文档库 最新最全的文档下载
当前位置:文档库 › 容错控制理论及其应用_周东华

容错控制理论及其应用_周东华

容错控制理论及其应用_周东华
容错控制理论及其应用_周东华

第26卷 第6期

2000年11月自 动 化 学 报A CT A A U T OM A T IC A SIN ICA V o l.26,N o.6N ov.,20001)国家自然科学基金、“八六三”计划与教育部资助项目.

收稿日期 1999-03-08 收修改稿日期 1999-10-11

综述

容错控制理论及其应用

1)周东华

(清华大学自动化系 北京 100084) Ding X (Lausitz 大学电气工程系 德国)(E-mail :ZDH @mail.au.tsingh https://www.wendangku.net/doc/8e2761100.html,)

摘 要 介绍了经典容错控制的主要研究成果及近年来发展起来的鲁棒容错控制和非线性

系统的故障诊断与容错控制,并给出了容错控制的一些典型应用成果.最后,指出了该领域

亟待解决的一些热点与难点问题.

关键词 动态系统,容错控制,故障诊断,集成,鲁棒性.

THEORY AND APPLICATIONS OF FAULT

TOLERANT C ONTROL

ZHO U Donghua

(Dept .of Auto matio n ,Ts inghua University ,Beijing 100084)

DIN G X

(Dept .of EE ,Lausitz Un iv .,G erman y )

Abstract

 A survey of f ault t olerant cont rol f or dynamic systems is presented .The main results i n classical fault tolerant cont rol are first ly int roduced.Then,empha-sis is put on the robust f ault tolerant cont rol as w ell as the fault diag nosi s and fault

tolerant cont rol of nonlinear syst ems dev eloped i n recent years.Some typical appli-

cation results of faul t tolerant cont rol are discussed ,and finally ,some open ques-tions are point ed out .

Key words Dynamic systems,f ault tolerant cont rol,fault diagnosis,i ntegratio n,

robust ness .

1 引言

现代系统正朝着大规模、复杂化的方向发展,这类系统一旦发生事故就有可能造成

人员和财产的巨大损失.如1998年8月到1999年5月的短短的10个月间,美国的3种运载火箭“大力神”、“雅典娜”、“德尔他”共发生了5次发射失败,造成了30多亿美元的直接经济损失,迫使美国航天局于1999年5月下令停止了所有的商业发射计划,对美国的航天计划造成了严重的打击.因此,人们迫切需要提高现代系统的可靠性与安全性.基于解析冗余的动态系统的故障诊断与容错控制则为提高复杂系统的可靠性开辟了一条新的途径.

动态系统的容错控制(Fault Tolerant Control,FTC)是伴随着基于解析冗余的故障诊断技术的发展而发展起来的.如果在执行器、传感器或元部件发生故障时,闭环控制系统仍然是稳定的,并仍然具有较理想的特性,就称此闭环控制系统为容错控制系统[1].1991年,瑞典的Astro m 教授明确指出容错控制具有使系统的反馈对故障不敏感的作用.容错控制方法一般可以分成两大类,即被动容错控制(passiv e FTC)和主动容错控制(ac-tiv e FTC ).

容错控制的思想最早可以追溯到1971年,以Niederlinski 提出完整性控制(integ ral control)的新概念为标志[2];Siljak [3]于1980年发表的关于可靠镇定的文章是最早开始专门研究容错控制的文章之一.然而,直到1993年,国际上才出现了由现任IFAC 技术过程的故障诊断与安全性专业委员会主席Pa tto n 教授撰写的容错控制的综述文章[1,4],目前尚未见到国外有容错控制的专著问世.值得指出的是,我国在容错控制理论上的研究基本上与国外同步.1987年叶银忠等就发表了容错控制的论文,并于次年发表了这方面的第一篇综述文章[5].1994年葛建华等出版了我国第一本容错控制的学术专著[5].国内发表的这方面的综述文章还有文[6].

动态系统的故障检测与诊断(Fa ult Detectio n a nd Diag nosis,FDD)是容错控制的重要支撑技术之一.FDD 技术的发展已大大超前于容错控制的发展,其理论与应用成果也远远多于容错控制方面的成果.目前国际上每年发表的有关FDD 方面的论文与报告在数千篇以上.基于解析冗余的故障诊断技术被公认为起源于Beard 在1971年发表的博士论文[7].1976年,Willsky 在Automa tica 上发表了第一篇FDD 方面的综述文章[8].H im-m elblau 于1978年出版了国际上第一本FDD 方面的学术著作

[9].随后报导的这方面的重

要综述文章与著作参见文[10~16].我国开始FDD 技术的研究要比国外晚十年左右.清华大学的方崇智教授等从1983年起开始了FDD 技术的研究工作.1985年叶银忠等在《信息与控制》上发表了国内第一篇FDD 技术的综述文章[17]

.1994年周东华等在清华大学出版社出版了国内第一本FDD 技术的学术专著[18].随后几年出版的学术著作还有文[19]和文[20].

国际自动控制界对容错控制的发展给予了高度重视.1986年9月在美国Santa Clara 大学举行的自动控制高峰会议上,把多变量鲁棒、自适应和容错控制列为控制科学面临的富有挑战性的研究课题[21].在国际上,领导着容错控制学科发展的是1993年成立的I -

FAC 技术过程的故障诊断与安全性技术委员会.从1991

年起IFAC 每三年定期召开FDD 与FTC 方面的国际专题学术会议.在近几届的IFAC 世界大会上,FDD 与FTC 方面的论文在不断增加.据笔者统计,1999年7月在北京召开的第14届IFAC 世界大会上,这方面的学术论文已达60篇,成为了最热门的几个研究方向之一[22~26].容错控制发展至今只有20年左右的历史,因此这是一门新兴交叉学科.促使这门学科789 6期周东华等:容错控制理论及其应用

790自 动 化 学 报26卷

迅速发展的一个最重要的动力来源于航空航天领域.美国空军从70年代起就不断投入巨资支持容错控制的发展,力求开发出具有高度容错能力的战斗机,甚至在多个翼面受损时,也能够保持战斗机的生存能力.

做为一门交叉性学科,容错控制与鲁棒控制、故障检测与诊断、自适应控制、智能控制等有密切的联系.现代控制理论、信号处理、模式识别、最优化方法、决策论、统计数学等构成了容错控制的理论基础.

2 经典容错控制方法

2.1 被动容错控制

被动容错控制大致可以分成可靠镇定,完整性,联立镇定三种类型.

2.1.1 可靠镇定

使用多个补偿器进行可靠镇定的概念是由Siljak于1980年最先提出的[3],随后一些学者又对其进行了深入研究[29~33].可靠镇定实际上是关于控制器的容错问题.针对单个被控对象,文[29]证明了当采用两个补偿器时,存在可靠镇定解的充要条件是被控对象是强可镇定的(stro ng ly stabilizable),即此对象可以被稳定的控制器所镇定.然而,当被控对象不满足强可镇定条件时,补偿器就会出现不稳定的极点,受过程噪声的影响,闭环系统就会出现不稳定.文[29]方法的另外一个缺点是,即使可靠镇定问题是可解的,怎样设计这两个补偿器也是一个非常困难的问题.

文[31]部分解决了上述问题,给出了设计两个动态补偿器的参数化方法,以得到可靠镇定问题的解.此文还给出了把一个稳定的控制器分解成两个并联的动态补尝器,进而实现可靠镇定问题的有效方法,其前提仍然是被控对象必须是强可镇定的.文[32]进一步给出了一个新颖的可靠镇定问题的求解方法,即使对不是强可镇定的多变量系统依然有效,其设计思路是采用多个并列的动态补偿器(可大于两个).与传统方法不同的是,这里每个补偿器需要其它补偿器的输出信号,因此就需要辅助的传感器来观测其它执行器的运行状况[32].

综上所述,可靠镇定问题已基本上趋于成熟.

2.1.2 完整性

完整性问题也称作完整性控制(integ ral control),它一直是被动容错控制中的热点研究问题.此问题之所以有很高的应用价值,是因为控制系统中传感器是最容易发生故障的部件.此问题研究的一般都是M IMO线性定常系统[34~39].文[35]研究了关于执行器断路故障的完整性问题,提出了求解静态反馈增益阵的一种简单的伪逆方法.然而,该方法并不能保证故障状态下的闭环系统是稳定的.基于n-线性特征系数理论及参数空间设计方法,文[37]给出了关于执行器断路故障的完整性问题的求解方法.该方法的一个特点是可以在实现完整性的同时,在执行器的各种故障下,都可以将系统的闭环极点配置在预定的区域内.因此,此方法在满足容错控制的条件下还可以兼顾闭环系统的动态特性.该方法的一个缺陷是,当系统的维数大于3时,解析解就不再存在,只能采用CAD技术来求数值解,并可能无解.此外,近年来分散大系统的完整性问题也受到了广泛关注[38,39].

