文档库 最新最全的文档下载
当前位置:文档库 › 线性规划问题的求解

线性规划问题的求解

线性规划问题的求解
线性规划问题的求解

线性规划问题的求解

在数学中,线性规划 (Linear Programming,简称LP) 问题是目标函数和

约束条件都是线性的最优化问题。

线性规划是最优化问题中的重要领域之一。很多运筹学中的实际问题都可以

用线性规划来表述。线性规划的某些特殊情况,例如网络流、多商品流量等问题,

都被认为非常重要,并有大量对其算法的专门研究。很多其他种类的最优化问题

算法都可以分拆成线性规划子问题,然后求得解。在历史上,由线性规划引申出

的很多概念,启发了最优化理论的核心概念,诸如“对偶”、“分解”、“凸性”

的重要性及其一般化等。我们在以前的学习过程中曾经接触过最简单的线性规划

——平面规划,但由于其是在平面上求解,形式较为简单,通过作图和平移目标

函数即可得到最优解。但是通过对平面规划的类比,我们可以得出求解线性规划

问题的一般方法——单纯形法。

几何上,线性约束条件的集合相当于一个凸包或凸集,叫做可行域。因为目

标函数亦是线性的,所以其极值点会自动成为最值点。线性目标函数亦暗示其最

优解只会出现在其可行域的边界点中。

在两种情况下线性规划问题没有最优解。其中一种是在约束条件相互矛盾的

情况下(例如x≥ 2 和x≤ 1),其可行域将会变成空集,问题没有解,因此

亦没有最优解。在这种情况下,该线性规划问题会被称之为“不可行”。

另一种情况是,约束条件的多面体可以在目标函数的方向无界(例如: max

z=x

+ 3 x2 s.t. x1≥ 0, x2≥ 0, x1 + x2≥ 10),目标函数可以取得任意大1

的数值,所以没有最优解。

除了以上两种病态的情况以外(问题通常都会受到资源的限制,如上面的例

子),最优解永远都能够在多面体的顶点中取得。但最优解未必是唯一的:有可

能出现一组最优解,覆盖多面体的一条边、一个面、甚至是整个多面体(最后一

种情况会在目标函数只能等于0的情况下出现)。

在使用单纯形法求解线性规划问题之前,我们首先需要了解什么是标准

型,这是线性规划问题中最常用也最直观的形式。

标准型包括以下三个部分:

一个需要极大化的线性函数,例如:

?以下形式的问题约束,例如:

?和非负变量,例如:

在求解线性规划问题时,我们首先根据题中给出的条件列出目标函数以及约束条件,若不是标准形式则要将其化为标准形式,具体方法便是再次引入非负变量,例如若上式中的约束条件变为小于,则需加上非负变量x3,使其转变为标准型,才可继续解线性规划问题。

将目标函数及约束条件均化为标准型后,我们就可以利用单纯形法求解线性规划问题了。单纯形法利用多面体的顶点构造一个可能的解,然后沿着多面体的边走到目标函数值更高的另一个顶点,直至到达最优解为止。虽然这个算法在实际上很有效率,在小心处理可能出现的“循环”的情况下,可以保证找到最优解。

在用单纯形法求解线性规划问题之前,必须先把线性规划问题转换成增广矩阵形式。增广矩阵形式引入非负松弛变量将不等式约束变成等式约束。问题就可以写成以下形式:

Maximize Z in:

这里x s是新引入的松弛变量, Z需要极大化的变量。但在使用单纯形法求解线性规划问题时一定要注意求解的顺序,往往要有一定的观察能力和分析能力才能得到最优的解题过程,往往能事半功倍,且不易出错。如果按照凸多边形的各个顶点来求最优解,变量、约束条件越多,凸多边形的顶点也越多,那么求解

线性规划问题所需的时间也就越多,可能还会频频出错,所以在使用单纯形法时要注意使用正确的方法,如果约束条件太多还可以使用单纯形表,这样看上去更为简洁,也避免了出错。

在工程中应用的最多是线性规划中的整数规划,因为在线性规划求解出的最优解往往是小数,但是工程中的问题大多是整数问题,小数便没有意义了。但这并不意味着线性规划问题便没有了用武之地,在线性规划基础上使用割平面法便可以求解整数规划问题。根据对所有变量的要求不同,整数线性规划又分为下列几种类型:

(1)纯整数线性规划(Pure Integer Linear Programming):指全部决策变量都必须取整数值的整数线性规划。有时也称为全整数规划。

(2)混合整数规划(Mixed Integer Linear Programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。

