文档库 最新最全的文档下载
当前位置:文档库 › 凸轮机构的设计计算和运动分析

凸轮机构的设计计算和运动分析

凸轮机构的设计计算和运动分析
凸轮机构的设计计算和运动分析

% ******** 偏置移动从动件盘形凸轮设计绘图和运动分析******** disp ' ######## 已知条件########'

disp ' 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边'

disp ' 从动件在推程作等加速/等减速运动,在回程作余弦加速度运动' % 基圆半径;滚子半径;从动件偏距;从动件升程

rb=40;rt=10;e=15;h=50;

% 推程运动角;远休止角;回程运动角;推程许用压力角;凸轮转速

ft=100;fs=60;fh=90;alpha_p=35;n=200;

% 角度和弧度转换系数;机构尺度

hd=pi/180;du=180/pi;se=sqrt(rb^2-e^2);

w=n*pi/30; omega=w*du; % 凸轮角速度(°/s)

fprintf(' 基圆半径rb = %3.4f mm \n',rb)

fprintf(' 滚子半径rt = %3.4f mm \n',rt)

fprintf(' 推杆偏距 e = %3.4f mm \n',e)

fprintf(' 推程升程h = %3.4f mm \n',h)

fprintf(' 推程运动角ft = %3.4f 度\n',ft)

fprintf(' 远休止角fs = %3.4f 度\n',fs)

fprintf(' 回程运动角fh = %3.4f 度\n',fh)

fprintf(' 推程许用压力角alpha_p = %3.4f 度\n',alpha_p) fprintf(' 凸轮转速n = %3.4f r/min \n',n) fprintf(' 凸轮角速度(弧度) w = %3.4f rad/s \n',w)

fprintf(' 凸轮角速度(度) omega = %3.4f 度/s \n',omega) disp ' '

disp ' @@@@@@ 计算过程和输出结果@@@@@@' disp ' '

% (1)---校核凸轮机构的压力角和轮廓曲率半径'

disp ' *** 计算凸轮理论轮廓的压力角和曲率半径***'

disp ' 1 推程(等加速/等减速运动)'

for f=1:ft

if f<=ft/2

s(f)=2*h*f^2/ft^2;s=s(f); % 等加速-位移方程

ds(f)=4*h*f*hd/(ft*hd)^2;ds=ds(f);

d2s(f)=4*h/(ft*hd)^2;d2s=d2s(f);

vt(f)=4*h*omega*f/ft^2; % 等加速-速度方程else

s(f)=h-2*h*(ft-f)^2/ft^2;s=s(f); % 等减速-位移方程

ds(f)=4*h*(ft-f)*hd/(ft*hd)^2;ds=ds(f);

d2s(f)=-4*h/(ft*hd)^2;d2s=d2s(f);

vt(f)=4*h*omega*(ft-f)/ft^2; % 等减速-速度方程end

alpha_t(f)=atan(abs(ds-e)/(se+s)); % 推程压力角(弧度)

alpha_td(f)=alpha_t(f)*du; % 推程压力角(度)

pt1=((se+s)^2+(ds-e)^2)^1.5;

pt2=abs((se+s)*(d2s-se-s)-(ds-e)*(2*ds-e));

rho_t(f)=pt1/pt2; % 推程曲率半径

st(f)=s;

end

alpha_tm=max(alpha_td);

fprintf(' 推程最大压力角alpha_tm = %3.4f 度\n',alpha_tm)

for f=1:ft

if alpha_td(f)==alpha_tm;ftm=f;break;end

end

fprintf (' 对应的位置角ftm = %3.4f 度\n',ftm)

if alpha_tm>alpha_p

fprintf(' * 凸轮推程压力角超过许用值,需要增大基圆!\n')

end

rho_tn = min(rho_t);

fprintf (' 最小曲率半径rho_tn = %3.4f mm\n',rho_tn)

for f=1:ft

if rho_t(f)==rho_tn;ftn=f;break;end

end

fprintf(' 对应的位置角ftn = %3.4f 度\n',ftn)

if rho_tn

fprintf(' * 凸轮推程轮廓曲率半径小于许用值,需要增大基圆或减小滚子!\n') end

disp ' 2 回程(余弦加速度运动-简谐运动)'

d1=ft+fs;d2=ft+fs+fh; % 回程运动角范围

for f=d1:d2

k=f-d1;

s(f)=0.5*h*(1+cos(pi*k/fh));s=s(f); % 简谐运动-位移方程

ds(f)=-0.5*pi*h*sin(pi*k/fh)/(fh*hd);ds=ds(f);

d2s(f)=-0.5*pi^2*h*cos(pi*k/fh)/(fh*hd)^2;d2s=d2s(f);

alpha_h(f)=atan(abs(ds+e)/(se+s)); % 回程压力角(弧度)

alpha_hd(f)=alpha_h(f)*du; % 回程压力角(度)

ph1=((se+s)^2+(ds-e)^2)^1.5;

ph2=abs((se+s)*(d2s-se-s)-(ds-e)*(2*ds-e));

rho_h(f)=ph1/ph2; % 回程曲率半径

sh(f)=s;

vh(f)=-0.5*pi*h*omega*sin(pi*f/fh)/fh; % 简谐运动-速度方程

ah(f)=-0.5*pi^2*h*omega^2*cos(pi*f/fh)/fh^2; % 简谐运动-加速度方程

end

alpha_hm = max(alpha_hd(d1:d2));

fprintf(' 回程最大压力角alpha_hm = %3.4f 度\n',alpha_hm)

for f=d1:d2

if alpha_hd(f)==alpha_hm;fhm=f;break;end

end

fprintf(' 对应的位置角fhm = %3.4f 度\n',fhm)

rho_hn=min(rho_h(d1:d2));

fprintf(' 最小曲率半径rho_hn = %3.4f mm\n',rho_hn)

for f=d1:d2

if rho_h(f)==rho_hn;fhn=f;break;end

end

fprintf(' 对应的位置角fhn = %3.4f 度\n',fhn)

if rho_hn

fprintf(' * 凸轮回程轮廓曲率半径小于许用值,需要增大基圆或减小滚子!\n') end

disp ' '

% (2)---计算凸轮机构的从动件运动参数'

disp ' *** 计算凸轮机构从动件的运动参数***'

disp ' 1 推程(等加速/等减速运动)'

disp ' 凸轮转角位移s(mm) 速度v(mm/s)'

for f=10:10:ft

ydcs_t=[f st(f) vt(f)];

disp(ydcs_t)

end

at_1=4*h*omega^2/ft^2;

at_2=-4*h*omega^2/ft^2;

fprintf(' 等加速上升的加速度at_1 = %3.4f (mm/s^2) \n',at_1)

fprintf(' 等减速上升的加速度at_2 = %3.4f (mm/s^2) \n',at_2)

disp ' 2 回程(余弦加速度运动-简谐运动)'

disp ' 凸轮转角位移s(mm) 速度v(mm/s) 加速度a(mm/s^2)'

for f=d1:10:d2

ydcs_h=[f sh(f) vh(f) ah(f)];

disp(ydcs_h)

end

% (3)---绘制凸轮机构的从动件运动线图

figure(1);

subplot(3,2,1) % 推程位移线图

f=1:ft;plot(f,st);

xlabel ('凸轮转角\it \phi / \rm( °)')

