文档库 最新最全的文档下载
当前位置:文档库 › 感生电动势的分析

感生电动势的分析

感生电动势的分析
感生电动势的分析

感生电动势的分析

文/占幸儒

感应电动势是由于通过闭合导体回路的磁通量发生变化而产生的.而导致磁通量变化的方式有两种,所以感应电动势可分为两种类型:一是磁场不变,导体在磁场中运动;二是导体不动磁场在变化.由前一种原因产生的感应电动势称为动生电动势,后一种原因产生的感应电动势称为感生电动势(现行教材对这两种电动势未作区分).感生电动势是由于变化的磁场在它周围所激发的电场(涡旋电场)作用于导体中的自由电子而产生的.它的大小等于作用于单位电荷绕导体回路一周涡旋电场力所做的功,即=∮E·dl.需注意的是涡旋电场与静电场不同,它对电荷做功是与路径有关的,由此产生的感生电动势是分布在整个导体回路的.由于高中知识的局限,学生对涡旋电场的特点以及感生电动势的起因认识不足,因此在学习和应用中对相应的一些问题感到似是而非,对于感生电动势在概念上的理解和计算出错较多.本文将通过对以下几例的分析,说明在这一内容的教学中应注意的一些问题.

例1如图1所示,两个正方形导线框1、2边长都是L,两个线框的一对对角上分别接有短电阻丝(图中用粗黑线表示),

图1

其阻值r

1=r

′=r

=r

′=r,线框电阻不计.两框交叠放在水平面上,

对应边互相平行,交叠点A、C位于所在边的中点,两框交叠处彼此绝缘,在两框的交叠区域内存在方向竖直向上的匀强磁场,交叠区恰好在磁场边缘内,当磁场的磁感强度从零均匀增加时,即B=kt(k为常量),求:

(1)通过电阻r

1和r

的电流I

和I

的大小和方向.以及线框两边中点

A、C间的电压U

AC

(2)若交叠处导通,通过r

1和r

的电流I

′和I

′又如何?

解析(1)根据楞次定律,可知两线框中感生电流的方向为顺时针方向.由于交叠处彼此绝缘,对每一个正方形线框来说,其中的磁场面积均为交叠区域的面积.如图2所示,每个线框所产生的感生电动势为

=ΔΦ/Δ

t=(ΔB/Δ

)S

=kL2/4,

图2

(上式中S

为交叠区域的磁场面积.不少学生用正方形线框面积代入计算得出

=kL2是错误的)

所以线框中的电流为

1=I

=/2r=kL2/8r.

在计算A、C两点的电压时,很多学生作如下解答:回路中的感生电动势

=ΔΦ/Δ

t=(ΔB/Δ

)S

=kL2/4,

回路中的电流I

=/2r=kL2/8r,所以A、C两点的电压大小为

AC=I

=(kL2/8r)r

=kL2/8.

以上这种解法是错误的.

由于交叠区域变化的磁场所激发的涡旋电场波及整个线框及其周围,由此所产生的感生电动势应分布在整个正方形线框导体内,以上解答是把r

(ABC段)看作外电路(如图3所示),认为感生电动势只分布在磁场区域中的ADC段是错误的.实际上线框中ABC段也分布着感生电动势′.用等效方法很容易求出ABC这部分导体的感生电动势′.

将整个正方形线框产生的感生电动势等效为如图4所示的小正方形(交叠区)AECD中产生的感生电动势.显然图3中大正方形线框中的ABC这部分导体中产生的感生电动势′等效于图4中AEC这部分导体中产生的感生电动势,其大小与ADC部分导体中产生的感生电动势是相等的,即

图3图4

′=

AEC=

ADC

=(1/2)Δ(Φ/Δ

t

=(1/2)(ΔB/Δ

t)S

=(1/2)(kL2/4)=(1/8)kL

2,

按以上分析画出如图5所示的等效电路,显然,正确的答案应为U

AC

=′

-I

1r

1

=(1/8)kL2-(kL2/8r)r=0.

类似上述问题在不少资料中出现.如很多复习书中都有这样一道题:

一均匀导线做成的正方形线圈,边长为L,线圈一半放在磁场中,如图6所示,当磁场以B=kt均匀变化时,求线圈中点e、f两点的电势差.几乎一致的解法都是把线圈efcd段当作外电路,没有考虑efcd中分布的感生电动势,而出现类似上例中的错误,这一点在教学中要予以注意.

图5图6

(2)交叠处导通时,不少同学画出如图7所示的等效电路求解,意思在于把包含磁场(交叠区)的小框看作是两个电动势均为′(′=(1/2)(Δ

B/Δ

t)S

=(1/8)kL2),内阻分别为r

2

、r

1

′的电源串联的内电路,

而把左、右大框中的r

1、r

2

′当作外电路,显然,这种想法是错误的.由于交

叠处导通,则两线框就连成闭合回路.从交叠区小框回路看,相当于图8(b)所示的等效电路.设回路中产生的感生电动势为,所以回路左、右两半中的电动势′=(1/2).

图7图8

再从左、右两大框构成的回路看,它相当于图9所示的等效电路.由于这个回路所包含的变化磁场的面积就是图8(a)中小框(交叠区)的面积,所以回路中产生的感生电动势同为,回路中左、右两半中的感生电动势亦为′=(1/2)

.综合图7、图8、图9各图,所以整个闭合回路应画成如图10所示的等效电路.图中

′=(1/2)=(1/2)(ΔB/Δ

t)S

=(1/8)kL2,

图9图10

且r

1=r

′=r

=r

′=r,

所以I

=2′/((r/2)+(r/2))=kL2/4r,

求得I

1′=I

′=(1/2)I

=kL2/8r.

例2 把一均匀导线弯成半径为a的圆环,圆环内有B=kt的均匀增加的磁场,若在圆环内下方水平放置一长为a的直导线ab,

图11

如图11所示,求直导线ab中流过的电流强度,设圆环和直导线单位长度的电阻为r

解析这是一道竞赛辅导题,解答此题时,不少学生画出如图12所示的等

效电路.电路中用

1和

2

分别表示环形导体部分和部分的感生电动势,

1、r

分别为它们的电阻.显然题解中没有考虑导线ab中产生的感生电动

势.不必看下文计算,便可知解答是错误的.由于圆环回路的感生电动势为

=ΔΦ/Δ

t=(ΔB/Δ

)S=kπa2,

且电动势均匀分布在整个导体回路中,所以段和段中的感生电动势分别为

=(5/6)=(5/6)kπa2,

=(1/6)=(1/6)kπa2.

