文档库 最新最全的文档下载
当前位置:文档库 › 竞赛数学中几类不等式的解法

竞赛数学中几类不等式的解法

竞赛数学中几类不等式的解法
竞赛数学中几类不等式的解法

竞赛数学中几类不等式的解法

摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。 希望对广大喜爱竞赛数学的师生有所帮助。

关键词:排序不等式;平均值不等式;柯西不等式;切比雪夫不等式

不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用.

1.排序不等式

定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有

1211...n n n a b a b a b -+++ (倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和)

1122 ...n n a b a b a b ≤+++(顺序积和)

其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或

12...n b b b ===时成立.

(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式 1212...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到最大值

1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有

.n n k n n r k r n n a b a b a b a b +≤+ (1-1) 事实上,

()()()0n n n n n k r k n n r n r n k a b a b a b a b b b a a +-+=--≥

不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达

1122 ...n n

a b a b a b +++,这就证明了

1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.

再证不等式左端,

由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得

1211(...)n n n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++ 即 1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .

例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3

()a b c

a b c

a b c abc ++≥.

思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设a b c ≥≥,则有lg lg lg a b c ≥≥ 根据排序不等式有:

lg lg lg lg lg lg a a b b c c a b b c c a ++≥++

lg lg lg lg lg lg a a b b c c a c b a c b ++≥++ 以上两式相加,两边再分别加上 lg lg lg a a b b c c ++ 有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++

即 lg lg 3

a b c a b c

a b c abc ++≥

故 3

()a b c a b c

a b c abc ++≥ .

例2 设a,b,c R +

∈,求证:222222333

222a b b c c a a b c a b c c a b bc ca ab

+++++≤

++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明.

证明:不妨设a b c ≥≥,则 222a b c ≥≥且111

c b a

≥≥

根据排序不等式,有

222222111a b c a b c c a b a b c

++≥++ 222222111

a b c a b c b c a a b c

++≥++

两式相加除以2,得

222222222a b b c c a a b c c a b

+++++≤++

再考虑333a b c ≥≥,并且111

bc ca ab

≥≥

利用排序不等式,

333333111 a b c a b c bc ca ab ca ab bc

++≥++ 333333111

a b c a b c bc ca ab ab bc ac

++≥++

两式相加并除以2,即得

222222333

222a b b c c a a b c c a b bc ca ab

+++++≤++ 综上所述,原不等式得证.

例3 设12120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列.

求证:11

11

r s n n

n n

i j r s

r s r s a b a b r s

r s

====≥++∑∑

∑∑

. (1-2) 思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式. 证明:令 1s n

j r s b d r s

==+∑

(r=1,2,...,n )

显然 12...n d d d ≥≥≥ 因为 12...n b b b ≤≤≤ , 且

111

...(1)1

r n r n r ≤≤≤++-+ 由排序不等式 1

n

s

r s b d r s =≤+∑

又因为 12...n a a a ≤≤≤

所以 11r n n r r i r r r a d a d ==≤∑∑且111

n n

n s

r r r r s r b a a d r s ===≤+∑∑

∑(注意到r a ≥0) 故 11

1

11

r s s

r n

n

n n

n

i j j ir i r r s r s r a b b a a d r s

r s

=======++∑∑

∑∑

11111n n n

n n

s r s r r r r r s r s b a b

a d a r s r s

=====≥≥=++∑∑∑∑∑ 故 原式得证.

2.均值不等式

定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式. 其中,

121()111

...n

H n a a a =

+++,

()G n =

12...()n

a a a A n n

+++=

()Q n =分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤. 记

c = i

i a b c

=

, 则 原不等式12...n b b b n ?+++≥ 其中 12121

...(...)1n n n

b b b a a a

c =

= 取 12,,...,n x x x 使 11212123,,...,,n n n x x x

b b b x x x --=== 则 1

.n n x b x = 由排序不等式,易证

11

1221

......n n n n x x x b b b n x x x -+++=

+++≥ 下证 ()()A n Q n ≤

因为 222

212121...[(...)n n a a a a a a n

+++=+++22212131()()...()n a a a a a a +-+-++-

2222

232421()()...()...()n n n a a a a a a a a -+-+-++-++-]

2121

(...)n a a a n

+++ 所以

12...n a a a n +++≤

从上述证明知道,当且仅当12...n a a a ===时,不等式取等号. 下面证明 ()()H n G n ≤ 对n 个正数

12111

,,...,n

a a a ,应用 ()()G n H n ≤,得

12111...n a a a n +++≥即 ()()H n G n ≤(等号成立的条件是显然的).