ylabel ('\it s / \rm(mm)')

title('从动件推程位移线图');

subplot(3,2,2) % 回程位移线图

f=d1:d2;plot(f,sh(d1:d2));

xlabel ('凸轮转角\it \phi / \rm( °)')

ylabel ('\it s / \rm(mm)')

title('从动件回程位移线图');

subplot(3,2,3) % 推程速度线图

f=1:ft;plot(f,vt);

xlabel ('凸轮转角\it \phi / \rm( °)')

ylabel ('\it v / \rm(mm/s)')

title('从动件推程速度线图');

subplot(3,2,4) % 回程速度线图

f=d1:d2;plot(f,-vh(d1:d2));

xlabel ('凸轮转角\it \phi / \rm( °)')

ylabel ('\it v / \rm(mm/s)')

title('从动件回程速度线图');

subplot(3,2,5) % 推程加速度线图

line([0,ft/2],[at_1,at_1]);

line([ft/2,ft/2],[at_1,at_2]); % 等加速等减速之间的突变垂线

line([ft/2,ft],[at_2,at_2]);

xlabel ('凸轮转角\it \phi / \rm( °)')

ylabel ('\it a / \rm(mm/s^2)')

title('从动件推程加速度线图');

subplot(3,2,6) % 回程加速度线图

f=d1:d2;plot(f,-ah(d1:d2));

xlabel ('凸轮转角\it \phi / \rm( °)')

ylabel ('\it a / \rm(mm/s^2)')

title('从动件回程加速度线图');

disp ' '

% (4)---计算凸轮理论廓线与实际廓线的直角坐标和向径'

disp ' ****** 凸轮理论轮廓与实际轮廓的直角坐标******'

nd=360;

for f=1:nd

if f<=ft/2 % 等加速运动s(f)=2*h*f^2/ft^2;s=s(f);

ds(f)=4*h*f*hd/(ft*hd)^2;ds=ds(f);

elseif f>ft/2 & f<=ft % 等减速运动s(f)=h-2*h*(ft-f)^2/ft^2;s=s(f);

ds(f)=4*h*(ft-f)*hd/(ft*hd)^2;ds=ds(f);

elseif f>ft & f<=d1 % 远休止角s=h;ds=0;

elseif f>d1 & f<=d2 % 简谐运动k=f-d1;

s(f)=0.5*h*(1+cos(pi*k/fh));s=s(f);

ds(f)=-0.5*pi*h*sin(pi*k/fh)/(fh*hd);ds=ds(f);

elseif f>d2 & f<=nd

s=0;ds=0;

end

xx(f)=(se+s)*sin(f*hd)+e*cos(f*hd);x=xx(f); % 理论轮廓横坐标yy(f)=(se+s)*cos(f*hd)-e*sin(f*hd);y=yy(f); % 理论轮廓纵坐标dx(f)=(ds-e)*sin(f*hd)+(se+s)*cos(f*hd);dx=dx(f);

dy(f)=(ds-e)*cos(f*hd)-(se+s)*sin(f*hd);dy=dy(f);

xp(f)=x+rt*dy/sqrt(dx^2+dy^2);xxp=xp(f); % 实际轮廓横坐标yp(f)=y-rt*dx/sqrt(dx^2+dy^2);yyp=yp(f); % 实际轮廓纵坐标r(f)=sqrt(x^2+y^2); % 理论轮廓向径

rp(f)=sqrt(xxp^2+yyp^2); % 实际轮廓向径

end

disp ' 1 推程(等加速/等减速运动)'

disp ' 凸轮转角理论x 理论y 实际x 实际y'

for f=10:10:ft

nu=[f xx(f) yy(f) xp(f) yp(f)];

disp(nu)

end

disp ' 2 回程(余弦加速度运动)'

disp ' 凸轮转角理论x 理论y 实际x 实际y'

for f=d1:10:d2

nu=[f xx(f) yy(f) xp(f) yp(f)];

disp(nu)

end

disp '*** 凸轮理论轮廓与实际轮廓的向径***'

disp ' 1 推程(等加速/等减速运动)'

disp ' 凸轮转角理论r 实际r'

for f=10:10:ft

nu=[f r(f) rp(f)];

disp(nu)

end

disp ' '

disp ' 2 回程(余弦加速度运动)'

for f=d1:10:d2

nu=[f r(f) rp(f)];

disp(nu)

end

% (5)---绘制凸轮的理论轮廓和实际轮廓

figure(2);

plot(xx,yy,'r-.') % 理论轮廓(红色,点划线)

axis ([-(rb+h-10) (rb+h+10) -(rb+h+10) (rb+rt+10)]) % 横轴和纵轴的下限和上限

axis equal % 横轴和纵轴的尺度比例相同text(rb+h+3,0,'X') % 标注横轴

text(0,rb+rt+3,'Y') % 标注纵轴

text(-5,5,'O') % 标注直角坐标系原点

title('偏置移动从动件盘形凸轮轮廓') % 标注图形标题

hold on; % 保持图形

plot([-(rb+h) (rb+h)],[0 0],'k') % 横轴(黑色)

plot([0 0],[-(rb+h) (rb+rt)],'k') % 纵轴(黑色)

plot([e e],[0 (rb+rt)],'k--') % 初始偏置位置(黑色,虚线)

ct=linspace(0,2*pi); % 画圆的极角变化范围

plot(rb*cos(ct),rb*sin(ct),'g') % 基圆(绿色)

plot(e*cos(ct),e*sin(ct),'c--') % 偏距圆(青色,虚线)

plot(e + rt*cos(ct),se + rt*sin(ct),'m') % 滚子圆(品红色)

plot(xp,yp,'b') % 实际轮廓(蓝色)

******** 偏置移动从动件盘形凸轮设计绘图和运动分析********

######## 已知条件########

凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边

从动件在推程作等加速/等减速运动,在回程作余弦加速度运动基圆半径rb = 40.0000 mm

滚子半径rt = 10.0000 mm

推杆偏距 e = 15.0000 mm

推程升程h = 50.0000 mm

推程运动角ft = 100.0000 度

远休止角fs = 60.0000 度

回程运动角fh = 90.0000 度

推程许用压力角alpha_p = 35.0000 度

凸轮转速n = 200.0000 r/min

凸轮角速度(弧度) w = 20.9440 rad/s

凸轮角速度(度) omega = 1200.0000 度/s

@@@@@@ 计算过程和输出结果@@@@@@

*** 计算凸轮理论轮廓的压力角和曲率半径***

1 推程(等加速/等减速运动)

推程最大压力角alpha_tm = 34.2666 度

对应的位置角ftm = 50.0000 度

最小曲率半径rho_tn = 35.2303 mm

对应的位置角ftn = 51.0000 度

2 回程(余弦加速度运动-简谐运动)

回程最大压力角alpha_hm = 30.9248 度

对应的位置角fhm = 213.0000 度

最小曲率半径rho_hn = 30.3591 mm

对应的位置角fhn = 250.0000 度

*** 计算凸轮机构从动件的运动参数***

1 推程(等加速/等减速运动)

凸轮转角位移s(mm) 速度v(mm/s)

10 1 240

20 4 480

30 9 720

40 16 960

50 25 1200

60 34 960

70 41 720

80 46 480

90 49 240

100 50 0

等加速上升的加速度at_1 = 28800.0000 (mm/s^2)