导线ab中的感生电动势,这里我们不用积分计算,可用一

种简单方法计算ab中的感生电动势,连接图11中的Oa、Ob,假想△aOb为一均匀导体闭合回路,则此闭合回路中的感生电动势为

′=ΔΦ/Δ

=(ΔB/Δt)S△=ka2,

且回路中的感生电动势为Oa、Ob和ab三段导体中的电动势之和,由于

Oa、Ob沿半径方向,涡旋电场E与Oa、Ob处处垂直,故

oa=

ob

=0,

显然ab中的感生电动势

ab

=′=ka2,根据以上分析,可画出该题正确的等效电路如图13所示.

图12图13

余下的电路计算这里不再烦述.

感生电动势由于成因涉及到涡旋电场,且涡旋电场内容中学教学不作要求,但在教学实践中这方面碰到的问题较多,对这一内容的教学教师如何把握概念,掌握分寸,居高临下,深入浅出,是值得我们研究的.

计算动生电动势的方法

计算动生电动势的方法 在高中物理第二册电磁感应这一章中,经常看到一些计算动生电动势的习题,计算动生电动势的步骤是:①弄清所求的电动势是瞬时电动势还是平均电动势。 ②确定导体切割磁感线的有效长度、运动速度、V与B之间的夹角。③将B、L、V、θ的值代入动生电动势公式E=BLVsinθ中,求出电动势的值。 现举例介绍计算动生电动势的方法。 1 导体平动产生的电动势的计算方法 例1,如图1所示,导体abc以V=2m/s的速度沿水平方向向右运动,ab=bc=1m,导体的bc段与水平方向成30°角,匀强磁场的磁感应强度B=0.4T,方向垂直纸面向里,导体abc水平向右运动时产生的电动势是多少? 解:导体abc水平向右运动时,导体的ab段不切割磁感线,不产生电动势。 导体的bc段切割磁感线的有效长度L=lsin300 =1×0.5m=0.5m 导体的bc段的速度方向与磁感应强度方向之间的夹角θ=90° 导体的bc段产生的瞬时电动势E2=BLVsinθ=0.4×0.5×2×sin90°=0.4V,导体abc 产生的电动势E=E1+E2=0+0.4V=0.4V 2 导体转动产生的电动势的计算方法 例2,如图2所示,长L=1m的导体OA绕垂直于纸面的转轴O以ω=10rad/s 的角速度转动,匀强磁场的磁感应强度,B=0.2T,方向垂直纸面向里,求导体OA产生的电动势。 解:导体OA在匀强磁场中绕轴O转动时,导体各部分的速度不同,可将导体各部分速度的平均值代入动生电动势公式E=BLVsinθ中,求出导体OA产生的平均电动势。 导体OA切割磁感线的有效长度L=1m 导体OA的平均速度V==1×102m/s=5m/s 导体OA的速度与方向磁感应强度方向的夹角θ=90° 导体OA产生的平均电动势E=BLVsinθ=0.2×1×5×sin90°=1V 3 线圈转动产生的电动势的计算方法

动生电动势公式的推导及产生的机理

动生电动势公式的推导及产生的机理 摘要:在本文中,应用导数的知识推导出动生电动势在各种特殊情况下的表达形式,并进一步探究了动生电动势产生的机理。揭示了产生动生电动势的实质是运动电荷在磁场中受到洛伦磁力的结果。 关键词:电磁感应定律;动生电动势;洛伦磁力 法拉第电磁感应定律告诉我们,只要通过回路所围面积中的磁通 量发生变化,回路中就会产生感应电动势。由公式 s B dS φ=??可知,使磁通量发生变化的方法是多种多样的,但从本质上讲,可归纳为两类:一类是磁场保持不变,导体回路或导体在磁场中的运动;另一类是导体回路不动,磁场发生变化。前者产生的感应电动势称为动生电动势,后者产生的电动势为感生电动势。在本文中,主要对动生电动势公式的推导及其产生的机理作浅显的阐释。 一、动生电动势在各种特殊情况下的表达形式 在磁场保持不变的情况下,由于导体回路或导体运动而产生的感应电动势称为动生电动势 (一)、在磁场中运动的导线内的动生电动势 例1,如图1所示,一个由导线做成的回路ABCDA,其中长度为l 的导线段AB在磁感应强度为B的匀强磁场中以速度V向右作匀速直线运动,AB、V和B 三者相互垂直,求运动导线AB 段上产生的动生电动

势。 解析:由题意可知,导线AB 、V 和B 三者相互垂直。若在dt 时间内,导线AB 移动的距离为dx ,如右图所示,则在这段时间内回路面积的增量为dS ldx =。如果选取回路面积矢量的方向垂直纸面向里,则通过回路所围面积磁通量的增量为: d ΦB S Bldx == 根据法拉第电磁感应定律知,导线AB 内所产生的感应电动势为[1] d Φε dt =- 其中,负号代表感应电动势的方向。所以,在运动导线AB 段上产生的动生电动势的表达式为 dx εBlv dt Bl =-=- 即运动导线AB 段上产生的动生电动势的 大小为:Blv ,方向:B A →. 例2、如图2所示,在方向垂直纸面向 内的均匀磁场 B 中,一长为 l 的导体棒 OA 绕其一端 O 点为轴,以角速度大小 为ω逆时针转动,求导体棒OA 上所产生 的动生电动势。 解析:设导体棒OA 在t ?时间内所转过的角度为θ?,所扫过的扇形面积为: 212 S l θ=?

感生电动势和动生电动势要点及例题解析(答案)

1 [典型例题] 例1 如图1所示,在竖直向下的磁感应强度为B 的匀强磁场中,有两根水平放置且足够长的平行金属导轨AB 、CD ,在导轨的AC 端连接一阻值为R 的电阻,一根质量为m 的金属棒ab ,垂直导轨放置,导轨和金属棒的电阻不计。金属棒与导轨间的动摩擦因数为μ,若用恒力 F 沿水平向右拉导体棒运动,求金属棒的最大速度。 分析:金属棒向右运动切割磁感线,产生动生电动势,由右手定则知,棒中有ab 方向的电流;再由左手定则,安培力向左,导体棒受到的合力减小,向右做加速度逐渐减小的加速运动;当安培力与摩擦力的合力增大到大小等于拉力F 时,加速度减小到零,速度达到 最大,此后匀速运动,所以, m g BIL F μ+=, R BLV I = 2 2)(L B R mg F V μ- = 例2 如图2所示,线圈内有理想的磁场边界,当磁感应强度均匀增加时,有一带电量为q ,质量为m 的粒子静止于水平放置的平行板电容器中间,则此粒子带 ,若线圈的匝数为n ,线圈面积为S ,平行板电容器的板间距离为d ,则磁感应强度的变化率为 。 分析:线圈所在处的磁感应强度增加,发生变化,线圈中有感生电动势;由法拉第电 磁感应定律得, t B t nS n E ????==φ ,再由楞次定律线圈中感应电流沿逆时针方向,所以,板间的电场强度方向向上。带电粒子在两板间平衡,电场力与重力大小相等方向相反,电场力竖直向上,所以粒子带正电。 B qns E q mg ?= = q n s m g d t B = ?? [针对训练] 1.通电直导线与闭合线框彼此绝缘,它们处在同一平面内,导线位置与线框对称轴重合,为了使线框中产生如图3所示的感应电流,可采取的措施是:

关于动生电动势中洛伦兹力的在认识

物理科郑生 人教版高中物理教材“选修3-2第四章第5节电磁感应现象的两类情况”中,讲述了感生电动势和动生电动势问题,在讲到动生电动势中的非静电力问题时,讲了这样一句话:“非静电力与洛伦兹力有关”,这句话讲得很含糊,到底非静电力是不是洛伦兹力,如果不是,那么非静电力又是什么力?教材未作进一步阐述,笔者查阅与教材相配套的教师教学用书后发现,教材这样处理“主要是为了降低难度”,这是可以理解的,然而,这却导致了学生对这一问题产生了疑惑,搞不清非静电力是什么力,从而也搞不清动生电动势是如何产生的、非静电力是如何做功的、棒中能量是如何转化的、安培力与洛伦兹力之间是什么关系等问题。针对目前的现状,笔者认为有必要对相关问题进行深入探讨。 本文先回顾相关内容,再澄清错误认识。 如图所示,水平放置的导体框架,宽L=0.50 m,接有电阻R=0.20 Ω,匀强磁场垂直框架平面向里,磁感应强度B=0.40 T.一导体棒ab垂直框边跨放在框架上,并能无摩擦地在框架上滑动,框架和导体ab的电阻均不计.当ab以v=4.0 m/s的速度向右匀速滑动时,求:(1)ab棒中产生的感应电动势大小; (2)维持导体棒ab做匀速运动的外力F的大小;

二、内容的回顾 1.教材中的内容 教材选修3-2第四章第5节在阐述“电磁感应现象中的洛伦兹力”问题时,给出了一个栏目“思考与讨论”,内容如下: 图1如图1,导体棒在匀强磁场中运动。 (1)自由电荷会随着导体棒运动,并因此受到洛伦兹力。导体棒中自由电荷相对于纸面的运动大致沿什么方向? (2)导体棒一直运动下去,自由电荷是否总会沿着导体棒运动?为什么? (3)导体棒哪端的电势比较高? (4)如果用导线把C、D两端连接到磁场外的一个用电器上,导体棒中的电流是沿什么方向的? 在这一栏目之后,教材未作阐述就直接给出了结论:导体棒“相当于一个电源”,同时指出:“非静电力与洛伦兹力有关。”可见,教材中的阐述较简单。 2.某些资料中的内容 笔者翻阅了一部分教辅资料后发现,关于动生电动势中洛伦兹力的认识有错误,不妨列举两例: (1)在“创新方案?高中新课标同步创新课堂?物理(配人教版选修3-2)”中是这样说的:“导体在磁场中做切割磁感线运动时产生的感应电动势叫动生电动势,它是由于导体中自由电子受到洛伦兹力作用而引起的,使自由电子做定向移动的非静电力就是洛伦兹力。” 该表述中的错误之处是:非静电力就是洛伦兹力。 (2)在“教材解析?高中物理?选修3-2”中是这样说的:“产生动生电动势的导体相当于电源,其中所谓的非静电力就是洛伦兹力,”“电动势的大小等于移动单位正电荷时洛伦兹力所做的功。” 该表述中的错误之处是:非静电力就是洛伦兹力,洛伦兹力做了功。 综合以上回顾可见,关于动生电动势中洛伦兹力的认识,现行教材进行了淡化处理,而部分教辅资料中则存在错误,加上部分教师对此也有模糊认识,从而导致教学中出现混乱局面,搞不清是怎么回事,教师如不及时澄清,势必影响后续知识的学习。 三、认识的澄清 1.洛伦兹力与非静电力的关系

感应电动势大小计算

感应电动势大小的计算 适用学科高中物理适用年级高中二年级适用区域安徽课时时长(分钟)60 知识点1、电磁感应产生的条件、法拉第电磁感应定律 2、导线切割磁感线感应电动势的公式 教学目标1、理解感应电动势的概念,明确感应电动势的作用。 2、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能与磁通量的变化相区别。 3、理解感应电动势的大小与磁通变化率的关系,掌握法拉第电磁感应定律及应用。 4、知道公式θ是如何推导出的,知道它只适用于导体切 割磁感线运动的情况。会用它解答有关的问题。 5、通过法拉第电磁感应定律的建立,进一步揭示电与磁的关系,培养学生空间思维能力和通过观察、实验寻找物理规律的能力。 教学重点理解感应电动势的大小与磁通变化率的关系,掌握法拉第电磁感应定律及应用 教学难点法拉第电磁感应定律及应用 教学过程 一、复习预习 1、复习楞次定律; 2、复习感应电流产生的条件; 3、通过感应电流方向的判断。 二、知识讲解 (一)、感应电动势 在电磁感应现象中产生的电动势叫感应电动势. 注意:(1)不管电路是否闭合,只要穿过电路的磁通量发生变化都产生感应电动势;(2)

产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源的内阻;(3)要产生感应电流,电路还必须闭合,感应电流的大小不仅与感应电动势的大小有关,还与闭合电路的电阻有关. (二)、法拉第电磁感应定律 1.内容:回路中感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比. 2.公式t ??Φ (1 1 ) 式中n 为线圈匝数,t ??Φ 称磁通量的变化率. 注意它与磁通量Φ和磁通量变化量ΔΦ的区别. 说明:(1)若B 不变,线圈面积S 变化,则t S ??. (2)若S 不变,磁感应强度B 变化,则t B ??. (三)、运动导体做切割磁感线运动时,产生感应电动势的大小,其中v 为导体垂直切割磁感线的速度,L 是导体垂直于磁场方向的有效长度. 四、转动产生感应电动势 1.导体棒(长为L )在磁感应强度为B 的匀强磁场中匀速转动(角速度为ω时),导体棒产生感应电动势. ??? ??? ??? -===)(212102 2212 L L B E L B E E ωω以任意点为轴时以端点为轴时以中点为轴时 2.矩形线圈(面积为S )在匀强磁场B 中以角速度ω绕线圈平面内的任意轴匀速转动,产生的感应电动势ωθ,θ为线圈平面与磁感线方向的夹角.该结论与线圈的形状和转轴具体位置无关(但是轴必须与B 垂直). 考点1: 严格区别磁通量Φ、磁通量的变化量ΔΦ及磁通量的变化率t ??Φ 磁通量Φ表示穿过一平面的磁感线条数,磁通量的变化量ΔΦ=Φ2-Φ1,表示磁通量变化的 多少,磁通量的变化率t ??Φ表示磁通量变化的快慢.Φ大,ΔΦ及t ??Φ不一定大;t ??Φ 大, Φ及ΔΦ也不一定大.它们的区别类似于力学中的v 、Δv 及t v ??的区别. 考点2: 对t ??Φ 的理解 1.公式t ??Φ 计算的是在Δt 时间内的平均电动势;公式中的v 代入瞬时速度,则E 为瞬时电 动势;v 代入平均速度,则E 为平均电动势.这样在计算感应电动势时,就要审清题意是求平均电动势还是求瞬时电动势,以便正确地选用公式.