(3)0-1型整数规划(Zero-one Integer Linear Programming):指决策变量只能取值0或1的整数线性规划。

整数规划的割平面法是Gomory在1958年提出来的,所以又称为Gomory割平面法。该法的基本思想是在非整数解的松弛问题中逐次增加一个新约束(即割平面),它能割去原松弛问题可行域中一块不含有整数解的区域。逐次切割下去,直到切割最终所得松弛可行域的一个最优顶点(即整数解)为止。割平面法较为复杂,其在个割平面过程中并没有减少整数解的数目,但由于在学习整数规划时对割平面法了解不深,这里就不再多做延伸。

线性规划问题尤其是整数规划问题在工程中的应用十分广泛,我们应当对其多多接触了解并学会使用,这样就能在工程中很方便地求解出最优解,有很大的实践意义。

使用Excel求解线性规划问题

1.7.使用Excel求解线性规划问题 例:Case Chemicals生产两种溶剂CS-01和CS-02。这些溶剂可以用来溶解某些有毒物质。Case Chemicals的生产工厂有两个部门—混合(blending)和净化(purification)。每个部门每周工作40个小时。混合部门有5个全职(full-time)的工人和2个兼职(part-time)的工人,这两个兼职的工人每人每周工作15个小时。这些工人操作7台机器来混合某些化学物质生产溶剂。每1000加仑的CS-01需要2个小时去混合,同样数量的CS-02只需要1个小时去混合。产品在混合部门混合后需要去净化部门净化。净化部门有7台净化机器,并且雇了6个全职的工人和1个兼职的工人,兼职的工人每周工作10个小时。60分钟可以净化1000加仑的CS-01或500加仑的CS-02。Case Chemicals原材料供应充足,市场对CS-01的需求是供不应求,但是市场对CS-02的需求每周最多120,000加仑。据估计,每加仑CS-01可以赚$0.30,每加仑的CS-02可以赚$0.50。生产经理想要决定最优的生产计划,即应该生产每种溶剂各多少才能最大化利润? 解:(1)决策变量 x1=每周生产CS-01的数量(千加仑) x2=每周生产CS-02的数量(千加仑) (2)目标函数 最大化每周生产CS-01和CS-02的利润 Maximize 利润=CS-01利润+CS-02的利润 =300x1+500x2 Max 300x1+500x2 (3)约束条件 混合部门的总工时的约束 2x1+1x2<=5*40+2*15=230 净化部门的总工时的约束 x1+2x2<=6*40+1*10=250

线性规划问题求解

高中线性规划问题简析 何江南 数学与信息学院学科教学专业 2014级 摘要:线性规划问题是高中阶段一个比较重要的知识点,它是在学习了不等式的基础上,对不等式的应用及延伸。解决线性规划问题是沟通几何知识和代数知 识的桥梁是,数形结合思想的集中体现。高中线性规划一般考的比较简单,但类 型比较多,比较繁琐。因而高中阶段很多学生线性规划这个知识点掌握的不够好, 在考试中经常失分。本文主要针对高中阶段学生作图难的情况,总结了可行域的 画法、简单的线性规划问题的分类、以及解决一些简单线性规划问题的简便方法。 关键词:线性规划问题;作图;分类;简便方法 一、线性规划问题在中学的作用和地位 线性规划这节课是在学习了直线方程和不等式的基础上,介绍直线方程的一 个简单应用,反映了对数学知识在实际应用方面的重视.在实际生活中,经常会 遇到在一定的人力、物力、财力等资源条件下,如何精打细算巧安排的问题.用 最少的资源取得最大的效益就是线性规划研究的基本内容.中学所学的线性规划 体现了数学的工具性、应用性,同时渗透了化归、数形结合的数学思想。因此, 本节内容的学习,既是对前面所学知识的深化与拓展,又是提高学生解决实际问 题能力的一种途径,更是加强学生应用意识的良好素材;其次就是为高等数学的 学习打下基础;而且线性规划问题也经常在高考中出现。 二、线性规划问题的求解步骤 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解;有的是以应用题的形式给出,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的: (1)寻找线性约束条件,线性目标函数; (2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解。 在解此类题目时要注意,在实际问题中有些隐含的约束条件,因此在寻找约束条件的时候一定要把所有的约束条件全,还有的题目直接给出约束条件,要求求出目标函数的最优解,相对于第一类问题来说,此类问题相对简单,因为不必去找约束条件。 可行域的画法: 准确的画出可行域是求解线性规划问题的前提,画出可行域最根本的问题是确定二元一次不等式所表示的区域,确定二元一次不等式所表示的平面区域有