等减速上升的加速度at_2 = -28800.0000 (mm/s^2)

2 回程(余弦加速度运动-简谐运动)

凸轮转角位移s(mm) 速度v(mm/s) 加速度a(mm/s^2) 160 50 673 -33602

170 48 358 -41220

180 44 0 -43865

190 37 -358 -41220

200 29 -673 -33602

210 21 -907 -21932

220 12.5 -1031.3 -7617.1

230 5.8 -1031.3 7617.1

240 2 -907 21932

250 0 -673 33602

****** 凸轮理论轮廓与实际轮廓的直角坐标******

1 推程(等加速/等减速运动)

凸轮转角理论x 理论y 实际x 实际y 10.0000 21.3848 34.8977 18.7440 25.2527 20.0000 28.1459 33.4732 26.5660 23.5988 30.0000 36.0309 32.4073 34.7788 22.4860 40.0000 45.6105 31.0206 43.9004 21.1679 50.0000 57.1986 28.4142 54.4870 18.7889 60.0000 69.0579 22.5501 63.1030 14.5165 70.0000 78.5024 12.6099 70.2060 7.0270 80.0000 84.4235 -0.3453 74.7846 -3.0083

90.0000 86.0810 -15.0000 76.0894 -14.5890 100.0000 83.1533 -29.8936 73.7429 -26.5105

2 回程(余弦加速度运动)

凸轮转角理论x 理论y 实际x 实际y 160.0000 15.6881 -86.9597 13.9127 -77.1185 170.0000 0.0875 -86.8780 1.9206 -77.0474 180.0000 -15.0000 -81.2321 -9.9808 -72.5829 190.0000 -27.7230 -70.8432 -20.2897 -64.1539 200.0000 -36.8131 -57.2861 -27.8219 -52.9092 210.0000 -41.8603 -42.5041 -32.0770 -40.4336 220.0000 -43.3607 -28.3394 -33.3609 -28.2733 230.0000 -42.5280 -16.1041 -32.6176 -17.4398 240.0000 -40.9188 -6.3040 -31.0634 -7.9985 250.0000 -39.9750 1.4129 -29.9813 1.0597

*** 凸轮理论轮廓与实际轮廓的向径***

1 推程(等加速/等减速运动)

凸轮转角理论r 实际r

10.0000 40.9287 31.4490

20.0000 43.7338 35.5339

30.0000 48.4609 41.4148

40.0000 55.1597 48.7373

50.0000 63.8674 57.6355

60.0000 72.6465 64.7512

70.0000 79.5088 70.5568

80.0000 84.4242 74.8451

90.0000 87.3781 77.4754

100.0000 88.3634 78.3634

2 回程(余弦加速度运动)

160.0000 88.3634 78.3634

170.0000 86.8780 77.0714

180.0000 82.6054 73.2660

190.0000 76.0745 67.2859

200.0000 68.0948 59.7783

210.0000 59.6564 51.6121

220.0000 51.8003 43.7302

230.0000 45.4750 36.9872

240.0000 41.4015 32.0766

250.0000 40.0000 30.0000

(完整word版)摆动式固定凸轮与连杆机构的设计

摆动式固定凸轮与连杆机构的设计 姓名:xxx 学校:湖南工业大学 专业:机械设计制造及其自动化 班级:机设1002班 学号:xxxxxxxxxx 指导老师:贺兵 时间:2013年12月20日

目录 一、课程设计的目的 (3) 二、设计内容与步骤 (3) 1、设计内容 (3) 2、设计步骤 (3) 三、设计要求 (3) 四、设计指导 (4) 1、概述 (4) 2、基本参数 (5) 3、设计步聚 (6) 1)确定驱动方案 (6) 2)确定e (7) 3)确定h (7) 4)确定α (7) 5)确定δ (7) 6)求算b1、b2 (7) 7)设计凸轮廊线 (9) 8)检验压力角 (12) 五、结论 (14) 六、参考文献 (14) 七、附图 (14)

摘要 包装设计课程设计是在完成机械设计课程学习后,一次重要的实践性教学环节。是高等工科院校大多数专业学生第一次较全面的设计能力训练,也是对机械设计课程的全面复习和实践。其目的是培养理论联系实际的设计思想,训练综合运用机械设计和有关选修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关机械设计方面的知识。 本次设计的题目是直动式固定凸轮与连杆机构的设计。根据题目要求和机械设计的特点作者做了以下几个方面的工作:①根据有关参数进行计算或编写有关设计计算程序;②利用程序设计的方法输出结果并自动生成图形;③画出装配图及其主要零件图;④完成设计计算说明书。

一、课程设计的目的 《包装机械设计》课程设计是本课程各教学环节中重要的一环,它让学习者联系实际进一步深入理解、掌握所学的理论知识。其基本目的是: (1)培养理论联系实际的设计思想,训练综合运用包装机械和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关包装机械设计方面的知识。 (2)通过制订设计方案,合理选择裹包机中块状物品推送机构和零件类型,正确计算零件工作能力、确定尺寸和选择材料,以及较全面地考虑制造工艺、使用和维护等要求,之后进行结构设计,达到了解和掌握机械零件、包装机械经常采用的机构的设计过程和方法。 (3)进行设计基本技能的训练。例如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据、进行经验估算和处理数据的能力。 二、设计内容与步骤 (一)设计内容 以裹包机中块状物品推送机构的典型机构——固定凸轮与连杆组合机构为题。课程设计通常包括如下内容:读懂块状物品推送机构典型机构——固定凸轮与连杆组合机构,了解设计题目要求;分析该块状物品推送机构设计的可能方案;具体计算和设计该方案中机构的基本参数;进行机体结构及其附件的设计;绘制装配图及零件工作图;编写计算说明书以及进行设计答辩。 (二)设计步骤: (1)设计准备 认真研究设计任务书,明确设计要求、条件、内容和步骤;通过阅读有关资料、图纸、参观实物或模型、观看电视教学片、挂图以及推送机构进行拆装实验等,了解设计对象;复习有关课程内容,熟悉零部件的设计方法和步骤;准备好设计需要的图书、资料和用具;拟定设计计划等。 (2)推送机构装置的总体设计 决定推送机构装置的方案;选择机构的类型,计算机构装置的运动参数。 (3)装配图设计 计算和选择机构的参数;确定机体结构和有关尺寸;绘制装配图草图;选择计算轴承和进行支承结构设计;进行机体结构及其附件的设计;完成装配图的其他要求;审核图纸。 (4)零件工作图设计 (5)整理和编写计算说明书 (6)设计总结和答辩 (三)、设计要求 在课程设计之前,准备好必要的设计手册或参考资料,以便在设计过程中逐步去学习查阅资料。确定设计题目后,至少应复习在课程中学过的相关内容。完成本课程设计的具体要求如下:

第9章凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。 (1) 由等速运动规律和等加速等减速运动规律组合而成。 (2) 有冲击。 (3) ABCD 处有柔性冲击。 2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。 (1) 运动规律发生了变化。 (见下图 ) (2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度 '='v O P 2111ω,由于O P O P v v 1111 22≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60?时从动件的位置及从动件的位移s。 总分5分。(1)3 分;(2)2 分 (1) 找出转过60?的位置。 (2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h ,说明推程运动角和回程运动角的大小。 总分5分。(1)2 分;(2)1 分;(3)1 分;(4)1 分 (1) 从动件升到最高点位置如图示。 (2) 行程h 如图示。 (3)Φ=δ0-θ (4)Φ'=δ' 0+θ