感应电动势的计算公式

高中物理中关于感应电动势的计算公式有两个:E=△φ/△t和E= BLvsinθ。对于这两个公式的真正物理含义及适用范围,有些学生模糊不清。现就这一知识点做如下阐述。 (一)关于E=△φ/△t 严格地说,E=△φ/△t不能确切反映法拉第电磁感应定律的物理含义。教材中关于法拉第电磁感应定律是这样阐述的:电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。而表达式△φ/△t所表示的物理意义应为:磁通变化量与发生此变化所用时间的比值,这与磁通变化率是不能等同的,只有在△t →0时,△φ/△t的物理意义才是磁通量的变化率。由于中学阶段没有涉及微积分,故教材用E=△φ/△t 来表示法拉第电磁感应定律是完全可以的。但必须清楚:用公式E=△φ/△t求得的感应电动势只能是一个平均值,而不是瞬时值。因为△和△t 都是某一时间段内的对应量而不是某一时刻的对应量,所以直接用此公式求得的E为△t时间内产生的感应电动势的平均值。 (二)关于E=BLvsinθ 公式E=BLvsinθ是由公式E=Δφ/Δt推导而来。此公式适用于导体在

匀强磁场中切割磁力线而产生感应电动势的情况,实质是由于导体的相对磁力线运动(切割磁力线),使回路所围面积发生变化,使得通过回路的磁通量发生变化从而产生感应电动势。可以认为公式E=BLvsinθ 所表示的物理意义是法拉第电磁感应定律的一种特殊情况。用此公式求得的E可为平均值也可为瞬时值:若v为某时间段内的平均速度,则求得的E为相应时间段内的平均感应电动势;若v为某时刻的瞬时速度,则求得的E为相应时刻的瞬时感应电动势。一般用此公式来计算瞬时感应电动势。 (三)例题分析 如图1,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r, 导轨的端点P、Q用电阻可忽略的导线相连,两道轨间距为L。有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt ( k为常数,且k>0),一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直。在t=0时刻,金属导轨紧靠P、Q端,在外力作用下以大小为a的恒定加速度从静止开始向导轨的另一端滑动,求在t=T时刻回路中的感应电动势大小。 1.易错解法1:t=0时穿过回路的磁通量:φ1=0

动生电动势和感生电动势

§6-2 动生电动势和感生电动势 动生电动势:回路或其一部分在磁场中的相对运动所产生的感应电动势。 感生电动势:仅由磁场的变化而产生的感应电动势。 一 动生电动势 图6 - 5 动生电动势 动生电动势的产生可以用洛伦兹力来解释。 长为l 的导体棒与导轨构成矩形回路abcd 平放在纸面内,均匀磁场B 垂直纸面向里。当导体棒ab 以速度v 沿导轨向右滑动时,导体棒内自由电子也以速度v 随之一起向右运动。每个自由电子受到的洛伦兹力为 B v F ?-)(=e , 方向从b 指向a ,在其作用下自由电子向下运动。 如果导轨是导体,在回路中将形成沿着abcd 逆时针方向的电流。如果导轨是绝缘体,则洛伦兹力将使自由电子在a 端累积,从而使a 端带负电,b 端带正电,在ab 棒上产生自上而下的静电场。当作用在自由电子上的静电力与洛伦兹力大小相等时达到平衡,ab 间电压达到稳定值,b 端电势比a 端高。这一段运动导体相当于一个电源,它的非静电力就是洛伦兹力。 电动势定义为单位正电荷从负极通过电源内部移到正极的过程中,非静电力K 所作的功,即 B v F K ?=-= e . 动生电动势为 ε ??+ -??=?= l B v l K d )(d b a . (6.4) 均匀磁场情况:若v ⊥ B , 则有ε = B l v ;若导体顺着磁场方向运动,v // B ,则有 v ? B = 0,没有动生电动势产生。因此,可以形象地说,只有当导线切割磁感应线而运动时,才产生动生电动势。 普遍情况:在任意的恒定磁场中,一个任意形状的导线线圈L (闭合的或不闭合的)

在运动或发生形变时,各个线元d l 的速度v 的大小和方向都可能是不同的。这时,在整个线圈L 中产生的动生电动势为 ε l B v d )() (??= ?L . (6.5) 图6 - 6 洛伦兹力不作功 洛伦兹力对电荷不作功:洛伦兹力总是垂直于电荷的运动速度,即v ⊥F v ,因此洛伦兹力对电荷不作功。然而,当导体棒与导轨构成回路时会有感应电流出现,这时感应电动势却是要作功的。 感应电动势作功能量的来源:在运动导体中的自由电子不但具有导体本身的运动速度v ,而且还具有相对于导体的定向运动速度u ,与此相应的洛伦兹力u ⊥F u . 自由电子所受到的总的洛伦兹力为 B v u F ?+-)(= e v u F F +=, 它与合成速度v u +垂直,总的洛伦兹力不对电子作功,即 0)(=+?v u F . 利用0=?v F v 和0=?u F u ,由上式可得 )(v u F +?0)()(=?+?=+?+=v F u F v u F F u v u v , 或 u F v F ?=?-v u . 实际上,为了使导体棒能够在磁场中以速度v 匀速运动,必须施加外力F 0,以克服洛伦兹力的一个分力u =F e -?u B . 利用上式的结果可以看到,F 0克服u F 所作的功为 u F v F v F ??-?v u ==0. 外力克服洛伦兹力的一个分量u F 所作的功0?F v ,通过洛伦兹力的另一个分量v F 对电子的定向运动作了正功v ?F u ,从而全部转化成了感应电流的能量。因此,洛伦兹力并不提供能量,而只是传递能量。洛伦兹力在这里起了能量转化作用,其前提是运动物体中必须有能够自由移动的电荷。