怎么利用EXCEL求解线性规划

利用线性回归方法求解生产计划 方法一: 1、建立数学模型: ①设变量:设生产拉盖式书桌x台,普通式书桌y台,可得最大利润 ②确定目标函数及约束条件 目标函数:y = max+ 115 P90 x 约束条件:200 x .....................⑴ +y 10≤ 20 x .....................⑵ 4≤ +y 16 128 x .....................⑶ +y 10 15≤ 220 y x ..........................⑷ ,≥ 2、在Excel中求解线性规划 ①首先,如图1所示,在Excel工作表格输入目标函数的系数、约束方程的系数和右端常数项: 图1 ②将目标方程和约束条件的对应公式输入各单元格中 F2=MMULT(B6:C6,F6:F7); F3=MMULT(B3:C3,F6:F7); F2=MMULT(B4:C4,F6:F7); F2=MMULT(B5:C5,F6:F7);

出现图2样式: 图2 线性规划问题的电子表格模型建好后,即可利用“线性规划”功能进行求解。 选择“工具”→“规划求解”出现“规划求解参数”窗口,如图3所示: 图3 在该对话框中,目标单元格选择F2,问题类型选择“最大值”,可变单元格选择F6:F7,点击“添加”按钮,弹出“添加约束条件”窗口,如图4所示: 图4

根据所建模型,共有4个约束条件,针对约束(1):20 x, +y 20 10≤ 左端“单元格所引用位置”选择F3,右端“约束值”选择D3,符号类型选择“<=”,同理继续添加约束(2)(3)(4),完成后选择“确定”,回到“规划求解参数”对话框,如5图所示: 图5 ④点击“选项”按钮,弹出“规划求解选项”对话框,选择“采用线性模型”和“假定非负”两项,如图6所示: 图6 ⑤点击“确定”→“求解”,选择“运算结果报告”“敏感性报告”“极限值报告”三项,最后点击“确定”,输出结果: 运算结果报告:

高二数学简单线性规划知识点

高二数学简单线性规划知识点 导读:我根据大家的需要整理了一份关于《高二数学简单线性规划知识点》的内容,具体内容:数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。归纳1.在同一坐标系上作出下列直线:2x+y=0;2x+y=1;2x+y=-... 数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。 归纳 1.在同一坐标系上作出下列直线: 2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo简单线性规划(1)-可行域 上的最优解2y 问题1:x 有无最大(小)值? 问题2:y 有无最大(小)值? 问题3:2x+y 有无最大(小)值? 2.作出下列不等式组的所表示的平面区域3二.提出问题 把上面两个问题综合起来: 设z=2x+y,求满足 时,求z的最大值和最小值.4y 直线L越往右平移,t随之增大. 以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小.

可以通过比较可行域边界顶点的目标函数值大小得到。 思考:还可以运用怎样的方法得到目标函数的最大、最小值?5线性规划问题:设z=2x+y,式中变量满足 下列条件: 求z的最大值与最小值。 目标函数 (线性目标函数)线性约束条件 象这样关于x,y一次不等式组的约束条件称为线性约束条件 Z=2x+y称为目标函数,(因这里目标函数为关于x,y的一次式,又称为线性目标函数6线性规划 线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 可行解:满足线性约束条件的解(x,y)叫可行解; 可行域:由所有可行解组成的集合叫做可行域; 最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。可行域2x+y=32x+y=12(1,1)(5,2)7 线性目标函数 线性约束条件 线性规划问题 任何一个满足不等式组的(x,y)可行解可行域所有的最优解 目标函数所表示的几何意义——在y轴上的截距或其相反数。8线性规划