5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=? 从动件行程h=30 mm,要求: (1)画出推程时从动件的位移线图s-?; (2)分析推程时有无冲击,发生在何处?是哪种冲击? - 总分10分。(1)6 分;(2)4 分 (1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0?ω,其位移为直线, 如图示。

凸轮机构习题解答复习与练习题参考答案

凸轮机构习题解答复习与练习题参考答案 一、单项选择题 1 B 2 A 3 C 4 D 5 B 6 A 7.A 8. A 9. C 10 .B 11. C 12. A 13. .B 14. .B 15 . A 16. B 17 . C 18 .B 19 .A 20 .B 21 .B 22 .C 其他答案在文后: 一、单项选择题(从给出的A 、B 、C 、D 中选一个答案) 1 与连杆机构相比,凸轮机构最大的缺点是。 A .惯性力难以平衡 B .点、线接触,易磨损 C .设计较为复杂 D .不能实现间歇运动 2 与其他机构相比,凸轮机构最大的优点是。 A .可实现各种预期的运动规律 B .便于润滑 C .制造方便,易获得较高的精度 D .从动件的行程可较大 3 盘形凸轮机构的压力角恒等于常数。 A .摆动尖顶推杆 B .直动滚子推杆 C .摆动平底推杆 D .摆动滚子推杆 4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。 A .偏置比对心大 B .对心比偏置大 C .一样大 D .不一定 5 既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。 A .等速运动规律 B .摆线运动规律(正弦加速度运动规律) C .等加速等减速运动规律 D .简谐运动规律(余弦加速度运动规律)

6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。 A .增大基圆半径 B .改用滚子推杆 C .改变凸轮转向 D .改为偏置直动尖顶推杆 7.()从动杆的行程不能太大。 A. 盘形凸轮机构 B. 移动凸轮机构 C. 圆柱凸轮机构 8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。 A 尖顶式从动杆 B. 滚子式从动杆 C. 平底式从动杆 9.()可使从动杆得到较大的行程。 A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构 10.()的摩擦阻力较小,传力能力大。 A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆 11. ()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。 A. 尖顶式从动杆 B. 滚子式从动杆 )。 C. 平底式从动杆 12.计算凸轮机构从动杆行程的基础是( A 基圆 B. 转角 C 轮廓曲线 )。 13.凸轮轮廓曲线上各点的压力角是( A. 不变的 B. 变化的 )。 14.凸轮压力角的大小与基圆半径的关系是( A 基圆半径越小,压力角偏小 15.压力角增大时,对()。 B. 基圆半径越大,压力角偏小 A. 凸轮机构的工作不利 C. 凸轮机构的工作无影响 B. 凸轮机构的工作有利

圆柱凸轮机构_设计_结构计算[整理版]

圆柱凸轮机构_设计_结构计算[整理版] 本章介绍凸轮机构的类型、特点、应用及盘形凸轮的设计。 凸轮是一种具有曲线轮廓或凹槽的构件,它通过与从动件的高副接触,在运动时可以使从动件获得连续或不连续的任意预期运动。在第4章介绍中,我们已经看到。凸轮机构在各种机械中有大量的应用。即使在现代化程度很高的自动机械中,凸轮机构的作用也是不可替代的。 凸轮机构由凸轮、从动件和机架三部分组成,结构简单、紧凑,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任意的运动规律。在自动机械中,凸轮机构常与其它机构组合使用,充分发挥各自的优势,扬长避短。由于凸轮机构是高副机构,易于磨损;磨损后会影响运动规律的准确性,因此只适用于传递动力不大的场合。 图12-1为自动机床中的横向进给机构,当凸轮等速回转一周时,凸轮的曲线外廓推动从动件带动刀架完成以下动作:车刀快速接近工件,等速进刀切削,切削结束刀具快速退回,停留一段时间再进行下一个运动循环。 图12-1 图12-2

图12-2为糖果包装剪切机构,它采用了凸轮—连杆机构,槽凸轮1绕定轴B 转动,摇杆2与机架铰接于A点。构件5和6与构件2组成转动副D和C,与构件3和4(剪刀)组成转动副E和F。构件3和4绕定轴K转动。凸轮1转动时,通过构件2、5、和6,使剪刀打开或关闭。 图12-3为机械手及进出糖机构。送糖盘7从输送带10上取得糖块,并与钳糖机械手反向同步放 ,经顶糖、折边后,产品被机械手送至工位?后落下或由拨糖杆推下。机械手开闭置至进料工位? 由机械手开合凸轮(图中虚线)1控制,该凸轮的轮廓线是由两个半径不同的圆弧组成,机械手的 夹紧主要靠弹簧力。

机械原理大作业——凸轮机构运动分析

机械原理大作业 凸轮机构运动分析 学号 姓名 院系 专业 完成日期 设计题号 指导教师 一、设计如图1所示直动从动件盘形凸轮机构。其原始参数见表1。

图1 行程(mm)升程运 动角 (°) 升程运 动规律 升程许 用压力 角(°) 回程运 动角 (°) 回程运 动规律 回程许用 压力角 (°) 远休止 角 (°) 近休止 角 (°) 35 80 余弦加 速度35 60 3-4-5 多项式 70 100 120 表1 二、计算流程图

凸轮机构分析 建立数学模型 位移方程速度方程 加速度方程 速度线图位移线图加速线图 ds/d Ψ-s 曲线升程压力角回程压力角 确定轴向及基圆半径 压力角图确定滚子半径实际轮廓理论轮廓 轮廓图 结束 三、建立数学模型 1. 位移、速度、加速度、ds/dψ-s 、压力角图 (1)运动方程: A.升程运动方程(余弦加速度): ? ?? ? ? ≤≤π?940 ??????-= )cos(12h 01?φπs )sin(20 011?φπφωπh v =

)cos(202 212 1 ?φπφωπh a = B.远休止方程: ?? ? ??≤≤π?π94 h s =2 02=v 02=a C.回程运动方程(3-4-5多项式): ??? ? ?≤≤π?π34 ])(*6)(*15)( *101[5 0' 040'030'03φφφ?φφφ?φφφ?s s s h s -----+---= ])(*30)(*60)( *30[4 '030'020'00'1 3φφφ?φφφ?φφφ?φωs s s h v --+------ = ])(*120)(*180)( *60[3 ' 020'00'02 0'2 1 3φφφ?φφφ?φφφ?φωs s s h a --+------ = D.近休止方程: ?? ? ??≤≤π?π34 04=s 04=v 04=a (2)源代码及作图(matlab ) syms a1 a2 a3 a4;

机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计 (一)凸轮机构的应用和分类 一、凸轮机构 1.组成:凸轮,推杆,机架。 2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 二、凸轮机构的分类 1.按凸轮的形状分:盘形凸轮圆柱凸轮 2.按推杆的形状分 尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。易遭磨损,只适用于作用力不大和速度较低的场合 滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。不能与凹槽的凸轮轮廓时时处处保持接触。 平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。不能与凹槽的凸轮轮廓时时处处保持接触。 3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。 4.根据凸轮与推杆接触方法不同分: (1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。①等宽凸轮机构②等径凸轮机构③共轭凸轮 (二)推杆的运动规律 一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0称为基圆半径。推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。休止:推杆处于静止不动的阶段。推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角 二、推杆常用的运动规律 1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。 2.柔性冲击:加速度有突变,因而推杆的惯性力也将有突变,不过这一突变为有限值,因而引起有限