由此可见,完整性问题还远未彻底解决.缺乏有效地求解容错控制律的构造性方法,尤其是对高维多变量系统.

2.1.3 联立镇定

联立镇定有两个主要作用.其一,当被控对象发生故障时,可以使其仍然保持稳定,具有容错控制的功能;其二,对非线性对象,经常采用线性控制方法在某一工作点上对其进行控制.当工作点变动时,对应的线性模型也会发生变化.此时,具有联立镇定能力的控制器就仍然可以镇定被控对象.

此问题十几年来已引起了许多学者的关注[40~44].1982年发表在IEEE AC 上的文

[41]是最早开始研究联立镇定问题的文章之一.文[43]在此方向上取得了重要进展.基于广义的采样数据保持函数,该文得到了如下结果:a )给出了联立镇定问题有解的充分条件,及其控制律的构造方法;b)给出了在满足联立镇定的基础上同时实现线性二次型最优控制的充分条件,以及相应的控制律的构造方法.

2.2 主动容错控制

主动容错控制在故障发生后需要重新调整控制器的参数,也可能需要改变控制器的结构.多数主动容错控制需要FDD 子系统,少部分不需要FDD 子系统,但需要已知各种故障的先验知识.主动容错控制这一概念正是来源于需要对发生的故障进行主动处理这一事实.众多的FDD 方法可以分成基于定性模型的方法与定量模型的方法两大类.经过近30年的发展,FDD 技术已日趋成熟,所提出的各种方法详见文[7~20,23~28].主动容错控制大致可以分成三大类:1)控制律重新调度;2)控制器重构设计;3)模型跟随重组控制.

2.2.1 控制律重新调度

这是一类最简单的也是最近几年才发展起来的主动容错控制方法.其基本思想是离线计算出各种故障下所需的合适的控制律的增益参数,并列表储存在计算机中.当基于在线FDD 技术得到了最新的故障信息后,就可以挑选出一个合适的增益参数,得到容错

控制律[45~49].显然,采用实时专家系统进行增益调度将会产生很好的效果.这类控制方法特别适合于具有多个冗余机翼的战斗机的容错控制

[4,45].2.2.2 控制律重构设计

在FDD 单元确诊故障后,在线重组或重构控制律.这是一个目前很受关注的研究方向,现有的成果还比较少[1,50~54].文[51]采用“控制混合器”的概念,设计了一个具有自

修复功能的飞行控制系统,当诊断出某个机翼受损时,可以重新分配其应尽的作用到剩余的执行器中去.该文还提出了一种控制器的重新设计技术,通过极大化一个频域的性能指标,来重建控制律.文[54]给出了一种飞机的模型参考容错控制方法,针对飞机的元部件故障,该文用检测滤波器理论设计了相应的故障检测器和故障参数估计器.在此基础上,用Ly apunov 方法设计了模型参考容错控制律,保证在发生内部故障时,飞机稳定运行.该文还提出了一种分析这类容错控制系统稳定性的随机微分方程方法.其主要结果是,由于随机微分方程的参数是随时间的变化而随机变化的,所以此方程可以由马尔可夫过程来描述.文[55]提出了一种基于实时专家系统的容错监督控制方法.其基本思想是,采用基于影响图的实时专家系统监督系统的运行.系统正常运行时,采用模型参考学习自适应控制律,以提高控制精度;当检测到系统已处于不稳定的边沿时,将控制律实时切791

 6期周东华等:容错控制理论及其应用

792自 动 化 学 报26卷

换到一种简单的PI控制器,仍然使系统保持稳定.

2.2.3 模型跟随重组控制

这类主动容错控制的基本原理是,采用模型参考自适应控制的思想,使得被控过程的输出始终自适应地跟踪参考模型的输出,而不管是否发生了故障.因此,这种容错控制不需要FDD单元.当发生故障后,实际被控过程会随之发生变动,控制律就会相应地自适应地进行重组,保持被控对象对参考模型输出的跟踪[56~58].可以看出,这类容错控制是采用隐含的方法来处理故障的.

文[59]进一步提出了一种基于模糊学习系统的专家监督控制方法,用于F16战斗机的容错控制.其基本控制器是由参考模型、模糊控制器及模糊学习模块构成的,称为模糊模型参考学习控制器.模糊学习模块使这一控制器具有上述模型跟随重组控制的基本功能.在此基础上,通过与一个FDI模块相结合,可以在线选择合适的参考模型和模糊控制器的输出增益,进一步提高了容错控制能力.因此,该方法也可以看成是模型跟随重组控制与控制律重构设计的一种有机结合.

3 鲁棒容错控制

不管是主动容错控制,还是被动容错控制,都需要具有关于模型不确定性与外界扰动的鲁棒性.被动容错控制的核心就是鲁棒性,以使闭环系统对各类故障不敏感.目前主动容错控制面临的两个具有挑战性的问题就是[58]:1)基本控制器应具有鲁棒性,在控制律重构期间使系统保持稳定;2)FDD单元应具有鲁棒性,以减少误报与漏报,减少故障检测时间.因此,鲁棒容错控制问题近年来受到了高度重视[1,60~63],已成为目前容错控制领域的热点研究方向.

针对连续线性定常系统的传感器失效故障,文[60]采用Lyapunov方法给出了一种具有关于模型不确定性鲁棒性的完整性控制器存在的充分条件,并给出了控制器的设计方法.文[61]讨论了离散线性定常系统的鲁棒完整性控制问题,通过求解Riccati方程,分别得到了一种传感器失效下的鲁棒容错线性调节器的设计方法,以及执行器失效下的鲁棒容错线性调节器的设计方法.文[62]进一步探讨了离散系统的D稳定鲁棒完整性控制问题.所谓的D稳定就是闭环系统的极点都要位于圆形区D(T,r)内.该文给出了关于传感器失效故障的存在D稳定鲁棒完整性控制的充分条件,以及控制律的求解方法.尚待进行的工作是,对高维系统,上述文章所给出的设计方法有待改进,以提高设计效率.

4 非线性系统的故障诊断与容错控制

由上面的分析可知,被动容错控制均不采用FDD技术,因此也就不能提供系统的故障信息.在发生故障后,与系统正常运行时相比,被动容错控制系统的性能(至少是动态性能)会有所下降.另外,经典的被动容错控制讨论的对象都是线性系统.

为了克服上述缺陷,文[64,65]将FDD技术与被动容错控制相结合,提出了一种关于非线性系统传感器故障的集成故障诊断与容错控制方法.此方法的优点是:1)可处理多种传感器故障,包括断路、增益衰减、加性与乘性偏差等,因此克服了传统的完整性控制问

题只能处理失效故障的缺陷;2)在发生故障时,闭环系统的性能指标几乎不受影响;3)适用于一大类(带随机噪声的)非线性系统;4)不管对低维还是高维系统,设计方法都同样简单[18,66].

此外,文[27]采用非线性状态空间模型,提出了一种关于都市交通网络系统的容错控制方法,在系统发生某些故障时,可以保持系统的稳定;文[67]提出了一种基于预测控制的执行器容错控制方法,并用某一飞机操纵系统的模型进行了仿真研究;文[68]给出了一种基于自适应神经元网络的非线性系统的容错控制方法,通过采用一个辅助的回路,来补偿系统中较大的输入输出扰动.

5 容错控制理论的应用成果

尽管容错控制理论不像FDD 技术那样已经在众多的领域取得了大量应用成果,但仍然取得了一些重要的应用成果,由表1列出.

表1 容错控制典型应用实例一览表序号

应用对象采用方法发表时间文献1

航天飞机控制律重构设计1982[74]2飞机模型跟随重组控制

1988,1988[69,70]控制律重构设计

1985,1988,1995,1998[52,77][78]控制律重新调度

1989[45]3

核反应堆控制律重构设计1991,1995[71,72]4液位系统完整性控制1991[73]5

国产歼击机模型跟随重组控制1991[53]6

地空导弹模型跟随重组控制1993[75]7

精馏塔控制律重构设计1994[76]8

人造卫星控制律重构设计1997[79]9

液体冷却系统控制律重构设计1997[79]10化学反应釜集成故障诊断与容错控制1998[65]

表1表明,容错控制取得应用成果最多的对象是飞机;主动容错控制的应用成果要远远多于被动容错控制所取得的成果,其中控制律重构设计方法应用得最多.这些应用成果的分布情况也从一个侧面验证了Pa tton 教授的一个著名论断(见文[4],pp.1050),即“离开了FDD 单元,容错控制所能发挥的作用就会非常有限,只能对一些特殊类型的故障起到容错的作用”.因此可以肯定,主动容错控制在总体上要优于被动容错控制.

6 结束语

容错控制做为一门新兴的交叉学科,其学科意义就是要尽量保证动态系统在发生故障时仍然可以稳定运行,并具有可以接受的性能指标.因此,容错控制为提高复杂动态系统的可靠性开辟了一条新的途径.由于任何系统都不可避免地会发生故障,因此,容错控制也可以看成为是保证系统安全运行的最后一道防线.