4关于动生电动势中洛伦兹力的在认识

感生电动势和动生电动势问题探讨 物理科郑生 人教版高中物理教材“选修3-2第四章第5节电磁感应现象的两类情况”中,讲述了感生电动势和动生电动势问题,在讲到动生电动势中的非静电力问题时,讲了这样一句话:“非静电力与洛伦兹力有关”,这句话讲得很含糊,到底非静电力是不是洛伦兹力,如果不是,那么非静电力又是什么力?教材未作进一步阐述,笔者查阅与教材相配套的教师教学用书后发现,教材这样处理“主要是为了降低难度”,这是可以理解的,然而,这却导致了学生对这一问题产生了疑惑,搞不清非静电力是什么力,从而也搞不清动生电动势是如何产生的、非静电力是如何做功的、棒中能量是如何转化的、安培力与洛伦兹力之间是什么关系等问题。针对目前的现状,笔者认为有必要对相关问题进行深入探讨。 本文先回顾相关内容,再澄清错误认识。 如图所示,水平放置的导体框架,宽L=0.50m ,接有电阻R=0.20Ω,匀强磁场垂直框架平 面向里,磁感应强度B=0.40T.一导体棒ab 垂直框边跨放在框架上,并能无摩擦地在框架上滑动,框架和导体ab 的电阻均不计.当ab 以v=4.0m/s 的速度向右匀速滑动时,求: (1)ab 棒中产生的感应电动势大小; (2)维持导体棒ab 做匀速运动的外力F 的大小;υ 1 F 1=q υ1B F 2=q υ2B υ2 υ1F 1=q υ1B F 2=q υ2B υ2F 合F 外

υ1 F 1=q υ1B F 2=q υ2B υ2 +++ E F 电=q E 二、内容的回顾 1.教材中的内容 教材选修3-2第四章第5节在阐述“电磁感应现象中的洛伦兹力”问题时,给出了一个栏目“思考与讨论”,内容如下: 图1如图1,导体棒在匀强磁场中运动。 (1)自由电荷会随着导体棒运动,并因此受到洛伦兹力。导体棒中自由电荷相对于纸面的运动大致沿什么方向? (2)导体棒一直运动下去,自由电荷是否总会沿着导体棒运动?为什么? (3)导体棒哪端的电势比较高? (4)如果用导线把C 、D 两端连接到磁场外的一个用电器上,导体棒中的电流是沿什么方向的? 在这一栏目之后,教材未作阐述就直接给出了结论:导体棒“相当于一个电源”,同时指出:“非静电力与洛伦兹力有关。”可见,教材中的阐述较简单。 2.某些资料中的内容 笔者翻阅了一部分教辅资料后发现,关于动生电动势中洛伦兹力的认识有错误,不妨列举两例: (1)在“创新方案?高中新课标同步创新课堂?物理(配人教版选修3-2)”中是这样说的:“导体在磁场中做切割磁感线运动时产生的感应电动势叫动生电动势,它是由于导体中自由电子受到洛伦兹力作用而引起的,使自由电子做定向移动的非静电力就是洛伦兹力。” 该表述中的错误之处是:非静电力就是洛伦兹力。 (2)在“教材解析?高中物理?选修3-2”中是这样说的:“产生动生电动势的导体相当于电源,其中所谓的非静电力就是洛伦兹力,”“电动势的大小等于移动单位正电荷时洛伦兹力所做的功。” 该表述中的错误之处是:非静电力就是洛伦兹力,洛伦兹力做了功。 综合以上回顾可见,关于动生电动势中洛伦兹力的认识,现行教材进行了淡化处理,而部分教辅资料中则存在错误,加上部分教师对此也有模糊认识,从而导致教学中出现混乱局面,搞不清是怎么回事,教师如不及时澄清,势必影响后续知识的学习。 三、认识的澄清 1.洛伦兹力与非静电力的关系 -----F 外

最新感生电动势和动生电动势

第五节 感生电动势和动生电动势 (一)知识与技能 1.知道感生电场。 2.知道感生电动势和动生电动势及其区别与联系。 (二)过程与方法 通过同学们之间的讨论、研究增强对两种电动势的认知深度,同时提高学习物理的兴趣。 (三)情感、态度与价值观 通过对相应物理学史的了解,培养热爱科学、尊重知识的良好品德。 教学重点 感生电动势与动生电动势的概念。 教学难点 对感生电动势与动生电动势实质的理解。 教学方法 讨论法,讲练结合法 教学用具: 计算机,投影仪。 教学过程 (一)引入新课 教师:我们在恒定电流以章中学过电源和电动势。大家回顾一下,什么是电源?什么是电动势? 学生甲:电源是通过非静电力做功把其他形式能转化为电能的装置。 学生乙:如果电源移送电荷q 时非静电力所做的功为W ,那么W 与q 的比值q W ,叫做电源的电动势。用E 表示电动势,则:q W E 教师:同学们回答得很好。 教师:电源有好多种,比如干电池、手摇发电机等。请分别说出这些电源中的非静电力

作用和能量转化情况。 学生:干电池中的非静电力是化学作用,把化学能转化为电能;手摇发电机的非静电力是电磁作用,把机械能转化为电能。 教师:不同的电源,非静电力可能不同,但从能量转化的角度看,他们所起的作用是相同的,都是把其他形式能转化为电能。从这个角度看,电源的电动势所描述的物理意义是什么?请举例说明。 学生:电动势描述了电源把其他形式能转化为电能的本领,即表征非静电力对自由电荷做功的本领。不如,干电池的电动势是1.5V,表示把1C正电荷从电源负极搬到正极,非静电力做功1.5 J,而蓄电池电动势是2.0V,表示把1C正电荷从电源负极搬到正极,非静电力做功2.0 J,我们说蓄电池把化学能转化为电能的本领比干电池大。 教师:同学们说得很好。 教师:在电磁感应现象中,要产生电流,必须有感应电动势。这种情况下,哪一种作用扮演了非静电力的角色呢?下面我们就来学习相关的知识。 (二)进行新课 1、感应电场与感生电动势 教师:投影教材图4.5-1,穿过闭会回路的磁场增强,在回 路中产生感应电流。是什么力充当非静电力使得自由电荷发生 定向运动呢?英国物理学家麦克斯韦认为,磁场变化时在空间 激发出一种电场,这种电场对自由电荷产生了力的作用,使自由电荷运动起来,形成了电流,或者说产生了电动势。这种由于磁场的变化而激发的电场叫感生电场。感生电场对自由电荷的作用力充当了非静电力。由感生电场产生的感应电动势,叫做感生电动势。 教师:感生电场的方向应如何判断? 提示:大家回想一下,感应电流的方向如何判断?电流的方向与电荷移动的方向有何关系? 学生:感应电流的方向用楞次定律判定。电流的方向与正电荷移动的方向相同。感生电场的方向与正电荷受力的方向相同,因此,感生电场的方向也可以用楞次定律判定。 教师:若导体中的自由电荷是负电荷,能否用楞次定律判定? 学生:能。因为负电荷的运动可以等效为正电荷在反方向上的运动。 教师:下面通过例题看一下这方面的应用。