例4已知2201,0a x y <<+=,求证:1

log ()log 28

x y a a a a +≤+.

证明:由于 01a <<,0,0x y a a >>, 有

x y a a +≥=从而

log ()log log 22

x y a a a x y

a a ++≤=+ 下证

128x y +≤ , 即 1

4

x y +≤。 又因为 2111()244x y x x x +=-=--+≤,等号在x=12(这时y=1

4

)时取得

所以 1

log ()log 28

x y a a a a +≤+ .

例5(IMO )设a,b,c 是正实数,且满足abc=1.

证明:111

(1)(1)(1)1a b c b c a -+-+-+≤

证明:令 ,,y y z

a b c x z x

===,其中x,y,z 是正实数,将原不等式变形为

()()()x y z y z x z x y xyz -+-+-+≤ (2-1) 记 ,,u x y z v y z x w z x y =-+=-+=-+,

注意到u,v,w 任意两个之和是一个正数,所以它们中间至多有一个负数. 如果恰有一个负数,那么0uvw xyz ≤<,(2-1)式成立. 如果这三个数都大于0,由算术—几何平均不等式

1

()2

x y z y z x x ≤-++-+=

y ≤

z 于是

xyz ≤

即 uvw xyz ≤,(2-1)式得证.

例6 已知12,,...,0n a a a >,且12...1n a a a +++=. 求证:

1223131211...1...1 (21)

n n n n a a a n

a a a a a a a a a n -++≥++++++++++++-.

思路分析:左边各项形式较复杂,首先将其化简为112

(1)22n

n

i i i i i

a a a ===---∑∑. 左边为和的形式,但其各项之和难与右边联系,利用算术平均大于几何平均难以求证,而左边各项

2

2i

a -可看为倒数形式,尝试用调和平均. 证明:不等式左边化为

112

(1)22n

n

i i i i i a a a ===---∑∑, 对

12222

,, (222)

a a a ---,利用()()A n H n ≥有 11

1222n i

n

i i i

i a n

a n a ==≥--∑∑ 即 222

1

1

221122122n

i

n

i i i a n n n n n n a ==-≥

==

--

-∑∑ 所以 2

111

222(1)22221n

n n

i i i i i i i a a n n n a a n ===-=-=-≥----∑∑∑21n n =

- .

3.柯西不等式

定理3 设i a ,i b R ∈(i=1,2,…n ),恒有不等式2221

1

1

.()n n n

i

i

i i i i i a b a b ===≥∑∑∑,当且仅当

12

12...n n

b b b a a a ===时,等式成立. 证明: 作关于x 的二次函数

2

2

21

1

1

()()2()n

n

n

i

i i i i i i f x a x a b x b ====-+∑∑∑

若210n

i i a ==∑,即12...n a a a ===时,显然不等式成立.

若21

0n

i i a =≠∑时,则有2221122()()()...()0n n f x a x b a x b a x b =-+-++-≥

且 2

221

1

1[2()]4()()0n n n

i i i

i i i i a b a b ===-≤∑∑∑

故 2221

1

1

.()n n

n

i

i

i i i i i a b a b ===≥∑∑∑

从上面过程看出,当且仅当

12

12...n n

b b b a a a ===时,不等式取等号. 例7 设12,,...,n x x x R +

∈,求证:2222

112

12231

......n n n n x x x x x x x x x x x -++++≥+++.

思路分析:注意到式子中的倒数关系,考虑运用柯西不等式来证明. 证明:因为12,,...,n x x x >0,故由柯西不等式,得

2222

112

231231

22

231(...)(...)

...(...)n n n n n x x x x x x x x x x x x x x x x -++++++++≥++=++++ 所以 2222

1

1212231

......n n n n x x x x x x x x x x x -++++≥+++.

例8 已知实数,,,a b c d ,e 满足222228,16a b c d e a b c d e ++++=++++=,求e 的取值

范围.

思路分析:由22222a b c d e ++++联想到应用柯西不等式. 解:因为 222222224()(1111)()a b c d a b c d +++=++++++

2(),a b c d ≥+++ 即 224(16)(8)e e -≥-,

226446416e e e -≥-+

即 25160e e -≤,所以 (516)0e e -≤, 故 605

e ≤≤

. 评述:此题十分巧妙地应用柯西不等式求最值,十分典型,它是将重要不等式应用于求最值问题的一道重要题目.