除第3节介绍的鲁棒容错控制以外,当前容错控制中的热点问题还有以下一些.793 6期周东华等:容错控制理论及其应用

794自 动 化 学 报26卷

1)快速FDI方法的研究.故障检测与分离都需要一定时间,造成了一定的时延,这段时延越短,对控制律的重构设计就越有利.这段时延有可能会产生非常严重的稳定性问题,除非原来的基础控制器本身就具有很高的完整性和很强的鲁棒性[4].

2)鲁棒故障检测与鲁棒控制的集成设计问题.鲁棒故障检测的目标是,在一定的模型不确定性下,检测出尽可能小的故障;鲁棒控制的目标是使得控制器对模型不确定性与微小的故障不敏感.因此,这两者存在着矛盾,而它们都是鲁棒容错控制的基本问题.所以说,把鲁棒故障检测与鲁棒控制进行统一设计,把上面的两种目标进行折衷,已成为热点研究课题[24].

3)控制律的在线重组与重构方法.做为主动容错控制的一种最重要的方法,控制律的在线重组与重构已成为当前容错控制领域的热点研究方向之一.只有在被控对象发生变动时,实时调整控制器的结构与参数,才有可能达到最优的控制效果[56~58].

4) 主动容错控制中的鲁棒性分析与综合方法.在主动容错控制中,需要同时做到:

a)基础控制器具有鲁棒性,b)故障检测与诊断算法具有鲁棒性,c)重组或重建的控制律具有鲁棒性.这三个方面的相互作用使得对主动容错控制的整体鲁棒性分析变得非常困难[4].

除了上述热点研究方向以外,因现有的理论结果还非常有限,容错控制领域还有一些难点问题.

1) 非线性系统的容错控制.这里的主要难点是:a)对非线性系统缺乏一般性的控制器综合方法;b)非线性系统的FDD问题还没有得到完全解决.

2) 时滞动态系统的容错控制.非线性时滞系统的容错控制还没有任何结果,线性时滞系统容错控制的结果还非常有限.

3) 高维、时变多变量系统的完整性控制问题.此问题目前还没有任何结果,经典的完整性问题研究的对象都是线性定常系统.

4) 自适应容错控制问题.其学术上的难点是,自适应控制系统是本质非线性系统,因此自适应容错控制属于非线性容错控制的范畴.此问题也还没有任何结果.

经过20多年的发展,容错控制已经取得了很大的进展,并正处于快速发展之中.但容错控制还远未成熟,还没有建立起完整的理论体系,尤其在应用方面还有许多问题有待解决,还需要大家继续努力,可谓任重而道远.

参考文献

1 Patton R J.Robus tnes s is sues in fault tolerant control.In:Proc.of In ternational Conference on Fault Diagnosis, Toulouse,France,1993,1081~1117

2 Nied erlinski A.A h euristic approach to th e design of interacting multi-variable s ys tems.Automatica,1971,7: 691~701

3 Saljak D D.R eliable control using multiple control s ystems.In t.J.Control,1980,31:303~329

4 Patton R J.Fault-toleran t control:the1997situation.In:Proc.of IFAC/IM ACs Symposium on Fault Detection and Safety for Tech nical Process.Hull,England,1997,1033~1055

5 葛建华,孙优贤.容错控制系统的分析与综合.杭州:浙江大学出版社,1994

6 南英,陈士橹,戴冠中.容错控制进展.航空与航天,1993,(4),62~67

7 Beard R V.Failure accom modation in linear sys tems th rough s elf-reorganization.In:Repor t M V T-71-1,M an Vehicle Lab,M IT,Camb ridg e,M assach usetts,1971

8 Willsk y A S .A su rv ey of d esig n meth ods fo r failure detection in dynamic sys tems .Automatica ,1976,12:601~611

9 Himm elb lau D M.Fault Detection and Diagnosis in Ch emical and Petrochemical Process.Amsterdam:Elsevier Pres s .1978

10 Gertler J J .Survey of mod el bas ed failu re detection and is olation in com plex plants.IE E E C ontr ol Systems Maga -

z ine ,1988,8(6):3~11

11 Iserman n R .Proces s fault detection based on mod eling and es tim ation m ethods :a s urv ey .Au tomatica ,1984,20:

387~404

12 Frank P M.Fault diag nosis in d ynamic sys tems using analytical and know ledge-bas ed red undancy ——a su rv ey

and s ome new results .Au t omatica ,1990,26(3):459

~47413 Is erman n R .Fault diag nosis of mach ines via param eter es timation and k now ledg e p roces sing:tu to rial paper.Au -

tomatica ,1993,29(4):815~835

14 Bas seville M .(eds .)Detection of Ab rupt Changes in Signal and Dynamic Systems .Berline :

Sp ringer -V erlag ,1985

15 Patton R et al .(eds.)Fault Diagnosis in Dynamic Sys tems.New York :Pren tice Hall,1989

16 Zhang X J .Auxiliary Sig nal Design in Fault Detection and Diagnosis .Berlin :Sp ring er -Verlag ,199117 叶银忠,潘日芳,蒋慰孙.动态系统的故障检测与诊断方法.信息与控制,1985,14(6):27~34

18 周东华,孙优贤.控制系统的故障检测与诊断技术.北京:清华大学出版社,1994

19 张育林,李东旭.动态系统故障诊断理论与应用.长沙:国防科技大学出版社,1997

20 闻新,张洪钺,周露.控制系统的故障诊断和容错控制.北京:机械工业出版社,1998

21 郑应平.控制科学面临的挑战:专家意见综述.控制理论与应用,1987,4(3):1~9

22 Astrom K J .Intelligent control .Proc .of 1st European Control Conference .Grenoble ,1991,2328~232923 周东华,王庆林.基于模型的控制系统故障诊断技术的最新进展.自动化学报,1995,21(2):244~248

24 周东华,叶昊,王桂增,Ding X.基于观测器方法的故障诊断技术若干重要问题的探讨.自动化学报,1998,24(3):

338~344

25 周东华,席裕庚,张钟俊.故障检测与诊断技术.控制理论与应用,1991,8(1):1~10

26 张洪钺,闻新,周露.国内控制系统故障诊断技术的现状与展望.火力与指挥控制,1997,22(3):1~6

27 Chen Z ,Ch ang T .M odeling and fault -tolerant con trol of larg e u rban traffic netw ork .In :Proc .of American Con-

trol Con ference,1997,4,2469~2472

28 Iserman n R,Balle P.Trends in the application of model based fault d etection and diagnosis of technical p roces s.

Control Eng .Practice ,1997,5(5):709

~71929 Vidyasag ar M ,Vis wanadham N.Reliable s tabiliz ation u sing a multi-con troller configu ration.Au t omatica ,1985,

21:599~602

30 V eillette R J ,M edanic J V ,Perkins W R .Design of reliable control sys tems .IE EE Trans .Automatic Control ,

1992,37(3):290~304

31 Gundes A N.Controller d esig n for reliable stabil ization.In:Proc.of 12th IFAC W orld Congress,1993,4:1~432 Sebe N ,Kitamo ri T .Reliable s tabilization based on a multi -com pens ator configu ration .In :

Proc .of 12th IFAC Wo rld Cong res s,1993,4:5~8

33 M edanicand J V,Perkins W R .Control sys tems pos ses sing reliability to con trol.In:Proc.of 12th IFAC W orld

Congress ,1993,4

:9~1234 M orari M.Robus t stability of sys tems with integ ral con trol.IE EE Trans .on Automatic Control ,1985,30:574

~588

35 葛建华,孙优贤,周春辉.故障系统容错能力判别的研究.信息与控制,1989,18(4):8~11

36 Nw ok ah O D I,Yau C H,Perez R A.Robus t integ ral stabilization and regulation of uncertain multivariable s ys-

tems.In:Proc.of 12th IFAC W orld Congress ,1993,4:13~17

37 Ye Y Z .Fault toleran t pole assignment for multi -variable sys tems using a fix ed state feed back .控制理论与应用,795 6期周东华等:容错控制理论及其应用

796自 动 化 学 报26卷

1993,10(2):212~218

38 黄苏南,邵惠鹤.分散容错控制的最优设计.智能控制与智能自动化,北京:科学出版社,1993,1499~1503

39 孙金生,李军,徐蕾,王执铨.动态大系统的分散容错控制.南京理工大学学报,1998,2(2):117~120

40 Olbrot A W.Robus t s tabilization of u ncertain s ystems by periodic feed back.Int.J.Control,1987,45:747~758 41 Saek s R,M u rray J.Fractional representation,algeb raic g eometry,and the simultaneous s tabiliz ation problem.