凸轮机构的运动学仿真实验_02

机构与零部件设计(Ⅰ)实验报告姓名 凸轮机构运动学仿真班号 成绩 凸轮机构的运动学仿真 一、实验目的: 1.理解凸轮轮廓线与从动件运动之间的相互关系,巩固凸轮机构设计及运动分析的理论知识。 2.用虚拟样机技术模拟仿真凸轮机构的设计。 二、实验内容: 1.凸轮轮廓线的构建; 2.凸轮机构的三维建模; 3.凸轮机构的运动学仿真。 具体要求:设计对心直动滚子从动件凸轮机构 已知从动件的运动规律为:当凸轮转过Φ=600时,从动件以等加速等减速运动规律上升h=10mm;凸轮再转过Φ'=1200,从动件停止不动;当凸轮再转过Φ=600时,从动件以等加速等减速运动规律下降h=10mm;其余Φs'=1200,从动件静止不动。 已知基圆r b=50mm,滚子半径r=10mm,凸轮厚度10mm。凸轮以等角速度顺时针转动,试设计凸轮机构,并输出从动件运动规律。 实验步骤:

三、实验报告: 将所建立的凸轮廓线、凸轮机构的三维模型、凸轮机构的从运件运动规律附在实验报告中。 机构与零部件设计(Ⅰ)实验报告 凸轮机构运动学仿真

对设计结果进行分析 思考题: 1.在构建凸轮轮廓线的曲线应注意哪些事项?在建立凸轮机构的三维建模时又应注意哪些事项? 建凸轮轮廓曲线时首先该凸轮轮廓曲线分为四段推程阶段(等加速、等减速)、远休止阶段、回程阶段、近休止阶段。建立表达式时较复杂,例如要将上诉规律分为六小段,即b1=30,b2=60,b3=180,b4=210,b5=240,b6=360且a1=0,a2=b1,a3=b2,a4=b3,a5=b4,a6=b5(单位皆为度)。 另知 在最后插入曲线时要将输入的x1、y1等相互对应,且将Z 值变为0. 还要根据设计任务的要求选择凸轮的类型和从动件运动规律 确定凸轮的基圆半径,确定凸轮的轮廓 在建立三维模型,表达式的建立时,要注意参数化曲线的建立以及连杆,运动副的定义,特别注意高副的定义。 2.凸轮轮廓线与从动件运动规律之间有什么内在联系? 答:凸轮轮廓曲线由从动件的运动规律来决定,要根据从动件的运动规律来设计凸轮轮廓的曲线。 ? ?cos )(sin )(s r y s r x b B b B +=+=

凸轮机构设计及运动分析

凸轮机构设计及运动分析 问题描述: 如图1所示为以对心直动尖顶盘形凸轮机构。从动杆位移s随时间变化曲线如图2所示。要求设计凸轮机构并分析从动件速度v,加速度a随时间变化的规律,及应力、应变随时间变化的规律。 任务与要求 1.设计满图2运动规律的凸轮机构;(要有设计计算步骤) 2.对所设计的机构运用ansys软件分析从动件速度、加速度随时间变化的规律; 3.查阅资料、了解所给机构的在生产、生活中的应用,说明其工作原理,并附相应的图片或视频。 凸轮机构设计及运动分析指导书

一、设计的目的 通过设计,训练学生机构设计的能力,掌握运用ANSYS Workbench进行瞬态动力学分析的方法、步骤和过程,提高学生解决实际问题的能力。 二、设计报告的主要要求 设计报告包括设计报告书Word文档和Powerpoint演示文稿两部分。 1.设计报告书内容包括目录、任务书、正文、参考文献、组员工作内容表。 (1)文档格式严格遵守设计书文档规范要求。 (2)目录必须层次清楚,并标有页码数。 (3)正文按章节编写,按照任务书要求合理安排内容,并附有参考文献。 2.Powerpoint演示文稿要求内容简洁,重点突出。 三、人员要求:1人 四、时间安排 1.布置任务、准备、查阅资料:2天; 2.机构设计及动画:6天; 3.Ansys分析:6天; 4.编写报告书、Powerpint演示文稿、验收:2天。 5.答辩。 五、成绩形成: 设计报告书:50分;答辩:50分 组内成员按实际完成工作量评定每位学生最终成绩;不参加答辩的学生没有答辩成绩。 六、参考资料:机械原理的平面机构,ansys机械工程应用精华59例

凸轮机构的设计计算和运动分析

% ******** 偏置移动从动件盘形凸轮设计绘图和运动分析******** disp ' ######## 已知条件########' disp ' 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边' disp ' 从动件在推程作等加速/等减速运动,在回程作余弦加速度运动' % 基圆半径;滚子半径;从动件偏距;从动件升程 rb=40;rt=10;e=15;h=50; % 推程运动角;远休止角;回程运动角;推程许用压力角;凸轮转速 ft=100;fs=60;fh=90;alpha_p=35;n=200; % 角度和弧度转换系数;机构尺度 hd=pi/180;du=180/pi;se=sqrt(rb^2-e^2); w=n*pi/30; omega=w*du; % 凸轮角速度(°/s) fprintf(' 基圆半径rb = %3.4f mm \n',rb) fprintf(' 滚子半径rt = %3.4f mm \n',rt) fprintf(' 推杆偏距 e = %3.4f mm \n',e) fprintf(' 推程升程h = %3.4f mm \n',h) fprintf(' 推程运动角ft = %3.4f 度\n',ft) fprintf(' 远休止角fs = %3.4f 度\n',fs) fprintf(' 回程运动角fh = %3.4f 度\n',fh) fprintf(' 推程许用压力角alpha_p = %3.4f 度\n',alpha_p) fprintf(' 凸轮转速n = %3.4f r/min \n',n) fprintf(' 凸轮角速度(弧度) w = %3.4f rad/s \n',w) fprintf(' 凸轮角速度(度) omega = %3.4f 度/s \n',omega) disp ' ' disp ' 计算过程和输出结果' disp ' ' % (1)---校核凸轮机构的压力角和轮廓曲率半径' disp ' *** 计算凸轮理论轮廓的压力角和曲率半径***' disp ' 1 推程(等加速/等减速运动)' for f=1:ft if f<=ft/2 s(f)=2*h*f^2/ft^2;s=s(f); % 等加速-位移方程 ds(f)=4*h*f*hd/(ft*hd)^2;ds=ds(f); d2s(f)=4*h/(ft*hd)^2;d2s=d2s(f); vt(f)=4*h*omega*f/ft^2; % 等加速-速度方程else s(f)=h-2*h*(ft-f)^2/ft^2;s=s(f); % 等减速-位移方程 ds(f)=4*h*(ft-f)*hd/(ft*hd)^2;ds=ds(f); d2s(f)=-4*h/(ft*hd)^2;d2s=d2s(f); vt(f)=4*h*omega*(ft-f)/ft^2; % 等减速-速度方程end alpha_t(f)=atan(abs(ds-e)/(se+s)); % 推程压力角(弧度) alpha_td(f)=alpha_t(f)*du; % 推程压力角(度) pt1=((se+s)^2+(ds-e)^2)^1.5; pt2=abs((se+s)*(d2s-se-s)-(ds-e)*(2*ds-e));