线性规划知识复习、题型总结

线性规划 基础知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断 Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 方法二:利用规律: 1.Ax+By+C>0,当B>0时表示直线Ax+By+C=0上方(左上或右上), 当B<0时表示直线Ax+By+C=0下方(左下或右下); 2.Ax+By+C<0,当B>0时表示直线Ax+By+C=0下方(左下或右下) 当B<0时表示直线Ax+By+C=0上方(左上或右上)。 四、线性规划的有关概念: ①线性约束条件: ②线性目标函数: ③线性规划问题: ④可行解、可行域和最优解: 典型例题一--------画区域 1. 用不等式表示以)4,1(A ,)0,3(-B ,)2,2(--C 为顶点的三角形内部的平面区域. 分析:首先要将三点中的任意两点所确定的直线方程写出,然后结合图形考虑三角形内部区域应怎样表示。 解:直线AB 的斜率为:1) 3(104=---=AB k ,其方程为3+=x y . 可求得直线BC 的方程为62--=x y .直线AC 的方程为22+=x y . ABC ?的内部在不等式03>+-y x 所表示平面区域内,同时在不等式062>++y x 所表示的平面区域内,同时又在不等式022<+-y x 所表示的平面区域内(如图). 所以已知三角形内部的平面区域可由不等式组?? ???<+->++>+-022, 062,03y x y x y x 表示. 说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线. 2 画出332≤<-y x 表示的区域,并求所有的正整数解),(y x . 解:原不等式等价于???≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制条件,即求??? ??? ?≤->∈∈>>.3, 32, ,,0,0y x y z y z x y x .

使用Excel规划求解解 线性规划问题

使用Excel规划求解解线性规划问题 引言 最近,开始学习运筹学,期望通过学习后能够解决许多困扰自已的难题。 刚开始时,选了很多教材,最后以Hamdy A.Taha著的《Operations Research:An Introduction》开始学习。(该书已由人民邮电出版社出版,书名《运筹学导论-初级篇(第8版)》,不知为什么,下载链接中只有该书配套的部分习题解答,而书中所说的光盘文件找不到下载的地方,因为中译本没有配光盘,因此也就错过了许多示例文件。不知道哪位有配套光盘文件,可否共享???) 线性规划求解的基本知识 线性规划模型由3个基本部分组成: ?决策变量(variable) ?目标函数(objective) ?约束条件(constraint) 示例:营养配方问题 (问题)某农场每天至少使用800磅特殊饲料。这种特殊饲料由玉米和大豆粉配制而成,含有以下成份: 特殊饲料的营养要求是至少30%的蛋白质和至多5%的纤维。该农场希望确定每天最小成本的饲料配制。 (解答过程) 因为饲料由玉米和大豆粉配制而成,所以模型的决策变量定义为: x1=每天混合饲料中玉米的重量(磅) x2=每天混合饲料中大豆粉的重量(磅) 目标函数是使配制这种饲料的每天总成本最小,因此表示为: min z=0.3×x1+0.9×x2 模型的约束条件是饲料的日需求量和对营养成份的需求量,具体表示为: x1+x2≥800 0.09×1+0.6×2≥0.3(x1+x2) 0.02×1+0.06×2≤0.05(x1+x2) 将上述不等式化简后,完整的模型为:

min z=0.3×1+0.9×2 s.t.x1+x2≥800 0.21×1-0.3×2≤0 0.03×1-0.01×2≥0 x1,x2≥0 可以使用图解法确定最优解。下面,我们介绍使用Excel的规划求解加载项求解该模型。使用Excel规划求解解线性规划问题 步骤1安装Excel规划求解加载项 单击“Office按钮——Excel选项——加载项——(Excel加载项)转到”,出现“加载宏”对话框,如下图所示。选择“规划求解加载项”,单击“确定”。 此时,在“数据”选项卡中出现带有“规划求解”按钮的“分析”组,如下图所示。 步骤2设计电子表格 使用Excel求解线性规划问题时,电子表格是输入和输出的载体,因此设计良好的电子表格,更加易于阅读。本例的电子表格设计如下图所示:

不等式线性规划知识点梳理及经典例题及解析(良心出品必属精品)

线性规划讲义 【考纲说明】 (1)了解线性规划的意义、了解可行域的意义; (2)掌握简单的二元线性规划问题的解法. (3)巩固图解法求线性目标函数的最大、最小值的方法; (4)会用画网格的方法求解整数线性规划问题. (5)培养学生的数学应用意识和解决问题的能力. 【知识梳理】 简单的线性规划问题 一、知识点 1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数. 2.可行域:约束条件所表示的平面区域称为可行域. 3. 整点:坐标为整数的点叫做整点. 4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决. 5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二、疑难知识导析 线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给

一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 1.对于不含边界的区域,要将边界画成虚线. 2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验. 3. 平移直线y=-kx+P时,直线必须经过可行域. 4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点. 5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解. 积储知识: 一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=0 2. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<0 3. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>0

简单的线性规划问题附答案)

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 知识点二 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b ,当z 变化时,方程表 示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?