IE EE Trans.Automatic Control,1982,24(4):895~903

42 Khargonekar P P,Pascoal A,R avi R.Stabilization of linear tim e-invariant plants:s trong,simultaneous,and re-liable s tabilization.In:Proc.of American Con trol Conf.,1988,2477~2482

43 Kabamba P T,Yang C.Simultaneous controller design fo r linear time-invariant s ystems.I EE E Trans.on Au to-matic Control,1991,36(1):106~111

44 Olbrot A W.Fault tolerant control in the presence of noise:a new algorith m and some open problems.In:Proc.

of12th IFAC W orld Congress,1993,7:467~470

45 M oerder D D et al.Application of pre-computed control law s in a recon figu rable aircraft fligh t control sys tem.J.

Gu id.,Con.&Dyn.,1989,12(3):325~333

46 Rugh W J.Analytical framew ork for gain sched uling.IE EE Con.Sys.Mag.,1991,11:79~84

47 Sh am ma J,Athans M.Gain sch eduling:poten tial hazards and possible remedies.IE EE Conotr l.Syst.Mag., 1992,10(3):101~107

48 Law rence D,R ugh W.Gain s ch eduling dynamic linear controllers for nonlinear plan t.Automa tica,1995,31(3): 381~388

49 Kaminer et al.A v elocity algorithm for th e implementation of gain-sch edu led con trollers.Autom atica,1995,31

(8):1185~1192

50 Os troff A,Hu eschen R.Investigation of control law reconfigurations to accom modate a control elemen t failure on

a com mercial airplane.In:Proc.of American Control Conf.,1984,1746~1751

51 Huber R R,M cCu lloch B.Self-repairing fligh t con trol s ys tem.SAE Tech.Paper Series,1984,1~20

52 Looze D P et al.An au tomatic redesign approach for restructruab le control s ystem s.IE EE Contr ol.Syst.Mag., 1985,5(2):16~22

53 胡寿松,程炯.飞机的模型参考容错控制.航空学报,1991,12(5):279~286

54 Srich ander R,Walker B K.Stoch as tic stability analysis for con tinuous-time fau lt tolerant control sys tems.Int.

J.Control,1993,57(3):433~452

55 Ramamurthi K,Agogino A M.Real-time exp ert sys tem for fault toleran t sup erviso ry con trol.J.Dynamic Sys-tems,Measurement,and Con trol,1993,115(3):219~227

56 Napolitanob M R,Swaim R L.New techniqu e for aircraft flight control reconfiguration.J.Gu id.Con.&Dyn., 1991,14(1):184~190

57 Huang C Y,Steng el R F.Res tructu rable control using p ropo rtional-in tegral im plicit model-following.J.Gu id.

Con trol&Dyn.,1990,13(2):303~309

58 M orse W D,Ossman K A.M odel-following recon figu rable flight control s ystem for the AFTI/F-16.J.Gu id., Con trol.&Dyn.,1990,13(6):969~976

59 Kw ong W A et a l.Exp ert s upervision of fuzzy learning sys tems for fault tolerant aircraft control.In:Proceeding s of the IEEE,1995,83(3):466~483

60 孙金生,李军,胡寿松.鲁棒容错控制系统设计.控制理论与应用,1994,11(3):376~380

61 孙金生,李军,王执铨.离散系统鲁棒容错线性调节器设计.控制与决策,1996,11(1):68~72

62 孙金生,李军,王执铨.不确定离散系统的D稳定鲁棒容错控制.控制理论与应用,1998,15(4):636~641

63 Patton R J,Ch en J.Robus t fault detection and is olation s ystem s,in Control and Dynamic System s(Leondes C ed.),M ita Press,1996,74:171~224

64 周东华,王庆林.一种非线性系统容错控制的混合方法.控制与决策,1997,12(2):167~170

65 Zhou D H,Frank PM.Fault diagnos tics and fau lt tolerant con trol.I EE E Trans.on Aeros p ace and E′lectronic

Systems ,1998,34(2):420~42766 Zh ou D H,Sun Y X ,Xi Y G,Zhang Z J .Ex tension of Friedland 's s eparate-bias es timation to randomly tim e-

v arying bias for n onlinear sys tems.I EE E Trans .on Au t omatic C ontr ol ,1993,38(8):1270~1273

67 Huzmezan M ,M aciejow ski J M.Reconfigu rable fligh t con trol d uring actuator failure using predictiv e control.In :

Proc .of 14th IFAC W orld Congres s ,1999,301

~30668 Noriega J R ,W ang H .A direct adaptiv e neu ral -n etw ork control fo r unk now n n onlinear sys tems and its applica-

tion.IE E E Trans .on Neur al Networks ,1998,9(1):27~34

69 Gross H N,M ig yank o B S.Application of s uper-controller to figh ter aircraft reconfigu ration.In :Proc.of Ameri-

can Con trol Conference,1988,2232~2237

70 Dittmar C J .A h yperstable model following fl igh t control s ys tem us ed for reconfigu ration following aircraft im-

pairm en t .In

:Proc .of American Con trol Conference ,1988,2219~222471 Garcia H E,Ray A,Edw ards R M.Reconfigurable con trol of pow er plan ts using au tomata.I EE E C on .Sys .

Ma g .,1991,11(1):85~92

72 Eryurek E,Upadh yaya B R.Fault tolerant control and diagnos tic for larg e s cale s ys tems.I EE E Con .Sys .

Ma g .,1995,15(5):34

~4273 葛建华,孙优贤,周春晖.状态反馈控制系统的容错控制策略.自动化学报,1991,17(2):191~197

74 Geld erloos H,Young D.Redundancy managemen t of sh uttle fligh t control rate gyroscop es and accelerometers.

In :Proc.of American Control Con f.,1982,808~811

75 韩兵,陈新海.导弹的最小方差容错控制.航空学报,1993,14(7):420~423

76 胡泽新.多变量系统故障诊断与容错控制新方法及其在精馏过程中的应用.控制与决策,1994,9(4):286~29077 Cag layn A K et al .Evaluation of a s econd g eneration reconfiguration s trateg y for aircraft fligh t con trol s ystem s

sub jected to actuator failure su rface damage.In:Proc.Nat.Aero.&Elec.Conf.,Dayton,1988,520~52978 Rauch H E.Autonomous con trol reconfiguration.I EE E Con .Sys .Ma g ,1995,15(6):37~48

79 Blank M et al .Fault toleran t con trol s ystems :a h olis tic view.Contr ol Eng .Practice ,1997,5(5):693~702

周东华 1963年生.1990年在上海交通大学获博士学位.目前为清华大学自动化系教授,博士生导师,中国自动化学会副秘书长,技术过程的故障诊断与安全性专业委员会秘书长.研究方向是故障诊断、容错控制等.797

 6期

周东华等:容错控制理论及其应用

可用性设计原则

可用性设计原则 文档修改记录

启发式评估原则?错误!未定义书签。 可学习性................................................. 错误!未定义书签。 1.可见性................................................ 错误!未定义书签。 刺激强度?错误!未定义书签。 ?模式?错误!未定义书签。 反馈.................................................. 错误!未定义书签。 识别.................................................. 错误!未定义书签。 定位?错误!未定义书签。 2.可预见性.............................................. 错误!未定义书签。?一致性和正确性?错误!未定义书签。 ?惯例 ................................................. 错误!未定义书签。?熟悉度 ............................................... 错误!未定义书签。?布局?错误!未定义书签。 模式?错误!未定义书签。 3.?映射与启示性 ........................................ 错误!未定义书签。4.真实性?错误!未定义书签。 5.?帮助性 ............................................... 错误!未定义书签。有效性?错误!未定义书签。 1.?效用 ................................................ 错误!未定义书签。?用户控制原则 ......................................... 错误!未定义书签。 操作与目标相符原则.................................... 错误!未定义书签。 正确的功能与复杂度平衡原则............................ 错误!未定义书签。2.?容错性(安全性)?错误!未定义书签。 避免出错原则?错误!未定义书签。 ?错误恢复原则 ......................................... 错误!未定义书签。?用户控制和自由——清楚的标识退出 ..................... 错误!未定义书签。 3.?稳定性?错误!未定义书签。 高效性(效率)?错误!未定义书签。 4.?简洁性?错误!未定义书签。 ?去除界面冗余元素原则?错误!未定义书签。 80/20原则.......................................... 错误!未定义书签。?满意度原则?错误!未定义书签。 ?渐进原则?错误!未定义书签。 合理约束原则?错误!未定义书签。 5.?快捷性?错误!未定义书签。 6.可记忆性.............................................. 错误!未定义书签。 7.灵活性................................................ 错误!未定义书签。满意度?错误!未定义书签。