例9 123,,x x x R +∈满足22212

31x x x ++=,求312

222

123

111x x x x x x ++---的最小值. 解

:容易猜到123x x x ===

312222123

111x x x x x x ++---

取最小值2. 为了证明这一点,利用柯西不等式,得

3

3332

22111

.(1)11i i

i i i i i i x x x x x ===-≥=-∑∑∑, 只需要证明

3

321

(1)i i i x x =-≤

等价于

3

3

5

31

1

i i i i x x ==+≥∑∑ (3-1)

由几何—算术平均不等式,得

25311x x +≥=, 同理可证,

253

22x x +≥=,

2

53

33

x x

+≥=,

以上三式相加,(3-1)式得证,进而证得

3

12

222

123

111

x

x x

x x x

++

---

的最小值是

2

,当且仅当

123

x x x

===

评述:柯西不等式中的

i i

a b

∑的项i i a b如何拆成两个因式i a和i b的积,可以说是应用此

不等式的主要技巧(上例

3

32

1

(1)

i i

i

x x

=

-≤

∑,我们将32

1

i

i

x

=

∑中的2i x

表示为

的积),正因为

i i

a b可以按照我们的需要加以分解,柯西不等式的应用更为广泛.

例10试问:当且仅当实数

01

,,...,(2)

n

x x x n≥满足什么条件是,存在实数

01

,,...,

n

y y y使得

2222

012

...

n

z z z z

=+++成立,其中

k k k

z x iy

=+,i为虚数单位,k=0,1,…,n. 证明你的结论.(高中联赛,1997)

思路分析:将2222

012

...

n

z z z z

=+++成立转换到实数范围内求解。根据表达式的特点,结合

柯西不等式寻找(1,2,...,)

i

x i n

=的范围.

解:将2222

012

...

n

z z z z

=+++转化到实数范围内,即

2222

00

11

00

1

,

n n

k k

k k

n

k k

k

x x y y

x y x y

==

=

?

-=-

??

?

?=

??

∑∑

(3-2)

若存在实数

01

,,...,

n

y y y使(3-2)成立,则222

00

1

()

n

k k

k

x y x y

=

=∑.

由柯西不等式可得2222

00

11

()()

n n

k k

k k

x y x y

==

≤∑∑(3-3)

如果22

1

n

k

k

x x

=

>∑,由(3-2)可知22

1

n

k

k

y y

=

>∑,从而

2222

1

1

()()n n

k k k k x y x y ==>∑∑与 (3-3)矛盾 于是得 2

20

1

n

k k x x =≤∑ (3-4)

反之若(3-4)成立,有两种情况:

⑴220

1n

k k x x ==∑,则取k k y x =,k=0,1,2,…,n ,显然(3-2)成立.

⑵2

20

1

n

k

k x x =<∑,记2

22

10n

k k a x x ==->∑,则1,...,n x x 不全为0. 不妨设0n x ≠,

取 0,0,1,2,...,2k y k n ==-,并且取

1n n y y -==

易知(3-2)成立.

综上,所求的条件为 220

1n

k k x x =≤∑.

4.切比雪夫不等式

定理4 设12,,...,n x x x ,12,,...,n y y y 为任意两组实数,若12...n x x x ≤≤≤且12...n y y y ≤≤≤或

12...n x x x ≥≥≥且12...n y y y ≥≥≥,则

111

111()()n n n

i i i i i i i x y x y n n n ===≥∑∑∑ (4-1)

若12...n x x x ≤≤≤且12...n y y y ≥≥≥或12...n x x x ≥≥≥且12...n y y y ≤≤≤,则

111

111()()n n n

i i i i i i i x y x y n n n ===≤∑∑∑ (4-2)

当且仅当12...n x x x ===或12...n y y y ===时,(4-1)和(4-2)中的不等式成立. 证明: 设1212,,...,,,,...,n n x x x y y y 为两个有相同次序的序列,由排序不等式有

11221122......n n n n x y x y x y x y x y x y +++=+++

112212231......n n n x y x y x y x y x y x y +++≥+++ 112213242......n n n x y x y x y x y x y x y +++≥+++ …………

11221211......n n n n n x y x y x y x y x y x y -+++≥+++

把上述n 个式子相加,得 1

1

1

()()n n n

i i i i i i i n x y x y ===≥∑∑∑

上式两边同除以2

n ,得 111

111()()n n n

i i i i i i i x y x y n n n ===≥∑∑∑

等号当且仅当12...n x x x ===或12...n y y y ===时成立.

例 10 设0(1,2,...,)i a i n >=, 求证:121

21

(...)1

2

12...(...)

n n a a a a a a n

n

n a a a a a a +++≥

证明:不妨令 12...0n a a a ≥≥≥>,则 12lg lg ...lg n a a a ≥≥≥ 由切比雪夫不等式,有

11221212lg lg ...lg 1(...)(lg lg ...lg )n n

n n a a a a a a a a a a a a n +++≥++++++

即 12121

(...)1212lg(...)lg(...)

n n a a a a a a n

n

n a

a a a a +++≥ 从而证得 12121

(...)1

2

12...(...)n n a a a a a a n

n

n a a a a a a +++≥.

