 教学目标:正确理解利用导数判断函数的单调性的原理; 掌握利用导数判断函数单调性的方法; 教学重点:利用导数判断函数单调性; 教学难点:利用导数判断函数单调性 教学过程: 一 引入: 以前,我们用定义来判断函数的单调性.在假设x 10时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内, 切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y <0时,函数y=f(x) 在区间 (∞-,2)内为减函数. 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数。 例1 确定函数422+-=x x y 在哪个区间内是增函数,哪个区间内是减函数。 例2 确定函数76223+-=x x y 的单调区间。 y

2 极大值与极小值 观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。 一般地,设函数y=f(x)在0x x 及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说f(0x )是函数y=f(x)的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说f(0x )是函数y=f(x)的一个极小值。极大值与极小值统称极值。 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。 (ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。 (ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,

高中数学选修2-2函数的单调性与导数

1.3.1函数的单调性与导数 [学习目标] 1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会求函数的单调区间(其中多项式函数的最高次数一般不超过三次). 知识点一函数的单调性与其导数的关系 在区间(a,b)内函数的导数与单调性有如下关系: 思考以前,我们用定义来判断函数的单调性,在假设x1<x2的前提下,比较f(x1)与f(x2)的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易,如何利用导数来判断函数的单调性? 答案根据导数的几何意义,可以用曲线切线的斜率来解释导数与单调性的关系,如果切线的斜率大于零,则其倾斜角是锐角,函数曲线呈上升的状态,即函数单调递增;如果切线的斜率小于零,则其倾斜角是钝角,函数曲线呈下降的状态,即函数单调递减. 知识点二利用导数求函数的单调区间 利用导数确定函数的单调区间的步骤: (1)确定函数f(x)的定义域. (2)求出函数的导数f′(x). (3)解不等式f′(x)>0,得函数的单调递增区间;解不等式f′(x)<0,得函数的单调递减区间. 知识点三导数绝对值的大小与函数图象的关系

一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化较快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.也就是说导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度. 如图,函数y =f (x )在(a,0)和(0,b )内的图象“陡峭”,在(-∞,a )和(b ,+∞)内的图象“平缓”. 题型一 利用导数确定函数的单调区间 例1 求下列函数的单调区间. (1)f (x )=3x 2-2ln x ;(2)f (x )=x 2·e - x ; (3)f (x )=x +1x . 解 (1)函数的定义域为D =(0,+∞).∵f ′(x )=6x -2x ,令f ′(x )=0,得x 1=33,x 2=- 3 3(舍去),用x 1分割定义域D ,得下表: ∴函数f (x )的单调递减区间为? ???0, 33,单调递增区间为??? ?3 3,+∞. (2)函数的定义域为D =(-∞,+∞).∵f ′(x )=(x 2)′e - x +x 2(e - x )′=2x e - x -x 2e - x =e - x (2x -x 2),令f ′(x )=0,由于e - x >0,∴x 1=0,x 2=2,用x 1,x 2分割定义域D ,得下表: ∴f (x )的单调递减区间为(-∞,0)和(2,+∞),单调递增区间为(0,2). (3)函数的定义域为D =(-∞,0)∪(0,+∞). ∵f ′(x )=1-1 x 2,令f ′(x )=0,得x 1=-1,x 2=1,用x 1,x 2分割定义域D ,得下表:

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

高中数学 利用导数研究函数的极值和最值

专题4 利用导数研究函数的极值和最值 专题知识梳理 1.函数的极值 (1)函数极值定义:一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作y 极大值=,是极大值点。如果对附近的所有的点,都 有.就说是函数的一个极小值,记作y 极小值=,是极小值点。极大值与极 小值统称为极值. (2)判别f (x 0)是极大、极小值的方法: 若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值. (3)求可导函数f (x )的极值的步骤: ①确定函数的定义区间,求导数 ; ①求出方程的定义域内的所有实数根; ①用函数的导数为的点,顺次将函数的定义域分成若干小开区间,并列成表格.标出在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值。 ①根据表格下结论并求出需要的极值。 2. 函数的最值 (1)定义:若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最大值,记作;若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最小值,记作; (2)在闭区间上图像连续不断的函数在上必有最大值与最小值. (3)求函数在上的最大值与最小值的步骤: ①求在内的极值; ①将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值, 从而得出函数在上的最值。 考点探究 )(x f x 0x 0f (x )f (x 0)f (x 0))(x f f (x 0)x 00x 0)(0='x f 0x )(x f 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '¢f (x )=00)(x f ')(x f I x 0x ?I f (x )£f (x 0))(0x f y max =f (x 0))(x f I x 0x ?I f (x )3f (x 0))(0x f y min =f (x 0)[]b a ,)(x f []b a ,)(x f []b a ,)(x f (,)a b )(x f f (a ),f (b ))(x f []b a ,

导数的单调性及极值问题

二轮复习导数 (一) 2015. 02. 07 一、 运用导数研究函数的单调性 单调区间: (1) 求单调区间 (2)已知单调区间 (3)在某区间上不单调 运用导数求函数单调区间的思维流程图: 答题步骤: 第一步:求定义域; 第二步:求)(x 'f ; 第三步:令)(x 'f =0,求相应的导函数零点值;(是一次型还是二次型?是否有解?有几个解) 第四步:列表分析函数的单调性, (列表实际上就是画数轴,也可以认为是穿根解不等式,首先要做的是比较根的大小以及根于定义域边界的大小) 第五步:由表格写结论。 例1:(2012西城一模)已知函数()e (1)ax a f x a x =?++,其中1-≥a . 求)(x f 的单调区间. 解:2 (1)[(1)1] ()e ax x a x f x a x ++-'=,0x ≠.……………6分 ①当1-=a 时,令()0f x '=,解得1x =-. )(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞.……8分 当1a ≠-时,令()0f x '=,解得1x =-,或1 1 x a = +. ②当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1 ( ,)1 a +∞+; 单调递增区间为(1,0)-,1 (0, )1 a +.………10分 ③当0=a 时,()f x 为常值函数,不存在单调区间.…………11分 ④当0a >时,)(x f 的单调递减区间为(1,0)-,1 (0, )1 a +; 单调递增区间为(,1)-∞-,1 ( ,)1 a +∞+.…………13分