整理全面《高中数学知识点归纳总结》

整理全面《高中数学知识点归纳总结》

教师版高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数 选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向 量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、 和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位 置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用

高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

简单的线性规划问题 【知识概述】 线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题. 解决线性规划的数学问题我们要注意一下几点 1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题; 2.解决线性规划问题需要经历两个基本的解题环节 (1)作出平面区域;(直线定”界”,特“点”定侧); (2)求目标函数的最值. (3)求目标函数z=ax+by最值的两种类型: ①0 b>时,截距最大(小),z的值最大(小); ②0 b>时,截距最大(小),z的值最小(大); 【学前诊断】 1.[难度] 易 满足线性约束条件 23, 23, 0, x y x y x y +≤ ? ?+≤ ? ? ≥ ? ?≥ ? 的目标函数z x y =+的最大值是() A.1 B.3 2 C.2 D.3 2.[难度] 易 设变量,x y满足约束条件 0, 0, 220, x x y x y ≥ ? ? -≥ ? ?--≤ ? 则32 z x y =-的最大值为( ) A.0 B.2 C.4 D.6

3. [难度] 中 设1m >,在约束条件1y x y mx x y ≥??≤??+≤? 下,目标函数z x my =+的最大值小于2,则m 的取 值范围为( ) A .(1,1 B .(1)+∞ C .(1,3) D .(3,)+∞ 【经典例题】 例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =+的最大值为( ) A.5 B.4 C.1 D.8 例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =-的最大值为( ) A.4 B.3 C.2 D.1 例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥??--≤??≥≥? ,若目标函数(0,0)z abx y a b =+>>的最小 值为8,则a b +的最小值为____________. 例4. 在约束条件下0,0,,24, x y x y s x y ≥??≥??+≤??+≤?当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )

人教版高中数学【必修五】[知识点整理及重点题型梳理]_简单的线性规划问题_提高

人教版高中数学必修五 知识点梳理 重点题型(常考知识点)巩固练习【巩固练习】 简单的线性规划问题 【学习目标】 1. 了解线性规划的意义,了解线性规划的基本概念; 2. 掌握线性规划问题的图解法. 3. 能用线性规划的方法解决一些简单的实际问题,提高学生解决实际问题的能力. 【要点梳理】 要点一:线性规划的有关概念: 线性约束条件: 如果两个变量x 、y 满足一组一次不等式组,则称不等式组是变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. 线性目标函数: 关于x 、y 的一次式(,)z f x y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数. 线性规划问题: 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 可行解、可行域和最优解: 在线性规划问题中, ①满足线性约束条件的解(,)x y 叫可行解; ②由所有可行解组成的集合叫做可行域; ③使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 要点诠释:线性规划问题,就是求线性目标函数在线性约束条件下的最大值或最小值的问题. 要点二:线性规划的应用 1.线性规划也是求值的一种,是求在某种限制范围之下的最大值或最小值的问题,其关键是列出所有的限制条件,不能有遗漏的部分,如有时变量要求为正实数或自然数,其次是准确找到目标函数,如果数量关系多而杂,可以用列表等方法把关系理清. 2.线性规划的理论和方法经常被用于两类问题中:一是在人力、物力、资金等资源一定的条件下,如何使用其完成最多的任务;二是给定一项任务,如何合理安排和规划,能用最少的人力、物力、资金等资源来完成这项任务.

利用excel软件求解线性规划问题

下面我们通过一个例子来解释怎样用“规划求解”来求解数学规划问题。 例1 公司通常需要确定每月(或每周)生产计划,列出每种产品必须生产的数量。具体来说就是,产品组合问题就是要确定公司每月应该生产的每种产品的数量以使利润最大化。产品组合通常必须满足以下约束: ● 产品组合使用的资源不能超标。 ● 对每种产品的需求都是有限的。我们每月生产的产品不能超过需求的数量,因为生产过剩就是浪费(例如,易变质的药品)。 下面,我们来考虑让某医药公司的最优产品组合问题。该公司有六种可以生产的药品,相关数据如下表所示。 设该公司生产药品1~6的产量分别为126,,,x x x (磅),则最优产品组合的线性规划模型为 123456 123456123456123456max 6 5.3 5.4 4.2 3.8 1.86543 2.5 1.545003.2 2.6 1.50.80.70.316009609281041..977108410550,16j z x x x x x x x x x x x x x x x x x x x x x s t x x x x j =++++++++++≤??+++++≤??≤?≤??≤??≤?≤??≤??≥≤≤? 下面用规划求解加载宏来求解这个问题: 首先,如下如所示,在Excel 工作表内输入目标函数的系数、约束方程的系数、右端常数项;