例11 已知1211...0,...0n n n a a a b b b -≥≥≥>≥≥≥>.

求证: 1

11

n

i

n

i i n

i i

i

i a b n a b

=

==≥∑∑∑.

证明:取,i i i i x a y b ==,则由2211...0,...0n n n a a a b b b -≥≥≥>≥≥≥>,

可知i x ,i b 满足切比雪夫不等式的条件,故

11111111

()()n n n i i i i i i i

a a n

b n n b ===≥∑∑∑

又由均值不等式,正数12,,...,n b b b 的调和平均数不大于它们的算术平均数,

1

11n

i

i n

i i

b

n n

b ==≤

∑∑.

其中等号仅在12...n b b b ===时成立.

这样就有 111

1n

i

n i

i n i i

i

i a

b n a b

===≥

∑∑∑,

即 1

11

n

i

n

i i n

i i

i

i a b n a b

=

==≥∑∑∑, 而且等号仅在12...n b b b ===时成立.

参考文献:

[1]周沛耕,王中峰.高中数学奥林匹克竞赛解题大全.山西教育出版社.2001:57-62. [2]陈传理,张同君.竞赛数学教程(第二版).高等教育出版社,2003:172-178.

[3]刘凯年.高中数学奥林匹克竞赛同步教材(综合卷).西南师大出版社,2002:221-232. [4]单尊.数学竞赛研究教程.江苏教育出版社,2004:134-144.

[5]李胜宏.新课标高中数学竞赛通用教材.浙江大学出版社,2004:123.

[6]曹瑞斌.高中数学/启东中学奥赛精题详解.南京:南京师范大学出版社.2005:167.

致谢:

经过近三个月的忙碌和工作,本次毕业论文已经接近尾声,作为一个本科生的毕业设计,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有导师的督促指导,以及一起工作的同学们的支持,想要完成论文是难以想象的. 在这里首先要感谢我的导师邓磊老师.邓老师平日里工作繁多,但在我做毕业论文的每个阶段,从查阅资料,设计

草案的确定和修改,中期检查,后期详细设计等整个过程中都给予了我悉心的指导.除了敬佩邓老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,并将积极影响我今后的学习和工作.

然后还要感谢大学四年来所有的老师,为我打下数学专业知识的基础;同时还要感谢所有的同学们,正是因为有了你们的支持和鼓励.毕业论文才会顺利完成.

最后感谢数学与统计学院和我的母校----西南大学四年来对我的大力栽培.

物理竞赛中数学习知识

物理竞赛中的数学知识 一、重要函数 1.指数函数 2.三角函数 1 -1 y=sinx -3π 2 -5π 2 -7π 2 7π 2 5π 2 3π 2 π 2 - π 2 -4π-3π-2π4π 3π 2π π -π o y x 1 -1 y=cosx -3π 2 -5π 2 -7π 2 7π 2 5π 2 3π 2 π 2 - π 2 -4π -3π -2π4π 3π 2π π -π o y x y=tanx 3π 2 π π 2 - 3π 2 -π- π 2 o y x 3.反三角函数 反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。 二、数列、极限 1.数列:按一定次序排列的一列数称为数列,数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项。 数列的一般形式可以写成

a 1,a 2,a 3,…,a n ,a (n+1),… 简记为{an }, 通项公式:数列的第N 项a n 与项的序数n 之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。 2. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。通项公式a n =a 1+(n-1)d ,前n 项和11(1) 22 n n a a n n S n na d +-= =+ 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同 一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q 表示。通项公式a n =a 1q (n-1),前n 项和11 (1)(1)11n n n a a q a q S q q q --= =≠-- 所有项和1 (1)1n a S q q =<- 3. 求和符号

历届全国初中物理竞赛(物态变化)