1)分类讨论的特点:二次项系数不确定 ,一元二次方程根的大小确定 。 例2:(2012-2013朝阳第一学期期末)已知函数1 ()()2ln ()f x a x x a x =--∈R .求函数()f x 的单调区间. 解:函数()f x 的定义域为(0,)+∞.222 122()(1)ax x a f x a x x x -+'=+-= (1)当0a ≤时,2()20h x ax x a =-+<在(0,)+∞上恒成立, 则()0f x '<在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递减.……………4分 (2)当0a >时,244a ?=-, (ⅰ)若01a <<, 由()0f x '>,即()0h x >,得1x a <或1x a +>;………………5分 由()0f x '<,即()0h x -, .......................................2分 令()0f x '=,得到121 2,0x x a = -= , 由12a ≥可知120a -≤ ,即10x ≤....................5分 ① 即12a =时,121 20x x a =-==.所以,2 '2 ()0,(1,)2(1) x f x x x =-≤∈-+∞+,............6分 故()f x 的单调递减区间为(1,)-+∞ . ................................7分 ② 当 112a <<时,1 120a -<-<,即1210x x -<<=, 所以,在区间1 (1,2)a --和(0,)+∞上,'()0f x <;........8分在区间1(2,0)a -上,'()0f x >..........9分 故 ()f x 的单调递减区间是1 (1,2)a --和(0,)+∞,单调递增区间是1(2,0)a -. .........10分 ③当1a ≥时,11 21x a = -≤-,

利用导数求函数的单调区间、极值和最值

精锐教育学科教师辅导讲义 讲义编号____________________ 学员编号: 年 级: 课时数及课时进度:3(3/60) 学员姓名: 辅导科目: 学科教师: 学科组长/带头人签名及日期 课 题 利用导数学求函数单调区间、极值和最值 授课时间: 备课时间: 教学目标 1、能熟练运用导数求函数单调区间、判定函数单调性; 2、能用导数求函数的极值和最值。 重点、难点 考点及考试要求 教学内容 一、利用导数判定函数的单调性并求函数的单调区间 1.定义:一般地,设函数)(x f y =在某个区间内有导数,如果在这个区间内0)(' >x f ,那么函数)(x f y = 在 为这个区间内的增函数;如果在这个区间内 0)(' x f 解不等式,得x 的范围就是递增区间. ③令 0)('

二、利用导数求函数的极值 1、极大值 一般地,设函数)(x f 在点x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f <,就说)(0 x f 是函数的一 个极大值,记作()x y f 0=极大值 ,x 0是极大值点 2、极小值 一般地,设函数)(x f 在x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f >就说)(0 x f 是函数) (x f 的一个极小值,记作 ()x y f 0=极小值 ,x 0是极小值点 3、极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示, x 1 是极大值点, x 4 是极小值点,而)()( 1 4 x x f f >. (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 f(x 2)f(x 4) f(x 5) f(x 3) f(x 1) f(b) f(a) x 5 x 4x 3x 2 x 1b a x O y 4、判别()x f 0 是极大、极小值的方法: 若 x 满足 0)(0' =x f ,且在x 0的两侧)(x f 的导数异号,则x 0是)(x f 的极值点,()x f 0是极值,并且如果 )(' x f 在 x 两侧满足“左正右负”,则x 是)(x f 的极大值点,()x f 0 是极大值;如果)(' x f 在x 0两侧满足“左负右正” ,则x 0是)(x f 的极小值点,()x f 是极小值 5、求可导函数)(x f 的极值的步骤: (1)确定函数的定义区间,求导数 )(' x f

导数讨论含参函数的单调性

导数讨论含参函数的单调性 【思想方法】 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 【典例讲解】 例1 讨论x a x x f +=)(的单调性,求其单调区间 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号)I )当0≤a 时,)0(0)('≠>x x f 恒成立,此时)(x f 在)0,(-∞和),0(+∞都是单调增函数,即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(', a x x a x x f <<<<-?≠<00)0(0)('或,此时)(x f 在),(a --∞和),(+∞a 都是单调 增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和 ),(+∞a ;)(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 解:x a x x f ln )(+=的定义域为),0(+∞ )0(1)('>+=+ =x x a x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立,此时)(x f 在),0(+∞为单调增函数, 即)(x f 的增区间为),0(+∞,不存在减区间; II) 当0?>>)0(0)(';a x x x f -<<0)0(0)(' 此时)(x f 在),(+∞-a 为单调增函数,)(x f 在),0(a -是单调减函数, 即)(x f 的增区间为),(+∞-a ;)(x f 的减区间为),0(a -. 例2.讨论x ax x f ln )(+=的单调性 解:x ax x f ln )(+=的定义域为),0(+∞ )0(11)('>+=+ =x x ax x a x f (它与1)(+=ax x g 同号)

相关文档 最新文档