其次,选定目标函数单元、可变单元、约束函数单元,定义目标函数、约束函数 其中,劳动力约束函数的定义公式是“=MMULT(B3:G3, J5:J10)”,原料约束函数的定义公式是“=MMULT(B4:G4,J5:J10)”,目标函数的定义公式是“MMULT(B5:G5, J5:J10)”。 注:函数MMULT(B3:G3, J5:J10)的意义是:单元区B3:G3表示的行向量与单元区J5:J10表示的列向量的内积。这一要特别注意的是,第一格单元区必须是行,第二格单元区必须是列,并且两个单元区所含的单元格个数必须相等。 最后,打开规划求解参数设定对话框设定模型 (1)(2)目标函数和可边单元的设定很简单,在此就不再赘述 (3)约束条件的设定 (3.1) 约束条件1234561234566543 2.5 1.545003.2 2.6 1.50.80.70.31600x x x x x x x x x x x x +++++≤??+++++≤? 的设定: 系数矩阵 目标函数的系数 系数矩阵右端常数 可变单元 约束函数单元 目标函数单元

线性规划单纯形法(例题)

《吉林建筑工程学院城建学院人文素质课线性规划单纯形法例题》 ? ? ??≥=+ +=+++++=?? ? ??≥≤+≤++=0 ,,,24 261553).(002max ,,0,24 261553).(2max 14.1843214213 214 321432121212 1x x x x x x x x x x t s x x x x z x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。分别用图解法和单纯形)】 (页【为初始基变量, 选择43,x x )1000(00)0010(01 )2050(12)6030(24321=?+?-==?+?-==?+?-==?+?-=σσσσ 为出基变量。为进基变量,所以选择41x x

3 /1)6/122/10(00 )0210(03 /1)3/1240(10)1200(24321-=?+-?-= =?+?-==?+?-==?+?-=σσσσ 为出基变量。 为进基变量,所以选择32x x 24 /724/528/11012/112/124/1100 021110 120124321-=?+-?-=-=-?+?-==?+?-==?+?-=)()()()(σσσσ 4 33 4341522max , )4 3,415(),(2112= +?=+===x x z x x X T T 故有:所以,最优解为

??? ??? ?≥=+ +=+=+ ++++=?????? ?≥≤+≤≤+=0,,,,18232424).(0002max ,,,0 ,182312212 ).(52max 24.185432152142315 43215432121212 1x x x x x x x x x x x x t s x x x x x z x x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。分别用图解法和单纯形)】 (页【 )000010(00001000000000100520200052300010254321=?+?+?-==?+?+?-==?+?+?-==?+?+?-==?+?+?-=σσσσσ)()()()( 为出基变量。为进基变量,所以选择42x x

用EXCEL求解线性规划

用EXCEL 求最值 华东师范大学03级教育硕士 江苏省溧阳市戴埠高级中学 潘晓春 〔摘要〕 介绍了用Excel 软件的规划求解功能解决一些常见的求最值问题的方法。主要从一元函数的最值、线性规划和二元函数的最值三个方面去进行探讨。 〔关键词〕 Excel 规划求解 最值 最值问题是生产、科学研究和日常生活中常遇到的一类特殊的数学问题,是高中数学的一个重点,它涉及到高中数学知识的各个方面,解决这类问题往往需要综合运用各种技能。Excel 软件中的规划求解功能将为这类问题的解决提供了一个很有效的方法,而且适用范围较广,具有很强的实用性。 用Excel 解线性规划,必须在Excel 系统中加载“规划求解”项目,如果没有,可以启动Excel 软件,进入Excel 用户界面,然后使用“工具”菜单下“加载宏”菜单项的“规划求解”子项,则可完成“规划求解”项的加载。 本文将从以下三个方面来介绍用Excel 中的规划求解功能进行最值的求解。 一、 一元函数的最值 求函数的最值是高中数学中的一类常见问题,也是高中数学中的一个重点和难点问题,运用Excel 中的规划求解功能能够很快捷地进行求解。 例1. 求函数y = 建立规划求解方案与求解的的步骤如下: (1)在Excel 工作中表选定B1单元中的数据作为自变量x ,在B2单元格中输入目标函数公式“=SQRT(B1*B1 -2*B1+2)+SQRT(B1*B1-10*B1+29)”; (2)选中2B ,然后进入菜单栏上的“工具”|“规划求解…”,在对话框中输入如下内容(如图1) :将“设置目标单元格”设置成“$B$2”,并设置成最小值;可变单元格设置成“$B$1”,单击求解; (3)得出如下内容(如图2):单元格$B$1的值为2.333333,单元格$B$2的值为5,所以当 2.333333x =时,()min 5f x = 运用这一方案,可以解决一元函数的的最值,也可以解决一元函数给定区间内的最值问题。 例2.求函数()12 3f x x x =+[]()1,8x ∈上的最值 建立规划求解方案与求解的的步骤如下: (1)在Excel 工作表中选定1B 单元中的数据作为自变量x ,在2B 单元格中输入目标函数 图 2 图 1