最近十年初中应用物理知识竞赛题分类解析专题3--物态变化 一.选择题 1. (2013全国初中应用物理知识竞赛)在严寒的冬季,小明到 滑雪场滑雪,恰逢有一块空地正在进行人工造雪。他发现造雪机在工作 过程中,不断地将水吸入,并持续地从造雪机的前方喷出“白雾”,而 在“白雾”下方,已经沉积了厚厚的一层“白雪”,如图1所示。对于 造雪机在造雪过程中,水这种物质发生的最主要的物态变化,下列说法 图1 中正确的是() A.凝华B.凝固C.升华D.液化 答案:B 解析:造雪机在造雪过程中,水这种物质发生的最主要的物态变化是凝固,选项B正确。 2.(2012全国初中应用物理知识竞赛预赛)随着人民生活水平的提高,饭桌上的菜肴日益丰富,吃饭时发现多油的菜汤与少油的菜汤相比不易冷却。这主要是因为【】A、油的导热能力比较差B、油层阻碍了热的辐射 C、油层和汤里的水易发生热交换 D、油层覆盖在汤面,阻碍了水的蒸发 答案:D 解析:多油的菜汤不易冷却的原因是油层覆盖在汤面,阻碍了水的蒸发,选项D正确。 3.(2012全国初中应用物理知识竞赛)我国不少地区把阴霾天气现象并入雾,一起作为灾害性天气,统称为“雾霾天气”。关于雾和霾的认识,下列说法中正确的是() A.霾是大量的小水滴或冰晶浮游在近地面空气层中形成的 B.雾和霾是两种不同的天气现象 C.雾是由悬浮在大气中的大量微小尘粒、烟粒或盐粒等颗粒形成的 D.雾和霾是同一个概念的两种不同说法 解析:雾是大量的小水滴或冰晶浮游在近地面空气层中形成的,霾是由悬浮在大气中的大量微小尘粒、烟粒或盐粒等颗粒形成的,雾和霾是两种不同的天气现象,选项B正确。 答案:.B 4(2011全国初中应用物理知识竞赛河南预赛)如图所示的4种物态变化中,属于放热过程的是,

高中物理竞赛知识系统整理

物理知识整理 知识点睛 一.惯性力 先思考一个问题:设有一质量为m 的小球,放在一小车光滑的水平面上,平面上除小球(小球的线度远远小于小车的横向线度)之外别无他物,即小球水平方向合外力为零。然后突然使小车向右对地作加速运动,这时小球将如何运动呢? 地面上的观察者认为:小球将静止在原地,符合牛顿第一定律; 车上的观察者觉得:小球以-a s 相对于小车作加速运动; 我们假设车上的人熟知牛顿定律,尤其对加速度一定是由力引起的印象至深,以致在任何场合下,他都强烈地要求保留这一认知,于是车上的人说:小球之所以对小车有 -a s 的加速度,是因为受到了一个指向左方的作用力,且力的大小为 - ma s ;但他同时又熟知,力是物体与物体之间的相互作用,而小球在水平方向不受其它物体的作用, 物理上把这个力命名为惯性力。 惯性力的理解 : (1) 惯性力不是物体间的相互作用。因此,没有反作用。 (2)惯性力的大小等于研究对象的质量m 与非惯性系的加速度a s 的乘积,而方向与 a s 相反,即 s a m f -=* (3)我们把牛顿运动定律成立的参考系叫惯性系,不成立的叫非惯性系,设一个参考系相对绝对空间加速度为a s ,物体受相对此参考系 加速度为a',牛顿定律可以写成:a m f F '=+* 其中F 为物理受的“真实的力”,f*为惯性力,是个“假力”。 (4)如果研究对象是刚体,则惯性力等效作用点在质心处, 说明:关于真假力,绝对空间之类的概念很诡异,这样说牛顿力学在逻辑上都是显得很不严密。所以质疑和争论的人比较多。不过笔者建议初学的时候不必较真,要能比较深刻的认识这个问题,既需要很广的物理知识面,也需要很强的物理思维能力。在这个问题的思考中培养出爱因斯坦2.0版本的概率很低(因为现有的迷惑都被1.0版本解决了),在以后的学习中我们的同学会逐渐对力的概念,空间的概念清晰起来,脑子里就不会有那么多低营养的疑问了。 极其不建议想不明白这问题的同学Baidu 这个问题,网上的讨论文章倒是极其多,不过基本都是民哲们的梦呓,很容易对不懂的人产生误导。 二.惯性力的具体表现(选讲) 1.作直线加速运动的非惯性系中的惯性力 这时惯性力仅与牵连运动有关,即仅与非惯性系相对于惯性系的加速度有关。惯性力将具有与恒定重力相类似的特性,即与惯性质量正比。记为: s a m f -=* 2.做圆周运动的非惯性系中的惯性力 这时候的惯性力可分为离心力以及科里奥利力: 1)离心力为背向圆心的一个力: r m f 2ω=*