现代控制理论在电机中的应用

现代控制理论与电机控制 刘北 070301071 电气工程及其自动化0703班 现代控制理论在电机控制中的具体应用: 自70年代异步电动机矢量变换控制方法提出,至今已获得了迅猛的发展。这种理论的主要思想是将异步电动机模拟成直流机,通过坐标变换的方法,分别控制励磁电流分量与转矩电流分量,从而获得与直流电动机一样良好的动态调速特性。这种控制方法现已较成熟,已经产品化,且产品质量较稳定。因为这种方法采用了坐标变换,所以对控制器的运算速度、处理能力等性能要求较高。近年来,围绕着矢量变换控制的缺陷,如系统结构复杂、非线性和电机参数变化影响系统性能等等问题,国内、外学者进行了大量的研究。伴随着推进矢量控制、直接转矩控制和无传感器控制技术进一步向前发展的是人工智能控制,这是电机现代控制技术的前沿性课题,已取得阶段性的研究成果,并正在逐步实用化。 矢量控制和直接转矩控制技术的一个新的发展方向是直接驱动技术,这种零方式消除了传统机械传动链带来的一系列不良影响,极大地提高了系统的快速响应能力和运动精度。但是,这种机械上的简化,导致了电机控制上的难度。为此,需要电机控制技术的进一步提高和创新。这正是电机现代控制技术有待深入研究和具有广阔开发前景的新领域。 电机的现代控制技术与先进制造装备息息相关,已在为先进制造技术的重要研究领域之一,国内很多学者和科技人员正在从事这方面的研究和开发。 一、三相感应电动机的矢量控制 1、 定、转子磁动势矢量 三相感应电动机是机电能量转换装置,这种的物理基础是电磁间的相互作用或者磁场能量的变化。因此,磁场是机电能量转换的媒介,是非常重要的物理量。为此,对各种电动机都要了解磁场在电动机空间内的分布情况。感应电动机内磁场是由定、转子三相绕组的磁动势产生的,首先要确定电动机内磁动势的分布情况。对定子三相绕组而言,当通以三相电流A i 、B i 、C i 时,分别产生沿着各自绕组轴线脉动的空间磁动势波,取其基波并记为A f 、B f 、C f ,显然它们都是空间矢量。对于分布和短矩绕组,定义正向电流产生的空间磁动势波基波的轴线为该相绕组的轴线,亦即A f 、B f 、C f 是以ABC 为轴线沿圆周正弦分布的空间矢量,各自的幅值是变化的,取决于相电流的瞬时值,即有

现代控制理论及应用

现代控制理论及应用李嗣福教授、博士生导师 中国科学技术大学自动化系

一、现代控制理论及应用发展简介 1. 控制理论及应用发展概况 2. 自动控制系统和自动控制理论 以单容水槽水位控制和电加热器温度控制为例说明什么是自动控制、控制律(或控制策略)、自动控制系统以及自动控制系统组成结构和自动控制理论所研究的内容。 2.1自动控制:利用自动化仪表实现人的预期控制目标。 2.2自动控制系统及其组成结构 自动控制系统:指为实现自动控制目标由自动化仪表与被控对象所联接成闭环系统。 自动控制系统组成结构:是由被控对象、测量代表、控制器或调节器和执行器构成反馈闭环结构,其形式有单回路形式和串级双回路形式。 控制系统性能指标:定性的有稳(定性)、准(确性)、快(速性)。 控制律(或控制策略、控制算法):控制系统中控制器或调节器所采用的控制策略,即用系统偏差量如何确定控制量的数学表示式。 2.3自动控制系统类型主要有:按系统参数输入信号形式分:定值控制系统或调节系统和随动系统。 按系统结构形式分:前馈控制系统(即开环系统)和反馈控制系统以及复合控制系统; 按系统中被控对象的控制输入量数目和被控输出量数目分:单变量控制系统和多变量控制系统; 按被控对象特性分:线性控制系统和非线性控制系统; 按系统中的信号形式分:模拟(或时间连续)控制系统、数字(或时间离散)控制系统以及混合控制系统。 2.4自动控制理论:研究自动控制系统分析与综合设计的理论和方法。 3. 古典(传统)控制理论: 采用数学变换方法(即拉普拉斯变换和富里叶变换)按照系统输出量

与输入量之间的数学关系(即系统外部特性)研究控制系统分析和综合设计问题。具体方法有:根轨迹法;频率响应法。 主要特点:理论方法的物理概念清晰,易于理解;设计出控制律一般较简单,易于仪表实现 主要缺点: ① 设计需要凭经验试凑,设计结果与设计经验关系很大; ② 系统分析和设计只着眼于系统外部特性; ③一般只能处理单变量系统分析和设计问题,而不能处理复杂的多变量系统分析和设计。 4. 现代控制理论及其主要内容 现代控制理论:狭义的是指60年代发展起来的采用状态空间方法研究实现最优控制目标的控制系统综合设计理论。广义的是指60年代以来发展起来的所有新的控制理论与方法。 控制系统状态空间设计理论: (1) 用一阶微方程组表征系统动态特性,一般形式(连续系统)为 )()()(t BU t AX t X +=——状态方程(连续的一阶微分方程组) )()(t CX t Y =——输出方程 离散系统: )()()1(t BU t AX k X +=+——状态方程(离散的一阶差分方程组) )()(k CX k Y = k ——为大于等于零整数,表示离散时间序号; ?????? ??? ???=)() ()()(21k x k x k x k X n ——状态向量,其中)(k x i ,()n i ,,1 =为状态变量; ????? ???? ???=)() ()()(21k u k u k u k U m ——输入向量,其中)(k u i , ()m i ,,1 =为各路输入;

冗余设计与容错设计

冗余设计与容错设计 1.冗余与容错的概念 提高产品可靠性的措施大体上可以分为两类:第一类措施是尽可能避免和减少产品故障发生的避错”技术;第二类措施是当避错难以完全奏效时,通过增加适当的设计余量和替换工作方式等消除产品故障的影响,使产品在其组成部分发生有限的故障时,仍然能够正常工作的“容错”技术。而冗余是实现产品容 错的一种重要手段。

“容错(fault tolerance)”定义:系统或程序在出 现特定的故障情况下,能继续正确运行的能力。“冗余(redundancy)”定义:用多于一种的途径来完成一 个规定功能。“容错”反映了产品或系统在发生故障情 况下的工作能力,而“冗余”是指产品通过多种途径完成规定功能的方法和手段。“容错”强调了技术实施的最终效果,而“冗余”强调完成规定功能所采用的不同方式和途径。严格地说,冗余属于容错设计范畴。 从原理上讲,冗余作为容错设计的重要手段,其实施流 程和原则也同样适用与其他容错设计活动。

2.冗余设计 2.1.目的 冗余设计主要是通过在产品中针对规定任务增加更多的功能通道,以保证在有限数量的通道失效的情况下,产品仍然能够完成规定任务。

2.2 .应用对象 (a) 通过提高质量和基本可靠性等方法不能满足任务可靠性 要求的功能通道或产品组成单元; (b)由于采用新材料、新工艺或用于未知环境条件下,因而其任务可靠性难于准确估计、验证的功能通道或产品组成单元; (c)影响任务成败的可靠性关键项目和薄弱环节; (d)其故障可能造成人员伤亡、财产损失、设施毁坏、环境破坏等严重后果的安全性关键项目; (e)其他在设计中需要采用冗余设计的功能通道或产品组 成单元。