2019-2020年《感生电动势和动生电动势》教学设计WORD版

2019-2020年《感生电动势和动生电动势》教学设计WORD 版 (一)知识与技能 1.知道感生电场。 2.知道感生电动势和动生电动势及其区别与联系。 (二)过程与方法 通过同学们之间的讨论、研究增强对两种电动势的认知深度,同时提高学习物理的兴趣。 (三)情感、态度与价值观 通过对相应物理学史的了解,培养热爱科学、尊重知识的良好品德。 教学重点 感生电动势与动生电动势的概念。 教学难点 对感生电动势与动生电动势实质的理解。 教学方法 讨论法,讲练结合法 教学用具: 计算机,投影仪。 教学过程 (一)引入新课 教师:我们在恒定电流以章中学过电源和电动势。大家回顾一下,什么是电源?什么是电动势?

学生甲:电源是通过非静电力做功把其他形式能转化为电能的装置。 学生乙:如果电源移送电荷q 时非静电力所做的功为W ,那么W 与q 的比值q W ,叫做电源的电动势。用E 表示电动势,则:q W E 教师:同学们回答得很好。 教师:电源有好多种,比如干电池、手摇发电机等。请分别说出这些电源中的非静电力作用和能量转化情况。 学生:干电池中的非静电力是化学作用,把化学能转化为电能;手摇发电机的非静电力是电磁作用,把机械能转化为电能。 教师:不同的电源,非静电力可能不同,但从能量转化的角度看,他们所起的作用是相同的,都是把其他形式能转化为电能。从这个角度看,电源的电动势所描述的物理意义是什么?请举例说明。 学生:电动势描述了电源把其他形式能转化为电能的本领,即表征非静电力对自由电荷做功的本领。不如,干电池的电动势是1.5V ,表示把1C 正电荷从电源负极搬到正极,非静电力做功1.5 J ,而蓄电池电动势是2.0V ,表示把1C 正电荷从电源负极搬到正极,非静电力做功2.0 J ,我们说蓄电池把化学能转化为电能的本领比干电池大。 教师:同学们说得很好。 教师:在电磁感应现象中,要产生电流,必须有感应电动势。这种情况下,哪一种作用扮演了非静电力的角色呢?下面我们就来学习相关的知 识。 (二)进行新课 1、感应电场与感生电动势 教师:投影教材图4.5-1,穿过闭会回路的磁场增强,在回路中产生感应电流。是什么力充当非静电力使得自由电荷发生

高中物理《感应电动势两个公式的区别与联系》精讲精练

第7点 感应电动势两个公式的区别与联系 应用E =n ΔΦΔt 或E =BLv 求感应电动势是一个重难点内容,在解题时若能合理选取公式,将为解题带来极大的便利.弄清两个公式的区别和联系是突破这一难点的关键. 1.研究对象不同:E =n ΔΦΔt 是一个回路,E =BLv 是一段直导线(或能等效为直导线). 2.适用范围不同:E =n ΔΦΔt 具有普遍性,无论什么方式引起Φ的变化都适用;而E =BLv 只适用于一段导线切割磁感线的情况. 3.条件不同:E =n ΔΦΔt 中不一定是匀强磁场;E =BLv 只适用于匀强磁场. 4.物理意义不同:E =n ΔΦΔt 求解的是Δt 时间内的平均感应电动势;E =BLv 既能求导体做切割磁感线运动的平均感应电动势(v 为平均速度),也能求瞬时感应电动势(v 为瞬时速度). 特别提醒 (1)Φ、ΔΦ、ΔΦΔt 的大小与线圈的匝数n 无关. (2)公式E =n ΔΦΔt 是求解回路某段时间内平均电动势的最佳选择. 特例:通过回路截面的电荷量q =I Δt =nΔΦΔtR Δt =nΔΦR . 对点例题 如图1所示,半径为a 的圆形区域内有匀强磁场,磁感应强度B =0.2 T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4 m ,b =0.6 m ,金属环上分别接有灯泡L1、L2,一金属棒MN 与金属环接触良好,棒与环的电阻均不计. 图1 (1)若棒以5 m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径的瞬间,MN 中的感应电动势; (2)撤去中间的金属棒MN ,将右边的半圆环以OO′为轴向上翻转90°,若此后磁场随时间均 匀变化,其变化率为ΔB Δt =4π T/s ,求此时的感应电动势. 解题指导 (1)若棒以5 m/s 的速率在环上向右匀速滑动,棒滑过圆环直径的瞬间: E1=B·2a·v =0.2×0.8×5 V =0.8 V

专题讲解_感生与动生电动势同时存在的情况

感生电动势与动生电动势的比较 感生与动生电动势同时存在的情况 例1(2003卷).如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r0=0.10Ω/m,导轨的端点P、Q用电阻可以忽略的导线相连,两导轨间的距离l=0.20m.有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt,比例系数k=0.020T/s.一电阻不计的金属杆可在导轨上无摩擦低滑动,在滑动过程中保持与导轨垂直.在t=0时刻,金属杆紧靠在P、Q端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0s时金属杆所受的安培力. 例2.如图所示,两根完全相同的光滑金属导轨OP、OQ固定在水平桌面上,导轨间的夹角为θ=74°,导轨单位长度的电阻为r0=0.10Ω/m.导轨所在空间有垂直于桌面向下的匀强磁场,且磁场随时间变化,磁场的磁感应强度B与时间t的关系为B=k/t,其中比例系数k=2T?s.将电阻不计的金属杆MN放置在水平桌面上,在外力作用下,t=0时刻金属杆以恒定速度v=2m/s 从O点开始向右滑动.在滑动过程中保持MN垂直于两导轨间夹角的平分线,且与导轨接触良好.(已知导轨和金属杆均足够长,sin37°=0.6,cos37°=0.8) 求在t=6.0s时,金属杆MN所受安培力的大小。