(完整word版)高中物理竞赛的数学基础

普通物理的数学基础 选自赵凯华老师新概念力学 一、微积分初步 物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。这样,微积分这个数学工具就成为必要的了。我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。 §1.函数及其图形 本节中的不少内容读者在初等数学及中学物理课中已学过了,现在我们只是把它们联系起来复习一下。 1.1函数自变量和因变量绝对常量和任意常量 在数学中函数的功能是这样定义的:有两个互相联系的变量x和y,如果每当变量x取定了某个数值后,按照一定的规律就可以确定y的对应值,我们就称y是x的函数,并记作 y=f(x),(A.1) 其中x叫做自变量,y叫做因变量,f是一个函数记号,它表示y和x数值的对应关系。有时把y=f(x)也记作y=y(x)。如果在同一个问题中遇到几个不同形式的函数,我们也可以用其它字母作为函数记号, 如 (x)、ψ(x)等等。① 常见的函数可以用公式来表达,例如 e x等等。 在函数的表达式中,除变量外,还往往包含一些不变的量,如上面 切问题中出现时数值都是确定不变的,这类常量叫做绝对常量;另一类如a、b、c等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量。

在数学中经常用拉丁字母中最前面几个(如a、b、c)代表任意常量,最后面几个(x、y、z)代表变量。 当y=f(x)的具体形式给定后,我们就可以确定与自变量的任一特定值x0相对应的函数值f(x0)。例如: (1)若y=f(x)=3+2x,则当x=-2时y=f(-2)=3+2×(-2)=-1. 一般地说,当x=x0时,y=f(x0)=3+2x0. 1.2函数的图形 在解析几何学和物理学中经常用平面 上的曲线来表示两个变量之间的函数关系, 这种方法对于我们直观地了解一个函数的 特征是很有帮助的。作图的办法是先在平面 上取一直角坐标系,横轴代表自变量x,纵 轴代表因变量(函数值)y=f(x).这样一 来,把坐标为(x,y)且满足函数关系y=f (x)的那些点连接起来的轨迹就构成一条 曲线,它描绘出函数的面貌。图A-1便是上 面举的第一个例子y=f(x)=3+2x的图形,其中P1,P2,P3,P4,P5各点的坐标分别为(-2,-1)、(-1,1)、(0,3)、(1,5)、(2,7),各点连接成一根直线。图A-2是第二个例子 各点连接成双曲线的一支。 1.3物理学中函数的实例 反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的。下面我们举几个例子。 (1)匀速直线运动公式 s=s0+vt,(A.2) 此式表达了物体作匀速直线运动时的位置s随时间t变化的规律,在这里t相当于自变量x,s相当于因变量y,s是t的函数。因此我们记作s=s(t)=s0+vt,(A.3) 式中初始位置s0和速度v是任意常量,s0与坐标原点的选择有关,v对于每个匀速直线运动有一定的值,但对于不同的匀速直线运动可以取不同的值。

高一数学不等式解法例题.doc

典型例题一 例 1 解不等式:( 1)2x3 x2 15 x 0 ;(2) ( x 4)( x 5)2 (2 x)3 0 . 分析:如果多项式 f (x) 可分解为 n 个一次式的积,则一元高次不等式 f ( x) 0 (或f (x) 0 )可用“穿根法”求解,但要注意处理好有重根的情况. 解:( 1)原不等式可化为 x(2x 5)( x 3)0 把方程 x(2 x 5)( x 3) 0 的三个根 x1 0, x2 5 , x3 3顺次标上数轴.然后从右上2 开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为x 5 0或 x 3 x 2 ( 2)原不等式等价于 ( x 4)( x 5)2 (x 2)3 0 x 5 0 x 5 (x 4)( x 2) 0 x 4或 x 2 ∴原不等式解集为x x 5或 5 x 4或x 2 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或 奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿” ,其法如下图. 典型例题二 例 2 解下列分式不等式: ( 1) 3 1 2 ;(2) x2 4x 1 1 x 2 x 2 3x2 7x 2 分析:当分式不等式化为f (x) 0(或0) 时,要注意它的等价变形g( x)