牛头刨床的连杆机构运动分析

牛头刨床的连杆机构运动分析 0 前言 机构运动分析的任务是对于结构型式及尺寸参数已定的具体机构,按主动件的位置、速度和加速度来确定从动件或从动件上指定点的位置、速度和加速度。许多机械的运动学特性和运动参数直接关系到机械工艺动作的质量,运动参数又是机械动力学分析的依据,所以机构的运动分析是机械设计过程中必不可少的重要环节。以计算机为手段的解析方法,由于解算速度快,精确度高,程序有一定的通用性,已成为机构运动分析的主要方法。 连杆机构作为在机械制造特别是在加工机械制造中主要用作传动的机构型式,同其他型式机构特别是凸轮机构相比具有很多优点。连杆机构采用低副连接,结构简单,易于加工、安装并能保证精度要求。连杆机构可以将主动件的运动通过连杆传递到与执行机构或辅助机构直接或间接相连的从动件,实现间歇运动,满足给定的运动要求,完成机器的工艺操作。 牛头刨床是一种利用工作台的横向运动和纵向往复运动来去除材料的一种切削加工机床。工作台的纵向往复运动是机床的主运动,实现工件的切削。工作台的横向运动即是进给运动,实现对切削精度的控制。本文中只分析纵向运动的运动特性。牛头刨床有很多机构组成,其中实现刨头切削运动的六连杆机构是一个关键机构。刨床工作时,通过六杆机构驱动刨刀作往复移动。刨刀右行时,当刨刀处于工作行程时;要求刨刀的速度较低且平稳,以减小原动机的容量和提高切削质量。当刨刀处于返回行程时,刨刀不工作,称为空行程,此时要求刨刀的速度较高以提高生产率。由此可见,牛头刨床的纵向运动特性对机床的性能有决定性的影响。 1 牛头刨床的六连杆机构 牛头刨床有很多机构组成,其中实现刨头切削运动的六杆机构是一个关键机构。图1所示的为一牛头刨床的六连杆机构。杆1为原动件,刨刀装在C点上。假设已知各构件的尺寸如表1所示,原动件1以等角速度ω1=1rad/s沿着逆时针方向回转,要求分析各从动件的角位移、角速度和角加速度以及刨刀C点的位移、速度和加速度的变化情况。

QTD-III型 曲柄滑块、导杆、凸轮组合实验指导书实验一、机构运动参数的测试和分析实验教学提纲

实验一、机构运动参数的测试和分析实验 一、实验目的 1.掌握机构运动的周期性变化规律,并学会机构运动参数如位移、速度和加速度等的测试原理和方法; 2. 学会运用多通道通用实验仪器、传感器等先进实验技术手段开展实验研究的方法; 3. 利用计算机对平面机构动态参数进行采集、处理,作出实测的动态参数曲线,并通过计算机对该平面机构的运动进行数值仿真,作出相应的动态参数曲线,从而实现理论与实际的紧密结合。 二、实验内容 1.测试曲柄导杆机构、曲柄滑块机构、凸轮机构等机构的构件转角、移动位移等运动参数; 2.比较实测参数曲线与理论仿真曲线的差异。 三、实验仪器 QTD-III型曲柄、导杆、凸轮组合实验台 该组合实验装置,只需拆装少量零部件,即可分别构成四种典型的传动系统。他们分别是曲柄滑块机构、曲柄导杆机构、平底直动从动杆凸轮机构和滚子直动从动杆凸轮机构。具体结构示意图如下图所示。 (a)曲柄滑块机构

(b)曲柄导杆机构 (c)平底直动从动件凸轮机构 (d)滚子直动从动件凸轮机构 1、同步脉冲发生器 2、涡轮减速器 3、曲柄 4、连杆 5、电机 6、滑块 7、齿轮8、光电编码器9、导块 10、导杆11、凸轮12、平底直动从动件 13、回复弹簧14、滚子直动从动件15、光栅盘 四、实验原理 本实验仪由单片机最小系统组成。外扩 16 位计数器,接有 3 位 LED 数码显示器可实时显示机构运动时曲柄轴的转速,同时可与 P C 机进行异步串行通讯。在实验机构动态运动过程中,滑块的往复移动通过光电脉冲编码器转换输出具有一定频率(频率与滑块往复速度成正比),0-5伏电平的两路脉冲,接

机械基础中凸轮机构练习题资料

凸轮机构 一、填空 1.凸轮机构主要是由_______、_______和固定机架三个基本构件所组成。 2.按凸轮的外形,凸轮机构主要分为_______凸轮和_______凸轮两种基本类型。 3.从动杆与凸轮轮廓的接触形式有_______、_______和平底三种。 4.以凸轮的理论轮廓曲线的最小半径所做的圆称为凸轮的_______。 5.凸轮理论轮廓曲线上的点的某点的法线方向(即从动杆的受力方向)与从动杆速度方向之间的夹角称为凸轮在该点的_______。 6.随着凸轮压力角α增大,有害分力F2将会_______而使从动杆自锁“卡死”,通常对移动式从动杆,推程时限制压力角α_______。 7.凸轮机构从动杆等速运动的位移为一条_______线,从动杆等加速等减速运动的位移曲线为一条_______线。 8.等速运动凸轮在速度换接处从动杆将产生_______冲击,引起机构强烈的振动。 9.凸轮机构的移动式从动杆能实现_______。 (a 匀速、平稳的直线运动 b 简偕直线运动 c各种复杂形式的直线运动 10.从动杆的端部形状有_______、_______和平底三种。 11.凸轮与从动件接触处的运动副属于_______。 (a 高副 b 转动副 c 移动副) 12. 要使常用凸轮机构正常工作,必须以凸轮_______。 ( a 作从动件并匀速转动 b 作主动件并变速转动 c 作主动件并匀速转动)13.在要求_______的凸轮机构中,宜使用滚子式从动件。 ( a 传力较大 b 传动准确、灵敏 c 转速较高) 14.使用滚子式从动杆的凸轮机构,为避免运动规律失真,滚子半径r与凸轮理论轮廓曲线外凸部分最小曲率半径ρ最小之间应满足_______。