自动控制技术现状及发展趋势

自动控制技术现状及发展趋势 发表时间:2017-11-03T16:38:49.533Z 来源:《电力设备》2017年第18期作者:孔德磊[导读] 摘要:自动控制技术是一项综合性技术,目前被广泛地应用于企业生产及人们的日常生活中,极大地提高了企业的生产效率及人们的生活质量。本文通过对目前我国自动控制技术的现状及其发展进行了详细的分析,从而指出自动控制技术正在向智能化、网络化、微型化以及集成化等方面发展,自动控制技术是现代化生产的基础,是提高生产效率的关键。 (河南理工大学河南焦作 454000)摘要:自动控制技术是一项综合性技术,目前被广泛地应用于企业生产及人们的日常生活中,极大地提高了企业的生产效率及人们的生活质量。本文通过对目前我国自动控制技术的现状及其发展进行了详细的分析,从而指出自动控制技术正在向智能化、网络化、微型化以及集成化等方面发展,自动控制技术是现代化生产的基础,是提高生产效率的关键。关键词:自动控制技术;现状;发展趋势一、目前我国自动控制技术的现状分析就目前我国在自动控制领域的实际情况来看,虽然自动控制技术得到了长足的发展以及比较广泛地实际应用,但是这与国外发达国家的自动控制技术水平及应用程度还有很大的差距。我国想要提高自动控制技术的水平,就必须加大投资与科研的力度,对新型的生产线要科学合理地对其进行自动化的设计及未来发展的预设,要特别注重自动化信息流的作用,从而提升我国自动控制水平及应用,进而提高我国企业的国际竞争力。从目前我国自动控制技术在应用领域中的作用来看,主要是为提高设备的运行效率。根据我国发展的具体情况,研制开发自动控制技术,从而避免研制自动控制技术的盲目性。但是,还是存在自动控制技术在研发过程中缺乏宏观层面上的明确指导,在投入实际生产中所获得的经济效益比较低的现象,在我国自主研发的自动化设备上还存在精确度比较差、可靠性比较低以及实用性比较差的现象。随着手工制造业在国家经济建设中逐渐丧失了优势地位,自动化生产在社会生产中日益显示出其生产操作简单、产品质量高及生产效率高等特点,成为企业生产中的主要模式。在我国自动控制技术的发展也是非常不平衡的,大部分生产领域的自动化程度还非常低,例如,玩具、服装等。 我国想要提高自动控制水平并不是很容易,这即需要对新的自动控制技术的研发,也要对原有企业的生产设备进行自动化改造,这样不但能够提高生产效率而且还能起到降低成本的作用。可以通过数控技术等自动控制技术改造原有机械设备,提高传统机械设备的自动化程度,从而提高设备的使用率和生产率。在机床上通过控制技术的改造,充分发挥计算计技术的优势,实现设备及生产线的自动化的改造,从而提高生产效率。 二、我国自动控制技术的发展趋势分析(一)智能化自动控制技术的发展自动控制技术水平的发展是现代化生产不断推进的动力和基础力量,在自动化生产的开始阶段,控制系统比较简单,控制规律也很简单,因此,采用常规的控制方法就可以完成作业。智能化是自动化控制技术发展的更高水平,智能化主要表现在控制的功能多样化和用途多样化,智能化是未来制造业发展的方向。随着科学技术的不断进步,现代化生产的发展方向逐步向人工智能与自动控制技术相结合应用的趋势。人工智能理论向自动控制技术领域的渗透,不但理论上而且在实践上都是新的发展途径,为智能化的自动控制技术,提供了新的思想和方法。人工智能与自动控制技术相结合,能够根据生产过程中的变化情况,对系统采取更为有效的控制。在目前许多生产领域都采用了智能化控制技术应用于生产系统中,智能化控制技术的水平和应用程度关系到企业现代化生产自动化水平及程度的高低。(二)网络化、微型化自动控制技术的发展从自动控制技术的发展历程来看,在比较长的时期内,自动控制技术都是在工业生产领域内进行的。自动控制技术为工业生产所需的各种机械设备,提供了可靠性及性能都非常高的控制设备。在科学技术快速发展的当下,各领域之间都不是独立发展进行的,而是相互借鉴促进甚至结合发展成为新的发展领域。自动控制技术的发展当然也离不开对其他领域的借鉴与冲击,其中来自工业PC的影响最为严重。网络化及微型化是将来自动控制技术发展的必然趋势,在自动控制技术系统发展的初期,其形态非常的大而且价格又非常的高。自动控制技术未来发展的方向必然也离不开网络化,网络技术在现代化生产中具有重要的作用。尤其是对生产过程中信息数据的传递以及分析起到了关键作用,对自动控制系统发现安全问题采取合理的处理措施,预防故障的发生等都起到行之有效的作用。随科学技术的不断进步,发展到现在它与以前相比已经改变了很多,正在向微型化发展而且在价格上也在逐步的下降。随着自动控制系统的控制软件的进一步的完善和发展,未来能够安装控制系统软件的市场份额将会逐步呈上涨趋势。(三)综合化自动控制技术的发展在现代化自动控制技术领域中已经建立模糊控制、智能控制及专家系统等控制技术的发展方向,这些方向自动控制技术的主要特点就是综合性。这些特殊方向性的控制系统都是以自动控制技术理论为基础,从而对整个设备或流程进行综合控制。其中涉及的理论知识比较多,不在是单一的自动控制技术知识,还包括电子技术、计算机技术、机械技术等等。自动控制技术要想得到快速的发展,从而适应并促进社会的进步,就必须把自动控制技术与相关技术相结合进而发展成为一个新的方向,这样才能够给自动控制技术领域注入新鲜养分与活力,才能提高自动控制技术的可靠性、精确性与高效性。不断发展各项自动控制技术,例如,各种控制系统、专用计算机等自动控制技术的基础技术,不断引进多个领域的新知识、新理论及新技术。对原有的自动控制技术进行不断地改进与发展,这就需要大量的新理论、新方法以及新技术对其进行补充,更需要高水平的专业人才对其进行研究与开发。随着自动控制技术的不断发展,对普通工人以及经验与技能的要求会越来越低,而对知识的要求会越来越高,相关工作人员必须具备较高的知识层次才能更好地完成自动控制技术的相关工作。当自动控制设备发展到非常高的水平后,会因为技术及管理上的原因,使得产品的废品率比较高。造成这种现象的主要原因不是设备的问题而是工作人员素质的问题,所以要大力培养适合自动控制设备工作的新型技术人才,这需要相关人员必须掌握各种与自动控制设备的新方法、新原料以及操作方法等。在自动控制技术领域只有拥有了大量的专业技术人才或相关技术的综合型人才,才能够实现对自动控制技术的有力推广,从而提高我国自动控制技术的水平。参考文献:

现代控制理论概述及实际应用意义

13/2012 59 现代控制理论概述及实际应用意义 王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院 【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究 方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义 1.引言 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。 2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。 2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 科学技术的发展不仅需要迅速 地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。 2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。 20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.wendangku.net/doc/8e2761100.html,ndau)在自适应控制理论和应用方面作出了贡献。 与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。 3.现代控制理论的内容及研究方法 现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。 (1)系统辨识 系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。 (2)最优控制问题 在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。 (3)自适应控制问题 在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

自动控制理论发展简史

自动控制理论发展简史(经典部分) 牛顿可能是第一个关注动态系统稳定性的人。1687年,牛顿在他的《数学原理》中对围绕引力中心做圆周运动的质点进行了研究。他假设引力与质点到中心距离的q 次方成正比。牛顿发现,假设q>-3 ,则在小的扰动后,质点仍将保留在原来的圆周轨道附近运动。而当q≤-3时,质点将会偏离初始的轨道,或者按螺旋状的轨道离开中心趋向无穷远,或者将落在引力中心上。 在牛顿引力理论建立之后,天文学家曾不断努力以图证明太阳系的稳定性。特别地,拉格朗日和拉普拉斯在这一问题上做了相当的努力。1773年,24岁的拉普拉斯“证明了行星到太阳的距离在一些微小的周期变化之内是不变的”。并因此成为法国科学院副院士。虽然他的论证今天看来并不严格,但他的工作对后来李亚普诺夫的稳定性理论有很大的影响。 直到十九世纪中期,稳定性理论仍集中在对保守系统研究上。主要是天文学的问题。在出现控制系统的镇定问题后,科学家们开始考虑非保守系统的稳定性问题。 James Clerk Maxwell是第一个对反馈控制系统的稳定性进行系统分析并发表论文的人。在他1868年的论文“论调节器”(Maxwell J C.On Governors. Proc. Royal Society of London,vol.16:270-283,1868)中,导出了调节器的微分方程,并在平衡点附近进行线性化处理,指出稳定性取决于特征方程的根是否具有负的实部。Maxwell的工作开创了控制理论研究的先河。 Maxwell是一位天才的科学家,在许多方面都有极高的造诣。他同时还是物理学中电磁理论的创立人(见其论文“A dynamical theory of the electromagnetic field”,1864)。目前的研究表明,Maxwell事实上在1863年9月即已基本完成了其有关稳定性方面的研究工作。 约在1875年,Maxwell担任了剑桥Adams Prize的评奖委员。这项两年一次的奖授予在该委员会所选科学主题方面竞争的最佳论文。1877年的Adams Prize的主题是“运动的稳定性”。E.J.Routh在这项竞赛中以其跟据多项式的系数决定多项式在右半平面的根的数目的论文夺得桂冠(Routh E J.A Treatise on the Stability of Motion.London,U.K.:Macmillan,1877)。Routh的这一成果现在被称为劳斯判据。Routh工作的意义在于将当时各种有关稳定性的孤立的结论和非系统的结果统一起来,开始建立有关动态稳定性的系统理论。 Edward John Routh 1831年1月20日出生在加拿大的魁北克。他父亲是一位在Waterloo服役的英国军官。Routh 11岁那年回到英国,在de Morgan指导下学习数学。在剑桥学习的毕业考试中,他获得第一名。并得到了“Senior Wrangler”的荣誉称号。(Clerk Maxwell排在了第二位。尽管Clerk Maxwell当时被称为最聪明的人。)毕业后Routh开始从事私人数学教师的工作。从1855年到1888年Routh教了600多名学生,其中有27位获得“Senior Wrangler”称号,建立了无可匹敌的业绩。Routh于1907年6月7日去世,享年76岁。 Routh之后大约二十年,1895年,瑞士数学家A. Hurwitz在不了解Routh工作的情况下,独立给出了跟据多项式的系数决定多项式的根是否都具有负实部的另一种方法(Hurwitz A. On the conditions under which an equation has only roots with negative real parts. Mathematische Annelen,vol.46:273-284,1895)。Hurwitz的条件同Routh的条件在本质上是一致的。因此这一稳定性判据现在也被称为Routh-Hurwitz稳定性判据。 1892年,俄罗斯伟大的数学力学家A.M.Lyapunov(1857.5.25-1918.11.3)发表了其具有深远历史意义的博士论文“运动稳定性的一般问题”(The General Problem of the Stability of Motion,1892)。在这一论文中,他提出了为当今学术界广为应用且影响巨大的李亚普诺夫方法,也即李亚普诺夫第二方法或李亚普诺夫直接方法。这一方法不仅可用于线性系统而且可用于非线性时变系统的分析与设计。已成为当今自动控制理论课程讲授的主要内容之一。 Lyapunov是一位天才的数学家。他是一位天文学家的儿子。曾从师于大数学家P.L.Chebyshev(车比晓夫),和A.A.Markov(马尔可夫)是同校同学(李比马低两级),并同他们始终保持着良好的关系。他们共同在概率论方面做出过杰出的成绩。在概率论中我们可以看到关于矩的马尔可夫不等式、车比晓夫不等式和李亚普诺夫不等式。李还在相当一般的条件下证明? 在控制系统稳定性的代数理论建立之后,1928年至1945年以美国AT&T公司Bell实验室(Bell Labs)的科学家们为核心,又建立了控制系统分析与设计的频域方法。