① f ( x) f ( ) g ( ) 0 g( x) x x ② f ( x) f (x) g(x) f ( x) f ( x ) 0或 ( ) ( ) 0 或 g( x) g (x) 0 g (x) f x g x ( 1)解: 原不等式等价于 3 x 3 x 0 x 2 x 2 x 2 x 2 3( x 2) x( x 2) x 2 5x 6 ( x 2)( x 2) (x 2)( x 2) ( x 6)( x 1) 0 (x 6)( x 1)( x 2)(x 2) 0 ( x 2)( x 2) (x 2)( x 2) 0 用“穿根法” ∴原不等式解集为 ( , 2) 1,2 6, 。 ( 2)解法一 :原不等式等价于 2x 2 3x 1 0 3x 2 7x 2 (2x 2 3x 1)(3x 2 7 x 2) 0 2x 2 3x 1 0 2x 2 3x 1 3x 2 7x 2 或 3x 2 7x 2 1 或 1 x 或 x 2 x 2 1 3 ∴原不等式解集为 ( , 1 ) ( 1 ,1) (2, ) 。 3 2 解法二:原不等式等价于 ( 2x 1)( x 1) 0 (3x 1)( x 2) (2x 1)( x 1)(3x 1) (x 2) 0 用“穿根法” ∴原不等式解集为 ( , 1) ( 1 ,1) (2, ) 3 2 典型例题三 例 3 解不等式 x 2 4 x 2

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高一数学一元二次不等式解法练习题及答案.doc

高一数学一元二次不等式解法练习题及答案 例若<<,则不等式--<的解是1 0a 1(x a)(x )01 a [ ] A a x B x a .<< .<<11 a a C x a D x x a .>或<.<或>x a a 1 1 分析比较与的大小后写出答案. a 1 a 解∵<<,∴<,解应当在“两根之间”,得<<. 选. 0a 1a a x A 11 a a 例有意义,则的取值范围是 .2 x x 2--x 6 分析 求算术根,被开方数必须是非负数. 解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2. 例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________. 分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理. 解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知 -=-+=-=-=-?? ?????b a a ()()1211122×得

a b ==-1212 ,. 例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2) (4)3x 2-+- -+-3132 511 3 122x x x x x x >>()() 分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成). 答 (1){x|x <2或x >4} (2){x|1x }≤≤3 2 (3)? (4)R (5)R 说明:不能使用解公式的时候要先变形成标准形式. 例不等式+> 的解集为5 1x 1 1-x [ ] A .{x|x >0} B .{x|x ≥1} C .{x|x >1} D .{x|x >1 或x =0} 分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分. 解不等式化为+->, 通分得>,即>, 1x 0001 111 22 ----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C . 说明:本题也可以通过对分母的符号进行讨论求解.

物理竞赛中数学知识

物理竞赛中的数学知识 一、重要函数 1. 指数函数 2. 三角函数 3. 反三角函数 反正弦Arcsin x ,反余弦Arccos x ,反正切Arctan x ,反余切Arccot x 这些函数的统称,各自表示其正弦、余弦、正切、余切为x 的角。 二、数列、极限 1. 数列:按一定次序排列的一列数称为数列,数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项。 数列的一般形式可以写成 a 1,a 2,a 3,…,a n ,a (n+1),… 简记为{an }, 通项公式:数列的第N 项a n 与项的序数n 之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。 2. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。通项公式a n =a 1+(n-1)d ,前n 项和11(1) 22 n n a a n n S n na d +-= =+ 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一 个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q 表示。通项公式a n =a 1q (n-1) ,前n 项和11(1) (1)11n n n a a q a q S q q q --= =≠--

所有项和1 (1)1n a S q q =<- 3. 求和符号 4. 数列的极限: 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作A a n n =∞ →lim 否则称数列{}n a 发散或n n a ∞ →lim 不存在. 三、函数的极限:在自变量x 的某变化过程中,对应的函数值f (x )无限接近于常数A ,则称常数A 是函数f (x )当自变量x 在该变化过程中的极限。 设f (x )在x>a (a >0)有定义,对任意ε>0,总存在X >0,当x>X 时,恒有| f (x )-A |<ε,则称常数A 是函数f (x )当x →+∞时的极限。记为+∞ →x lim f (x )=A ,或f (x ) → A (x →+∞)。 运算法则 lim x x →[f (x )± g (x )]=0 lim x x →f (x ) ±0 lim x x →g (x ) lim x x →[f (x ) ? g (x )]=0 lim x x →f (x ) ?0 lim x x →g (x ) ) (lim )(lim )()(lim 0 0x g x f x g x f x x x x x x →→→=,其中0lim x x →g (x )≠ 0. 四、无穷小量与无穷大量 1.若0)(lim 0 =→x f x x ,则称)(x f 是0x x →时的无穷小量。