练习1.(2016全国卷三卷).如图,两条相距l 的光滑平行金属导轨位于同一水平面(纸面),其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求: (1)在t =0到t =t 0时间间隔,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小. 练习2.如图(a )所示,一端封闭的两条足够长平行光滑导轨固定在水平面上,相距L ,其中宽为L 的abdc 区域无磁场,cd 右段区域存在匀强磁场,磁感应强度为B 0,磁场方向垂直于水平面向上;ab 左段区域存在宽为L 的均匀分布但随时间线性变化的磁场B ,如图(b )所示,磁场方向垂直水平面向下。一质量为m 的金属棒ab ,在t =0的时刻从边界ab 开始以某速度向右匀速运动,经时间3/t 0运动到cd 处。设金属棒在回路中的电阻为R ,导轨电阻不计。求: (1)求金属棒从边界ab 运动到cd 的过程中回路中感应电流产生的焦耳热量Q; (2)经分析可知金属棒刚进入cd 右段的磁场时做减速运动,求金属棒在该区域克服安培力做的功W 。 V 0 B B 0 b a d c L L L (a ) (b) t t B 2B 0 B 0

高中阶段推导动生电动势的四种方法辨析

高中阶段推导动生电动势的四种方法辨析 山东省邹城市第一中学物理组 陈霞(273500) 一、根据法拉第电磁感应定律推导 若导轨间距为l ,运动速度为v ,匀强磁场的磁感应强 度为B ,B 、l 、v 两两垂直,如图1所示,根据法拉第电磁感应定律Blv t t Blv t S B t E =??=???=??Φ=。 二、根据洛仑兹力与电场力平衡来推导 在磁感应强度为B 的匀强磁场中,直导线ab 以垂直磁场的速度v 匀速运动,导体中的自由电子也同样在磁场中做定向运动,因此会受到洛仑兹力的作用, evB F =洛,方向竖直向下,使电子向导线的b 端积聚,同时使a 端显出正电性, 从而产生一个向下的电场。当电场力与洛仑兹力达到平衡时,电荷停止积累,在a 、b 两端形成稳定的动生电动势。设此时ab 间的电势差为U ,则有eU evB U Blv l =?=。如果用导线将两端连起来,就产生了电流,运动的导线就是电源,洛仑兹力不断的把自由电子从电源的正极拉到负极,使电路里产生稳定持续的电流,洛仑兹力就是非静电力,U Blv =中的U 就是感应电动势E ,即E Blv =。 三、根据能量守恒定律推导 如图2所示,自由电荷随导体运动的速度为1v ,受到的洛 仑兹力为B ev F 11=,自由电子沿导体做定向移动的速度为2v ,受到的洛仑兹力B ev F 22=。1F 与2v 同向,做正功,2F 与1v 反向,做负功,但电子的合速度为v ,洛仑兹力的合力为evB F =,F 垂直v ,所以洛仑兹力总的不做功,即洛仑兹力并不提供能量,1F 做的正功与2F 做的负功,正好抵消。 1F 做正功使自由电子沿导体定向运动产生电能,2F 做负功,使自由电子沿导体运动方向的速度减小。从大量自由电子的宏观表现来看,阻力2F 的宏观表现就是安培力,外力必须克服安培力做功将其他形式的能量转化为电能。洛仑兹力起到能量传递的作用,并没有对外输出能量,这与洛仑兹力永不作功并不矛盾! 当导体棒匀速运动时,回路中的电功率为P EI =,克服安培力做功的功率为× × × × × × × × × × × 图1 图2

高中物理动生电动势和感生电动势

动生电动势和感生电动势 法拉第电磁感应定律:只要穿过回路的磁通量发生了变化,在回路中就会有感应电动势产生。而实际上,引起磁通量变化的原因不外乎两条:其一是回路相对于磁场有运动;其二是回路在磁场中虽无相对运动,但是磁场在空间的分布是随时间变化的,我们将前一原因产生的感应电动势称为动生电动势,而后一原因产生的感应电动势称为感生电动势。 注意:动生电动势和感生电动势的名称也是一个相对的概念,因为在不同的惯性系中,对同一个电磁感应过程的理解不同: (1)设观察者甲随磁铁一起向左运动:线圈中的自由电子相对磁铁运动,受洛仑兹力作用,作为线圈中产生感应电流和感应电动势的原因。-动生电动势。 (2)设观察者乙相对线圈静止:线圈中的自由电子静止不动,不受磁场力作用。产生感应电流和感应电动势的原因是运动磁铁(变化磁场)在空间产生一个感应(涡旋)电场,电场力驱动使线圈中电荷定向运动形成电流。-感生电动势 一、动生电动势 导体或导体回路在磁场中运动而产生的电动势称为动生电动势。 动生电动势的来源: 如 图,运动导体内每个电子受到方向向上的洛仑兹力为: ;正负电荷积累在导体内建立电场 ;当 时达到动态平衡,不再有宏观定向运动,则导体 ab 相当一个电源,a 为负极(低电势),b 为正极(高电势),洛仑兹力 就是非静电力。 可以使用法拉第定律计算动生电动势:对于整体或局部在恒定磁场中运动的闭合回路,先求出该回路的磁通F 与t 的关系,再将对t 求导,即可求出动生电动势的大小。 (2)动生电动势的方向可由楞次定律确定。 二、感生电动势 处在 磁场中的静止导体回路,仅仅由磁场随时间变化而产生的感应电动势,称为感生电动势。 感生电场:变化的磁场在其周围空间激发一种电场,称之为感生电场。而产生感生电动势的非静电场正是感生电场。 感生电动势: 回路中磁通量的变化仅由磁场变化引起,则电动势为感生电动势 .若闭合回路是静止的,它所围的面积S 也不随时间变化。 感生电场与变化磁场之间的关系: (1)变化的磁场将在其周围激发涡旋状的感生电场,电场线是一系列的闭合线。 (2)感生电场的性质不同于静电场。 静电场 感生电场 场源 正负电荷 变化的磁场 力线 起源于正电荷,终止于负电荷 不闭合曲线 作用力 法拉第电磁感应定律 一、1、关于表达式t n E ??=φ 【公式在应用时容易漏掉匝数n ,变化过程中磁场方向改变的情况容易出错,并且感应电动势E 与φ、φ?、 t ??φ的关系容易混淆不清。】 2、应用法拉第电磁感应定律的三种特殊情况:(1)E=Blv, (2)ω2 2 1Bl E = ,(3)E=nBs ωsin θ(或E=nBs ωcos θ) 二、1、φ、φ?、 t ??φ同v 、△v 、 t v ??一样都是容易混淆的物理量

同时存在动生电动势和感生电动势问题方法例析(可打印修改)