凸轮机构基本参数的设计

凸轮机构基本参数的设计 前节所先容的几何法和解析法设计凸轮轮廓曲线,其基圆半径r0、直动从动件的偏距e或 摆动从动件与凸轮的中心距a、滚子半径rT等基本参数都是预先给定的。本节将从凸轮机 构的传动效率、运动是否失真、结构是否紧凑等方面讨论上述参数的确定方法。 1 凸轮机构的压力角和自锁 图示为偏置尖底直动从动件盘形凸轮机构在推程的一个位置。Q为从动件上作用的载荷(包 括工作阻力、重力、弹簧力和惯性力)。当不考虑摩擦时,凸轮作用于从动件的驱动力F是 沿法线方向传递的。此力可分解为沿从动件运动方向的有用分力F'和使从动件紧压导路的有 害分力F''。驱动力F与有用分力F'之间的夹角a(或接触点法线与从动件上力作用点速度方 向所夹的锐角)称为凸轮机构在图示位置时的压力角。显然,压力角是衡量有用分力F'与有 害分力F''之比的重要参数。压力角a愈大,有害分力F''愈大,由F''引起的导路中的摩擦阻 力也愈大,故凸轮推动从动件所需的驱动力也就愈大。当a增大到某一数值时,因F''而引 起的摩擦阻力将会超过有用分力F',这时无论凸轮给从动件的驱动力多大,都不能推动从动 件,这种现象称为机构出现自锁。机构开始出现自锁的压力角alim称为极限压力角,它的 数值与支承间的跨距l2、悬臂长度l1、接触面间的摩擦系数和润滑条件等有关。实践说明, 当a增大到接近alim时,即使尚未发生自锁,也会导致驱动力急剧增大,轮廓严重磨损、 效率迅速降低。因此,实际设计中规定了压力角的许用值[a]。对摆动从动件,通常取[a]=40~ 50;对直动从动件通常取[a]=30~40。滚子接触、润滑良好和支承有较好刚性时取数据的上 限;否则取下限。 对于力锁合式凸轮机构,其从动件的回程是由弹簧等外力驱动的,而不是由凸轮驱动的,所 以不会出现自锁。因此,力锁合式凸轮机构的回程压力角可以很大,其许用值可取[a]=70~ 80。

凸轮机构习题作图题

凸轮机构考试复习与练习题 一、单项选择题(从给出的A、B、C、D中选一个答案) 1 与连杆机构相比,凸轮机构最大的缺点是。 A.惯性力难以平衡B.点、线接触,易磨损 C.设计较为复杂D.不能实现间歇运动 2 与其他机构相比,凸轮机构最大的优点是。 A.可实现各种预期的运动规律B.便于润滑 C.制造方便,易获得较高的精度D.从动件的行程可较大 3 盘形凸轮机构的压力角恒等于常数。 A.摆动尖顶推杆B.直动滚子推杆 C.摆动平底推杆D.摆动滚子推杆 4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。 A.偏置比对心大B.对心比偏置大 C.一样大D.不一定 5 下述几种运动规律中,既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。 A.等速运动规律B.摆线运动规律(正弦加速度运动规律) C.等加速等减速运动规律D.简谐运动规律(余弦加速度运动规律) 6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。 A.增大基圆半径B.改用滚子推杆 C.改变凸轮转向D.改为偏置直动尖顶推杆 7.()从动杆的行程不能太大。 A. 盘形凸轮机构 B. 移动凸轮机构 C. 圆柱凸轮机构 8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。 A 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 9.()可使从动杆得到较大的行程。 A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构 10.()的摩擦阻力较小,传力能力大。 A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆 11.()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。 A. 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 12.计算凸轮机构从动杆行程的基础是()。 A 基圆 B. 转角 C 轮廓曲线 13.凸轮轮廓曲线上各点的压力角是()。

凸轮机构运动分析及创新毕业设计试验平台研制

摘要 凸轮机构是工程中用来实现机械化和自动化的重要驱动和控制机构之一,在轻工、食品、纺织、印刷、医药、标准零件制造、交通运输等领域运行的工作机械中都获得广泛应用。但随着社会发展和科技进步,为了提高产品的质量和生产率,作为机械设备核心部件的凸轮机构而言,必须进一步提高它的设计水平,在解析法设计的基础上开展计算机辅助设计的研究和推广应用。因此,开展对凸轮机构运动分析的研究,对于揭示机构的运动性能,进行机构的优化设计和动力学分析有着重要的实际意义。 本文首先介绍了凸轮机构的发展概况,提出课题的背景和意义,接着指出国内外研究的趋势和国内高校凸轮机构实验仅局限于对运动参数的测量与分析,然后提出以现实生活中最常用的一些凸轮为基础来研究凸轮机构试验平台中从凸轮轮廓设计到加工到试验这一整个系统构成。凸轮轮廓线的设计在解析法的基础上用计算机软件进行绘制。凸轮加工的方法用最常见的线切割加工,用CAXA线切割软件来辅助写代码。平台可测量盘形凸轮,圆柱凸轮,直动从动件及摆动从动件组成的不同的凸轮机构的运动特性。从动件的回复力采用恒定重力的重力回复,直动的轨道用直线导轨,进一步的提高测量精度。在实验台中各个传感器的设计位置,可以让学生直观去观察从动件的速度、加速度;同时,为了让实验台的测量数据更加丰富,在实验台上加上旋转编码器,就可以观察和研究凸轮机构的在运行中输入轴的速度,让整个实验台的功能更加的强大,实验内容更加丰富,对凸轮机构运动研究也很有帮助。 关键词:凸轮机构;运动分析;解析法;试验台;软件辅助设计

Abstract The cam mechanism is one of the drive and control mechanism used to achieve the mechanization and automation project, running in the field of light industry, food, textile, printing, medicine, standard parts manufacturing, transportation machinery are widely available. With the social development and scientific and technological progress in order to improve product quality and productivity, as the core components of the cam mechanism of the machinery and equipment necessary to further improve the design level, on the basis of the analytical method designed to carry out the study of computer-aided design and application. Therefore, to carry out the analysis of motion of the cam mechanism to reveal the kinematic performance, the optimal design of the institutions and dynamics analysis has important practical significance. This paper first introduces the overview of the development of the cam mechanism, put forward the background and significance of the topic, then pointed out that research trends at home and abroad and domestic universities cam mechanism experiment is only limited to the measurement and analysis of motion parameters, and then put forward to the most commonly used in real life cam based design of an innovative test platform to conduct a series of experiments to design, analysis and testing of the cam mechanism. Cam profile design computer software to draw on the basis of the analytical method. Cam processing method with the most common line cutting, with CAXA line cutting software to assist write code. Platform to measure disk cam, cylindrical cam, direct-acting the motion characteristics of the follower and oscillating follower cam mechanism. The restoring force of the driven member with constant gravity gravity reply movable straight track with a linear guide, and further improve the measurement accuracy. In the experimental Taichung sensor design, allows students intuitive to observe the follower velocity, acceleration; richer, in order

凸轮机构设计-作业题

第九章凸轮机构设计 本章学习任务:凸轮机构的基本知识、其从动件的运动规律、凸轮曲线轮廓的设计、凸轮机构基本尺寸的设计。 驱动项目的任务安排:完成项目中的凸轮机构的具体设计。 思考题 9-1简单说明凸轮机构的优缺点及分类情况? 9-2在直动滚子从动件盘形凸轮机构中,如何度量凸轮的转角和从动件的位移? 9-3试说明等速运动规律,简谐运动规律和五次多项式运动规律的特点。 9-4简单说明从动件运动规律选择与设计的原则。 9-5简单说明凸轮廓线设计的反转法原理。 9-6什么是凸轮的理论廓线和实际廓线,二者有何联系? 9-7何谓凸轮机构的压力角?压力角对机构的受力和尺寸有何影响? 9-8如何选择(或设计)凸轮的基圆半径? 9-9什么是“运动失真”现象?如何选择(或设计)凸轮的滚子半径,才能避免机构的“运动失真”? 习题 9-1何谓凸轮机构传动中的刚性冲击和柔性冲击?试补全题图9-1 所示各段的,s -,v -,a - 曲线,并指出哪些地方有刚性冲击,哪些地方有柔性冲击? s O v O a 题图9-1 2| D| ? 2| D| ? 2| D| ? 9-2何谓凸轮工作廓线的变尖现象和推杆运动的失真现象?它对凸轮机构的工作有何影响?如何加以避免? 9-3力封闭与几何形状封闭凸轮机构的许用应力角的确定是否一样?为什么? 9-4有一滚子推杆盘形凸轮机构,在使用中发现推杆滚子的直径偏小,欲用较大的滚子,问是否可行? 为什么? 9-5有一对心直动推杆盘形凸轮机构,在使用中发现推程压力稍偏大,拟采用推杆偏置的方法来改善,问是否可行?为什么?