图解法和单纯形法求解线性规划问题

图解法和单纯形法求解以下线性规划问题 1.1 图解法解线性规划问题 只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下: (1)以变量x1为横坐标轴,x2为纵坐标轴,适当选取单位坐标长度建立平面坐标直 角坐标系。由变量的非负性约束性可知,满足该约束条件的解均在第一象限内。 (2)图示约束条件,找出可行域(所有约束条件共同构成的图形)。 (3)画出目标函数等值线,并确定函数增大(或减小)的方向。 (4)可行域中使目标函数达到最优的点即为最优解。 然而,由于图解法不适用于求解大规模的线性规划问题,其实用意义不大。 1.2 单纯形法解线性规划问题 它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。 单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。②若基本可行解不存在,即约束条件有矛盾,则问题无解。③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。 1.3 线性规划问题的标准化 使用单纯形法求解线性规划时,首先要化问题为标准形式

《运筹学》使用Excel求解线性规划问题

第三节 使用Excel 求解线性规划问题 利用单纯形法手工计算线性规划问题是很麻烦的。office 软件是一目前常用的软件,我们可以利用office 软件中的Excel 工作表来求解本书中的所有线性规划问题。对于大型线性规划问题,需要应用专业软件,如Matlab ,Lindo ,lingo 等,这些软件的使用这里我们不作介绍,有需要的,自己阅读有关文献资料。 用Excel 工作表求解线性规划问题,我们需要先设计一个工作表,将线性规划问题中的有关数据填入该工作表中。所需的工作表可按下列步骤操作: 步骤1 确定目标函数系数存放单元格,并在这些单元格中输入目标函数系数。 步骤2 确定决策变量存放单元格,并任意输入一组数据。 步骤3 确定约束条件中左端项系数存放单元格,并输入约束条件左端项系数。 步骤4 在约束条件左端项系数存放单元格右边的单元格中输入约束条件左端项的计算公式,计算出约束条件左端项对应于目前决策变量的函数值。 步骤5 在步骤4的数据右边输入约束条件中右端项(即常数项)。 步骤6 确定目标函数值存放单元格,并在该单元格中输入目标函数值的计算公式。 例 建立如下线性规划问题的Excell 工作表: 12 121 21212max 1502102310034120..55150,0 z x x x x x x s t x x x x =++≤??+≤??+≤??≥? 解:下表是按照上述步骤建立的线性规划问题的Excell 工作表。 其中: D4=B2*B4+C2*C4, D5=B2*B5+C2*C5 , D6=B2*B6+C2*C6, C7= B2*B1+C2*C1 。 建立了Excel 工作表后,就可以利用其中的规划求解功能求相应的线性规划问题的解。求解步骤如下: 步骤1 单击[工具]菜单中的[规划求解]命令。 步骤2 弹出[规划求解参数]对话框,在其中输入参数。置目标单元格文本框中输入目标单元格;[等于]框架中选中[最大值\最小值]单选按钮。 步骤3 设置可变单元格区域,按Ctrl 键,用鼠标进行选取,或在每选一个连续区域后,在其后输入逗号“,”。 步骤4 单击[约束]框架中的[添加]按钮。 步骤5 在弹出的[添加约束]对话框个输入约束条件. 步骤6 单击[添加]按钮、完成一个约束条件的添加。重复第5步,直到添加完所有条件 步骤7 单击[确定]按钮,返回到[规划求解参数]对话框,完成条件输入的[规划