同时存在动生电动势和感生电动势问题方法例析 一、磁感应强度按B=kt 规律变化 例1:如图1所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r 0=0.10Ω/m,导轨的端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离=0.20m 。有l 随时间变化的匀强磁场垂直于桌面,已知磁感强度B 与时间t 的关系为B =kt ,比例系数k =0.020T/s ,一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直,在t =0时刻,金属杆紧靠在P 、Q 端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0s 时金属杆所受的安培力。 分析和解::以表示金属杆运动的加速度,在时刻, a t 金属杆的位移: ①22 1at L =回路电阻: ② 02Lr R =解法一:求磁感应强度的变化率,需要将感生电动势和动生电动势叠加 由图2据(斜率)k t B =??=于kt B 金属杆的速度: ③ at v =回路的面积: ④ Ll S =回路的电动势等于感生电动势与动生电动势的代数和 ⑤Blv t B S +??=ε感应电流: ⑥ R i ε =作用于杆的安培力: ⑦ Bli F =解以上诸式得 ,代入数据为t r l k F 0 2 2123=N F 31044.1-?=解法二:求磁通量的变化率(勿须再求感生电动势)t 时刻的磁通量:3 22 121klat at ktl BlL =?==?磁通量的变化量:)(2121213132313212t t kla klat klat -=-= -=????感应电动势:)(2 121222*********t t t t kla t t t t kla t ++=--=??=?ε在上式中当klL klat t t t t 32 3 于于于0221====→?ε安培力:.t r l k Lr klL ktl R ktl Bli F 02 202323====ε 代入数据,与解法一所得结果相同 二、磁感应强度按 B=k/t 规律变化

感生电动势的分析

感生电动势的分析 文/占幸儒 感应电动势是由于通过闭合导体回路的磁通量发生变化而产生的.而导致磁通量变化的方式有两种,所以感应电动势可分为两种类型:一是磁场不变,导体在磁场中运动;二是导体不动磁场在变化.由前一种原因产生的感应电动势称为动生电动势,后一种原因产生的感应电动势称为感生电动势(现行教材对这两种电动势未作区分).感生电动势是由于变化的磁场在它周围所激发的电场(涡旋电场)作用于导体中的自由电子而产生的.它的大小等于作用于单位电荷绕导体回路一周涡旋电场力所做的功,即=∮E·dl.需注意的是涡旋电场与静电场不同,它对电荷做功是与路径有关的,由此产生的感生电动势是分布在整个导体回路的.由于高中知识的局限,学生对涡旋电场的特点以及感生电动势的起因认识不足,因此在学习和应用中对相应的一些问题感到似是而非,对于感生电动势在概念上的理解和计算出错较多.本文将通过对以下几例的分析,说明在这一内容的教学中应注意的一些问题. 例1如图1所示,两个正方形导线框1、2边长都是L,两个线框的一对对角上分别接有短电阻丝(图中用粗黑线表示), 图1 其阻值r 1=r 1 ′=r 2 =r 2 ′=r,线框电阻不计.两框交叠放在水平面上, 对应边互相平行,交叠点A、C位于所在边的中点,两框交叠处彼此绝缘,在两框的交叠区域内存在方向竖直向上的匀强磁场,交叠区恰好在磁场边缘内,当磁场的磁感强度从零均匀增加时,即B=kt(k为常量),求: (1)通过电阻r 1和r 2 的电流I 1 和I 2 的大小和方向.以及线框两边中点 A、C间的电压U AC . (2)若交叠处导通,通过r 1和r 2 的电流I 1 ′和I 2 ′又如何? 解析(1)根据楞次定律,可知两线框中感生电流的方向为顺时针方向.由于交叠处彼此绝缘,对每一个正方形线框来说,其中的磁场面积均为交叠区域的面积.如图2所示,每个线框所产生的感生电动势为 =ΔΦ/Δ t=(ΔB/Δ t )S 小 =kL2/4,

从动生电动势的产生看磁场中能量转换及安培力与洛伦兹力的关系

从动生电动势的产生看磁场中能量转换及安培力与洛伦兹力的关系 摘要:本文从引起动生电动势的非静电力开始,通过做功分析磁场中能量转换和安培力与洛伦兹力的关系。 关键词:动生电动势;能量;洛伦兹力;做功;霍尔电场在高中物理《磁场》和《电磁感应》两章的学习中,我们常常会遇到这样的问题:磁场对运动电荷有洛伦兹力的作用,但洛伦兹力不做功,那么动生电动势中能量是如何转换的呢?安培力是洛伦兹力的宏观表现形式,为什么安培力在磁场中可以做功而洛伦兹力不做功呢?洛伦兹力和安培力会引起能量的转换吗?如果能,是如何进行能量的转换呢?笔者针对上述问题进行问答分析。 1 引起动生电动势的非静电力是什么? 电动势是把单位正电荷从电源负极经内部移到正极非静电力所做的功,即:ε=W非q,通过非静电力做功把其它形式的能转化为电能。导体棒在磁场中做切割磁感线运动产生的感应电动势即动生电动势,《教材》中由法拉第电磁感应定律得出其大小为:ε=BLV。但动生电动势是如何产生的呢?下面我们来分析一下。 如图1,导体棒在磁场中以速度V做切割磁感线运动,带动导体棒中正负电荷以相同速度向右运动,由左手定则知:正电荷受到向上的洛伦兹力,负电荷受到向下的洛伦兹力,从而正负电荷发生重新分布,使导体棒上端由于堆积了正电荷电势升高,下端由于堆积了负电荷电势降低,导体棒上下两端产生了电势差,储存了电能,相当于电源,如图2所示。 洛伦兹力是引起电动势的非静电力,那么,它做功了吗?如图3所示,导体棒MN以速度V匀速向右运动,电子将在洛伦兹力作用下沿导体棒加速运动向外部电路供电,电路中形成电流,设某时刻电子相对于导体棒的运动速度为u,则电子运动的合速度为V合=V 2 u 2,与导体棒成θ角;由左手定则知:电子所受洛伦兹力F=eBV合与速度V合垂直,F可以分解为水平向左的力F1和沿导体棒向下的力F2。而F2=Fsinθ=eBV合sinθ=eBV为恒力,故其把单位电荷从M端移动到N端做功为:W=F2Le=eBVLe=BLV,与由法拉第电磁感应定律推导出的表达式一致,所以引起动生电动势的非静电力是洛伦兹力沿导体棒的分力,并且该力移动电荷做功把其它形式的能转化为电能向电路供电。 2 产生动生电动势的过程中,能量是如何转换的呢?洛仑兹力做功了吗? 在产生电动势ε=BLV的过程中,移动电荷靠的是洛伦兹力的分力(非静电力F2),而洛伦兹力不做功,其能量是如何转换的呢? 如图3所示,洛伦兹力F始终与V合垂直,沿左下方,对电荷不做功。但在电荷移动的过程中, F 水平向左的分力F1与导体棒垂直,对电荷做负功,消耗其它能量(动能);F沿导体棒向下的分力F2充当非静电力对电荷做正功,将其它形式的能(导体棒的动能)转化为电能。可作如下定量计算: 对任意时刻,外力克服F1做功的功率:

相关文档
相关文档 最新文档