45?? | ? | ? 3 2 | ? O 1 9-6 用作图法求出题图 9-6 所示两凸轮机构从图示位置转过 45 时的压力角。 (a ) (b ) 题图 9-6 题图 9-7 9 -7 如题图 9-7 所示盘形凸轮机构是有利偏置,还是不利偏置。如将该凸轮廓线作为直动滚子推杆的理论 廓线,其滚子半径 r r = 8 mm 。试问该凸轮廓线会产生什么问题?为什么?为了保证推杆实现同样的运动规律,应采取什么措施(图中l = 0.001 m /mm )? 9 -8 在题图 9-8 所示的运动规律线图中各段运动规律未表示完全,请根据给定部分补足其余部分(位移 线图要求准确画出,速度和加速度线图可用示意图表示)。 s 1 2 v 3 4 2 s v 1 2 3 4 2 a a 题图 9-8 题图 9-9 9 - 如题图 9-9 中给出了某直动推杆盘形凸轮机构的推杆的速度线图。要求:(1)定性地画出其加速 度和位移线图;(2)说明此种运动规律的名称及特点(v 、a 的大小及冲击的性质);(3)说明此种运动规律的适用场合。 9 -10 在题图 9-10 所示凸轮机构中,已知偏心圆盘为凸轮实际轮廓,如图所示。试求: 1) 基圆半径 R ; 2) 凸轮机构的压力角 ; 3) 凸轮由图示位置转 90°后,推杆移动距离 s 。 2 1 3 4 2 /3 2/3 4/3 5/3 2

连杆机构运动分析指导

连杆机构运动分析指导 一、实验目的 1. 加强学生对机构组成原理的认识,进一步了解机构组成及其运动特性,为机构创新设计奠定良好的基础。 2. 培养学生连杆机构解析法分析的能力。 二、实验原理 机构一般由两部分组成,一部分为机架和原动件及他们之间的运动副,另一部分由其他构件和运动副组成。其中,前一部分称为基本机构部分,后一部分称为从动件系统。如图1所示的机构可以分成如图2所示两部分。两部分机构自由度之和等于原始机构的自由度,由于基本机构的自由度与原动件数目相等,等于机构的自由度,所以从动件系统部分的自由度为0。 在很多情况下,从动件系统可以进一步划分成更小的杆组。我们把无法再分割的、自由度=0的从动件连接称为阿苏尔杆组(Assur group). 例如如图2的从动件系统可以进一步划分成如图3所示的两个阿苏尔杆组。 在每一个阿苏尔杆组中,杆组内部各构件间连接的运动副称为内部运动副(inner pair内副)。例如杆组DCB中的转动副C和杆组GFE中的转动副F。每一个阿苏尔杆组中有一部分运动副与运动已知构件相联,这一部分运动副称为外部运动副(outer pairs外副)。例如,阿苏尔杆组DCB中的转动副B和D分别和运动已知构件(原动件和机架)相连接,为外副。阿苏尔杆组DCB通过外副B和D 与运动已知的构件连接后,形成了一个铰链四杆机构ABCD ,杆组DCB中的构件BCE和DC运动确定。阿苏尔杆组GFE 通过外副E和G与运动已知构件(BCE 和机架)连接。注意:转动副E不是阿苏尔杆组DCB的一个外副。从阿苏尔杆组的安装顺序,我们可以看出杆组DCB是第一杆组,杆组GFE 是第二杆组。 我们可以得到机构的组成原理:任何机构都是在基本机构的基础上依次添加杆组扩展而成的。注意只有在前面的阿苏尔杆组安装完之后,后面的杆组才能安装。 依据机构的组成原理就可以预先编写一些常用阿苏尔杆组的子程序。这样,多杆连杆机构的运动分析就可以简化成简单的两步:首先,将机构拆成基本机构

第4章_凸轮机构及其设计习题解答2

4.1如图4.3(a)所示的凸轮机构推杆的速度曲线由五段直线组成。要求:在题图上画出推杆的位移曲线、加速度曲线;判断哪几个位置有冲击存在,是刚性冲击还是柔性冲击;在图示的F 位置,凸轮与推杆之间有无惯性力作用,有无冲击存在? 图4.3 【分析】要正确地根据位移曲线、速度曲线和加速度曲线中的一个画出其余的两个,必须对常见四推杆的运动规律熟悉。至于判断有无冲击以及冲击的类型,关键要看速度和加速度有无突变。若速度突变处加速度无穷大,则有刚性冲击;若加速度的突变为有限值,则为柔性冲击。 解:由图4.3(a)可知,在OA段内(0≤δ≤π/2),因推杆的速度v=0,故此段为推杆的近休段,推杆的位移及加速度均为零。在AB段内(π/2≤δ≤3π/2),因v>0,故为推杆的推程段。且在AB段内,因速度线图为上升的斜直线,故推杆先等加速上升,位移曲线为抛物线运动曲线,而加速度曲线为正的水平直线段;在BC段内,因速度曲线为水平直线段,故推杆继续等速上升,位移曲线为上升的斜直线,而加速度曲线为与δ轴重合的线段;在CD段内,因速度线为下降的斜直线,故推杆继续等减速上升,位移曲线为抛物线,而加速度曲线为负的水平线段。在DE段内(3π/2≤δ≤2π),因v<0,故为推杆的回程段,因速度曲线为水平线段,故推杆做等速下降运动。其位移曲线为下降的斜直线,而加速度曲线为与δ轴重合的线段,且在D和E处其加速度分别为负无穷大和正无穷大。综上所述作出推杆的速度v及加速度a线图如图4.3(b)及(c)所示。 由推杆速度曲线和加速度曲线知,在D及E处,有速度突变,且相应的加速度分别为负无穷大和正无穷大。故凸轮机构在D和E处有刚性冲击。而在A,B,C及D处加速度存在有限突变,故在这几处凸轮机构有柔性冲击。 在F处有正的加速度值,故有惯性力,但既无速度突变,也无加速度突变,因此,F处无冲击存在。 【评注】本例是针对推杆常用的四种运动规律的典型题。解题的关键是对常用运动规律的位移、速度以及加速度线图熟练,特别是要会作常用运动规律的位移、速度以及加速度线图。 4.2对于图4.4(a)所示的凸轮机构,要求: (1)写出该凸轮机构的名称; (2)在图上标出凸轮的合理转向。 (3)画出凸轮的基圆; (4)画出从升程开始到图示位置时推杆的位移s,相对应的凸轮转角?,B点的压力角α。 (5)画出推杆的行程H。

相关文档
相关文档 最新文档