双机容错系统方案

双机容错系统方案 1.前言 对现代企业来说,利用计算机系统来提供及时可靠的信息和服务是必不可少的,另一方面,计算机硬件和软件都不可避免地会发生故障,这些故障有可能给企业带来极大的损失,甚至整个服务的终止,网络的瘫痪。可见,对一些行业,如:金融(银行、信用合作社、证券公司)等,系统的容错性和不间断性尤其显得重要。因此,必须采取适当的措施来确保计算机系统的容错性和不间断性,以维护系统的高可用性和高安全性,提高企业形象,争取更多的客户,保证对客户的承诺,减少人工操作错误、达到系统可用性和可靠性为99.999%。 2.双机容错系统简介 根据用户提出的系统高可用性和高安全性的需求,推出基于Cluster集群技术的双机容错解决方案,包括用于对双服务器实时监控的Lifekeeper容错软件和作为数据存储设备的系列磁盘阵列柜。通过软硬件两部分的紧密配合,提供给客户一套具有单点故障容错能力,且性价比优越的用户应用系统运行平台。 3.Cluster集群技术 Cluster集群技术可如下定义:一组相互独立的服务器在网络中表现为单一的系统,并以单一系统的模式加以管理。此单一系统为客户工作站提供高可靠性的服务。 Cluster大多数模式下,集群中所有的计算机拥有一个共同的名称,集群内任一系统上运行的服务可被所有的网络客户所使用。Cluster必须可以协调管理各分离的组件的错误和失败,并可透明的向Cluster中加入组件。 一个Cluster包含多台(至少二台)拥有共享数据储存空间的服务器。任何一台服务器运行一个应用时,应用数据被存储在共享的数据空间内。每台服务器的操作系统和应用程序文件存储在其各自的本地储存空间上。 Cluster内各节点服务器通过一内部局域网相互通讯。当一台节点服务器发生故障时,这台服务器上所运行的应用程序将在另一节点服务器上被自动接管。当一个应用服务发生故障时,应用服务将被重新启动或被另一台服务器接管。当以上任一故障发生时,客户将能很快连接到新的应用服务上。 4.工作拓扑图

自动控制现代控制与智能控制的关系

自动控制、现代控制与智能控制的关系 一、基本区别 控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。 自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。 在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。 二、华山论剑:自动控制的机遇与挑战 传统控制理论在应用中面临的难题包括:(1)传统控制系统的设计与分析是建立在已知系统精确数学模型的基础上,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型;(2)研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合;(3)对于某些复杂的和包含不确定性的对象,根本无法用传统数学模型来表示,即无法解决建模问题;(4)为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初始投资和维修费用,降低了系统的可靠性。 为了讨论和研究自动控制面临的挑战,早在1986年9月,美国国家科学基金会(NSF)及电气与电子工程师学会(1EEE)的控制系统学会在加利福尼亚州桑克拉拉大学(University of Santa Clare)联合组织了一次名为“对控制的挑战”的专题报告会。有50多位知名的自动控制专家出席了这一会议。他们讨论和确认了每个挑战。根据与会自动控制专家的集体意见,他们发表了《对控制的挑战——集体的观点》,洋洋数万言,简直成为这一挑战的宣言书。 到底为什么自动控制会面临这一挑战,还面临哪些挑战,以及在哪些研究领域存在挑战呢? 在自动控制发展的现阶段,存在一些至关重要的挑战是基于下列原因的:(1)科学技术

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

3.有电路如图1-28所示。以电压U(t)为输入量,求以电感中的电流和电 容上的电压作为状态变量的状态方程,和以电阻 R 2上的电压作为输出 量的输出方程。 4.建立图P12所示系统的状态空间表达式。 M 2 1 f(t) 5.两输入u i ,U 2,两输出y i ,y 的系统,其模拟结构图如图 1-30所示, 练习题 ,输出为,试自选状态变量并列写出其状 2. 有电路如图所示,设输入为 态空间表达式。 C ri _ l- ------- s R 2 U i U ci L u A ------ — 2 R i

试求其状态空间表达式和传递函数阵。 6.系统的结构如图所示。以图中所标记的 x 1、x 2、x 3作为状态变量,推 导其状态空间表达式。 其中,u 、y 分别为系统的输入、 输出,1、 2 试求图中所示的电网络中,以电感 L i 、L 2上的支电流x i 、X 2作为状态 变量的状态空间表达式。这里 u 是恒流源的电流值,输出 y 是R 3上的 支路电压。 8. 已知系统的微分方程 y y 4y 5y 3u ,试列写出状态空间表达式。 9. 已知系统的微分方程 2y 3y u u , 试列写出状态空间表达式。 10. 已知系统的微分方程 y 2y 3y 5y 5u 7u ,试列写出状态空间 表达式。 7. 3均为标量。

11. 系统的动态特性由下列微分方程描述 y 5 y 7 y 3y u 3u 2u 列写其相应的状态空间表达式,并画出相应的模拟结构图。 12. 已知系统传递函数 W(s) 坐 卫 2 ,试求出系统的约旦标准型 s(s 2)(s 3) 的实现,并画出相应的模拟结构图 13. 给定下列状态空间表达式 X 1 0 1 0 X 1 0 X 2 2 3 0 X 2 1 u X 3 1 1 3 X 3 2 X 1 y 0 0 1 x 2 X 3 (1)画出其模拟结构图;(2)求系统的传递函数 14. 已知下列传递函数,试用直接分解法建立其状态空间表达式,并画出状 态变量图。 15. 列写图所示系统的状态空间表达式。 16. 求下列矩阵的特征矢量 0 1 0 A 3 0 2 12 7 6 17. 将下列状态空间表达式化成约旦标准型(并联分解) (1)g(s ) s 3 s 1 3 2 s 6s 11s 6 ⑵ g(s ) s 2 2s 3 3 c 2 s 2s 3s 1

自动控制理论发展概况

自动控制理论发展概况 ——航 自动控制(automatic control)是指在没有人直接参与的情况下利用机械以及程序进行的工程生产以及生活应用,于是在此需求下就形成了一种系统,称之为自动控制系统,这是一类力求以尽可能少的人类干预实现尽可能多的自动监视、检测、调节和控制作用以达到预期技术要求的人造系统。而为了更好地让人们学习和应用这个系统,则派生了一门学科,即自动控制理论,研究这类系统的构思、设计、性能、分析,乃至实施和运行的原理和技术。 自动控制理论已经经过了漫长的发展,关于自动控制的历史,早在古代,我国勤劳的劳动人民就凭借生产实践中积累的丰富经验和对控制以及反馈概念的深刻理解以及直观认识,发明了许多蕴含着深刻控自动控制技术的工具。 如果要深入追溯自动控制技术的发展历史,那么早在两千年前中国就有了自动控制技术的萌芽。例如,两千年前我国发明的指南车,就是一种开环自动调节系统。它利用差速齿轮原理,利用齿轮传动系统,根据车轮的转动,由车上木人指示方向。不论车子转向何方,木人的手始终指向南方,“车虽回运而手常指南”。这是最早的自动化控制应用,也是自动化技术的萌芽阶段。 经典控制理论的发展阶段。 后来到18世纪,欧洲开始了轰轰烈烈的工业革命,工业迅速发展,这段时间让人们认识到机械运作在工业工程上的巨大便利以及其极高的效率。1788年瓦特为了控制蒸汽机的速度而发明了离心式调速器,又称瓦特调速器或飞球调速器。这是一个闭环控制系统,也是一个反馈调节系统,这一发明为经典控制理论的发展拉开了序幕。 控制理论发展的初期,主要是以反馈理论为基础的自动调节原理,主要用于工业控制。于是在工业革命的时期,自动控制技术有一个非常良好的发展环境,在20世纪形成了比较完整的自动控制理论体系,即经典控制理论。 经典控制理论的分析方法为复数域方法,以传递函数作为系统数学模型,可通过试验方法建立数学模型,物理概念清晰,得到广泛的工程应用。但是只适应