简单线性规划-高中数学知识点讲解

简单线性规划 1.简单线性规划 【概念】 线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.我们高中阶段接触的主要是由三个二元一次不等式组限制的可行域,然后在这个可行域上面求某函数的最值或者是斜率的最值. 【例题解析】 ?+2?≤8 例:若目标函数z=x+y 中变量x,y 满足约束条件 { 0≤?≤4 . 0≤?≤3 (1)试确定可行域的面积; (2)求出该线性规划问题中所有的最优解. 解:(1)作出可行域如图:对应得区域为直角三角形ABC, 其中B(4,3),A(2,3),C(4,2), 则可行域的面积S =1 2????? = 1 2×1×2=1. (2)由z=x+y,得y=﹣x+z,则平移直线y=﹣x+z, 则由图象可知当直线经过点A(2,3)时,直线y=﹣x+z 得截距最小,此时z 最小为z=2+3=5, 当直线经过点B(4,3)时,直线y=﹣x+z 得截距最大, 此时z 最大为z=4+3=7,

1/ 5

故该线性规划问题中所有的最优解为(4,3),(2,3) 这是高中阶段接触最多的关于线性规划的题型,解这种题一律先画图,把每条直线在同一个坐标系中表示出来,然后确定所表示的可行域,也即范围;最后通过目标函数的平移去找到它的最值. 【典型例题分析】 题型一:二元一次不等式(组)表示的平面区域 典例 1:若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k 的值是() 7343 A.3B.7C.3D. 4 4 4 分析:画出平面区域,显然点(0,)在已知的平面区域内,直线系过定点(0,),结合图形寻找直线平分平 33 面区域面积的条件即可. 解答:不等式组表示的平面区域如图所示. 由于直线y=kx +44 过定点(0,).因此只有直线过AB 中点时,直线y=kx + 33 4 3 能平分平面区域. 15 因为A(1,1),B(0,4),所以AB 中点D(,). 22 当y=kx +4155 过点(,)时, 3222 = ? 2 + 4 3 ,所以k = 7 3 . 答案:A. 点评:二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域. 注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点. 题型二:求线性目标函数的最值

利用excel求解线性规划问题

利用excel 求解线性规划问题 “规划求解”示例 例1 美佳公司计划制造Ⅰ、Ⅱ两种家电产品。已知各制造一件时分别占用的设备A ,B 的台时、调试工序时间及每天可用于这两种家电的能力、各售出一件时的获利情况,如下表所示。问该公司应制造两种家电各多少件,使获取的利润为最大。 1.建立数学模型 2. 打开excel ,输入下列数据。 3、如何在工作表中设置问题条件?先设置目标单元格,即最大利润,把它放在E1单元格上,可变单元格放置计划生产Ⅰ和Ⅱ产品的件数,这里把它放在C10:D10区域。F4:F6是约束单元格,要对它们的值进行约束。单击E1,在编辑框输入如图所示的公式。 注意,表示绝对引用的美元符号,可以单击F4功能键添加。 ???????>=<=+<=+<=+=0 ,5242615 5..2max 212121 221x x x x x x x t s x x z

4、单击E4单击格式,在编辑栏上输入公式:=$C$4*$C$10+$D$4*$D$10。绝对引用单元格有一个好处,显示的单元格位置变化时,引用的数据没改变。 5、单击E5单击格式,在编辑栏上输入公式:=$C$5*$C$10+$D$5*$D$10。 6、单击E6单击格式,在编辑栏上输入公式:=$C$6*$C$10+$D$6*$D$10。 7、如何使用规划求解功能?单击工具菜单,如果看不到规划求解选项不要慌,先选加载宏。然后勾选规划求解,确定 单击数据菜单——点击“模拟分析”——

8、单击“规划求解”:指定目标单元格。一种方法是先选中目标单元格E1,单击工具---规划求解。另一种先单击工具---规划求解,再输入目标单元格名称。 输入可变单元格区域。比较快的方法是,单击折叠框,用鼠标选中可变单元格区域:$C$11:$E$11。注意勾选最大值哦。 设置目标: $E$1;点选“最大值”;设置:可变单元: $C$10:$D$10 9.设置条件不等式。单击添加,单击折叠框,选择单元格和不等号,单击关闭窗口,接着添加另一个条件。 1).单击添加:输入约束不等式X1+X2≤0 ,即在E4输入:$E$4≤$F$4 2).单击添加:输入约束不等式X1+X2≤0 ,即在E5输入:$E$5≤$F$5 2).单击添加:输入约束不等式X1+X2≤0 ,即在E6输入:$E$6≤$F$6

相关文档
相关文档 最新文档