容错性设计

容错性设计 交互设计IXD, 博客blog, 用户体验UE, by 张雅秋. 即便你的产品90%的时间都运行良好。但是如果在用户需要帮助时置之不理,他们是不会忘 记这一点的。——《getting real》 我们有时候不能不面对产品出错的时候。无论设计得多么用心,无论做了多少测试,用户仍然会遇到错误和问题。既然出错不可避免,那么如何进行容错性设计才是关键。 容错性设计就是当错误发生时,人们看到的界面。 就像对付不该发生的错误一样,容错性设计的关键在于“做好防御”。产品设计者们必须不断寻找可能造成用户困惑和不满的出错点。好的防御性设计决定用户体验的好坏。 举个例子: 有没有人注意过进入银行ATM机可以有多少种刷卡方式。答案是八种!而正确进入方式只有 一种方式。 如何从设计上避免用户出错,限制是一种非常必要的方式。 限制用户某些交互操作

SIM卡如果做成一个倒角避免了长方形带来多种插入方式的错误。 三项插座和相应插孔的匹配避免了用户使用两项或其他插座错误的可能。 置灰是界面上限制某些操作的好方式。 Flickr的照片上传wizard,防止用户跳过第一步直接进入后面操作,采用置灰的方式。一方面告诉用户这可以进行当前操作,另一方面预示后面还有哪样的操作。 其次,减少认知困惑也很重要。 减少用户认知混淆

根据已订阅和未订阅的不同,订阅button和退订进行视觉上明显的区分,避免错误操作。合理利用系统反馈 如果错误不可避免的发生了,合理恰当的提示可以减少用户的挫败感。 1、提前提示某些操作可能引起错误。 在输入密码需要区分大小写时,caps lock键打开下作出提示以免出错。 2、防止用户错误,操作后提示确认。 在用户点击发送后提示没有输入主题信息,防止用户直接发送无主题邮件。

软件容错方法

容错方法: 1.Byzantine协议:有m个处理机(进程)出错的系统中要实现协同一致,至少需要2m+1 个正常处理机(进程)时才可能,也就是说至少需要的处理机(进程)总数是3m+1个。 2.微重启技术(Micro-reboot):针对大型分布式应用软件系统发生故障时的快速恢复技术。 微重启技术有别与传统的重启方式(宏重启),它采用递归恢复的方法,即将系统划分为多个故障隔离的组件子集,首先重启可能引起故障的最小子集但不影响系统其他部分的正常运行,如果不起作用,再依照故障传播路径递近地重启更大范围子集,直到故障最终解决或者需要其他恢复策略的执行。微重启可以有效避免系统因全面重启而造成的数据丢失和事务进程的中断,并且极大地缩短了因全面重启而引起的冗长恢复时间;通过快速地解决局部故障以避免整体宕机,从而提高了应用系统的可用性。 3.软件抗衰技术(Software Rejuvenation):在软件运行期间,系统可能出现资源逐渐耗尽或 运行错误逐步积累所导致的系统性能下降乃至挂起停机的现象,这种现象称为软件衰退(Software Aging)。软件抗衰是指为预防系统突然发生故障而预先采取的措施。它是一种前摄的容错技术,主要通过适时、适度地消除系统内部错误的运行状态来完成。主要措施有:周期性地暂停软件的运行,清除系统的内部状态,重新启动并恢复为干净的初始/中间状态。常见的内部状态清理手段有清除缓冲序列、内存垃圾收集、重新初始化内核表、清理文件系统等。最简单、常见的软件抗衰措施是计算机的重新引导。 4.回滚机制:可以周期性的对软件做检查点,检查点可以放在磁盘,远程内存,非易失性 的或者持久的内存中,也可以实时的对软件的操作以日志的方式进行记录。当软件出现错误时,可以根据检查点或者日志回滚到一个合适点并对先前出现的错误进行相应处理而不造成软件再次出错。 5.错误忽视技术(Failure-Oblivious Computing):在一次计算中,当错误发生在不相关的 计算中,错误忽视技术能够保证服务忽视这些错误而继续执行该计算。当内存错误发生在该计算中,错误忽视技术能够产生一个能够导致服务能处理的无效输入请求,从而服务中的错误处理模块能够进行处理。该方法的缺陷是只能处理内存相关的bug,能够产生高负载,以及由于对内存接口进行了潜在的不安全修改而可能产生程序的非预期行为。 6.编译器级容错技术:如复制指令错误探测(Error Detection by Duplicated Instructions,简 称EDDI),基本思想是编译器复制程序指令并将源指令与复制指令合并(为了提高容错性能,两种指令放在不同的寄存器和内存的不同位置)。在一定的同步点(store指令处和branch指令处),编译器插入检测指令来检查源指令与复制指令的执行结果是否一致。其优点是效率高,既可用于单机环境,又可用于分布式环境,而且可以根据不同环境加以定制。

现代控制理论在航空航天中应用

现代控制理论在航空航天中应用 01111201 贺辉1120120003 现代控制理论研究对象为多输入、多输出系统,线性、定常或时变、离散系统。解决方法主要是状态空间法(时域方法)。航空航天技术的迅速发展离不开现代控制理论的不断完善。 比如在实现惯性导航系统的过程中,控制技术起到了至关重要的作用。平台系统依靠陀螺仪、稳定回路使台体稳定在惯性空间,而捷联系统中惯性仪表采用力反馈回路来实现角速度或加速度等信息的敏感。在平台系统的初始对准中,通过调平回路和方位对准回路分别实现水平对准和方位对准。上述过程的实现,都需要通过设计满足各种性能指标的控制器来实现。目前,随着控制技术的发展,科技工作者对一些新型的控制理论和方法在惯性导航系统中的应用进行了探索,目的是提高惯性导航系统的精度、鲁棒稳定性、可靠性、环境适应性以及满足小型化的需求。 另外,现代控制理论在飞行器轨道优化方面有着重要作用。飞行器的轨道优化与制导规律研究对飞行器设计至关重要。随着燃料的大量消耗,空间飞行器的质心、转动惯量都随之发生变化。飞行器弹道会受到极大的影响,这种情况下用经典理论精确控制几乎是不能满足设计要求的,因此要求控制系统的控制在控制手段上采用现代控制理论及控制技术。防空导弹的弹道优化与制导规律研究的目的是提高导弹的飞行性能,达到精确、有效地拦截目标。轨道优化与制导规律研究是根据给定的技术指标,建立飞行器的运动方程, 并选择主要设计参数, 构造传递函数, 运用现代控制理论及数学原理求解最优参数, 形成制导规律与相应的飞行器飞行轨道。飞行器按照优化的轨道飞行, 可以减轻其飞行质量, 提高飞行速度和可用过载, 缩短飞行时间等。在设计飞行器的初步方案论证阶段, 为了实现规定的技术指标, 需要预估飞行器的几何尺寸、质量、推力大小和气动外形, 然后进行轨道优化与制导规律设计。通过轨道优化与制导规律设计不断调整和确定上述各参数, 直到综合确定出合适的方案为止。因此, 飞行器的轨道优化与制导规律问题将关系到飞行器设计性能的好坏, 关系到能否完成用户所需的技术性能指标要求的问题。轨道优化与制导规律研究内容很广泛, 它与任务要求有关, 随着不同的要求, 给定不同的性能指标, 其结果和形式就不同。 轨道优化与制导规律研究这两方面的内容是紧密联系在一起的, 特别是防空导弹更是如此。防空导弹弹道优化涉及制导规律问题, 设计出良好的制导规律势必达到弹道优化设计的目的。防空导弹的飞行弹道优化问题, 一般可以对一组给定的初始条件和终端条件进行弹道优化, 可以用改变一组参变量求解目标函数, 形成满足预定的边界条件, 并命中目标的最优弹道;可以用改变自变量, 在受附加约束的条件下, 如导弹的质量、推力、气动外形等已确定, 可用过载受限制的条件下, 用改变飞行弹道角的制导规律, 寻求导弹飞行的最大射程,最大平均速度, 最大末速度, 最小燃料消耗量, 最短飞行时间;可以用产生开环控制函数或间断地改变控制参数来优化弹道等各式各样的弹道优化模式防空导弹的制导规律是描述导弹在向目标接近的整个过程中所应遵循的运动规律, 它与目标及导弹的运动参数有关, 它决定导弹的弹道特性及其相应的弹道参数。导弹按不同的制导规律制导, 飞行的弹道特性和运动参数是不同的。 导弹的制导规律有多种多样, 有的建立在早期经典理论和概念上, 有的建立在现代控制理论和对策理论的基础上。建立在早期经典理论的概念基础上的制导规律通常称为经典制导规律。经典制导规律包括三点法, 前置点或半前置点法, 预测命中点法, 速度追踪法, 姿态追踪法, 平行接近法, 比例导引法及其诸多的改进形式的制导规律。建立在现代控制理论和微

相关文档
相关文档 最新文档