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

高一数学不等式解法经典例题92436

实用文档 标准文案大全典型例题一 例1解不等式:(1)015223???xxx;(2)0)2()5)(4(32????xxx. 分析:如果多项式)(xf可分解为n个一次式的积,则一元高次不等式0)(?xf(或0)(?xf)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 0)3)(52(???xxx 把方程0)3)(52(???xxx的三个根3,25,0321????xxx顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部 分. ∴原不等式解集为??????????3025xxx或 (2)原不等式等价于 ??????????????????????2450)2)(4(050)2()5)(4(32xxxxxxxxx或 ∴原不等式解集为??2455???????xxxx或或 说明:用“穿根法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”, 其法如下图. 典型例题二 例2 解下列分式不等式: (1)22123????xx;(2)12731422?????xxxx 分析:当分式不等式化为)0(0)()(??或xgxf时,要注意它的等价变形

实用文档 标准文案大全①0)()(0)()(????xgxfxgxf ② 0)()(0)(0)()(0)(0)()(0)()(?????????????xgxfxfxgxfxgxgxfx gxf或或 (1)解:原不等式等价于 ????????????????????????????????????????0)2)(2(0)2)(2)(1)(6(0)2 )(2()1)(6(0)2)(2(650)2)(2()2()2(302232232xxxxxxxxxxxx xxxxxxxxxxxxx 用“穿根法” ∴原不等式解集为????????????,62,1)2,(。 (2)解法一:原不等式等价于 027313222?????xxxx21213102730132027301320)273)(132(222222??? ???????????????????????????????xxxxxxxxxxxxxxx或或或 ∴原不等式解集为),2()1,21()31,(??????。 解法二:原不等式等价于0)2)(13()1)(12(?????xxxx 0)2()13)(1)(12(???????xxxx 用“穿根法” ∴原不等式解集为),2()1,21()31,(?????? 典型例题三 实用文档 标准文案大全 例3解不等式242???xx 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的

胥晓宇-数学物理竞赛心得体会

序言 物理集训队最后一天,宋老师说,“人过留名,雁过留声”,我学了这么多年的竞赛,在心态,学习,考试等方面都有一些心得,要是消逝在记忆之中,未免有些遗憾。所以愿意整理出这样一份心得体会,全都是肺腑之言,希望能对广大竞赛同胞们有所帮助。 那些对竞赛有成见的人就不要喷了。认为我讲的不对的(尤其是各位学长),欢迎在“评论”里面留下自己的看法,给大家更多的帮助。可能有一些措辞失当,还请见谅。 下面讲的会比较多,而且会比较散,有些部分大家可以自行跳过。 〇学习成就大事记(还是简单说一下吧,大家给点面子不要喷) 小学五年级仁华一班一号进入一流奥数圈子 初一数学初联一等 初三数学高联一等 高二数学进北京队,CMO满分金牌,集训队前十 高二物理高联一等 高三数学物理联赛均以第一名进队,随后CMO金牌,CPhO银牌(涉险过关,太幸运了)高三物理进入IPhO国家队 出国方面TOEFL110+,SAT2300+ 课内成绩高中不出年级前十,高二CMO前不出前三 一明心见性,直指本心 是亦不可以已乎?此之谓失其本心。 ——《孟子·告子上》 细细数来,初步接触竞赛,数学是小学三年级进入华校,物理是初二;而进入MO和PhO,那都是高中的事了。 很多人都会有疑问:学这么多年的竞赛,到底是为什么? 实话实说,小学的时候学习数学竞赛,说的好听点,是出于好胜心和自尊心;说的实在点,就是好面子,听见别人夸奖心里高兴,自得。当然也有“兴趣”。注意,兴趣和自得之心是完全可以一致的。 但是到了中学,尤其是进入高中以后,上述心态固然存在(所谓本性难移是也),但更多的则是真正有求知欲,并且能在数竞中发现乐趣。我记的特别清楚的一次是去年的暑假,在上海旁听国家队培训的时候,有一个数论题。有两个参数m和k,让你证一个结论。我用了一个小时,一直对着m“使劲”,毫无斩获;后来灵机一动,对着k“使劲”,豁然而解。(好吧,没有原题就跟看笑话似的)当时就特别特别高兴,就有一种“众里寻他千百度,蓦然回首,那人却在,灯火阑珊处”的感觉。我觉得这就是数学竞赛中的乐趣。 当然了,我学物理竞赛也经历了这样的过程,到了高二的暑假,才渐渐体会到物理的乐趣。

(完整版)高中物理竞赛中的高等数学

高中物理竞赛中的高等数学 一、微积分初步 物理学研究的是物质的运动规律,因此经常遇到的物理量大多数是变量,而要研究的正是一些变量彼此间的联系.这样,微积分这个数学工具就成为必要的了.考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的.所以在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要.至于更系统和更深入地掌握微积分的知识和方法,可在通过高等数学课程的学习去完成. §1.函数及其图形 1.1 函数 自变量和因变量 绝对常量和任意常量 在数学中函数的功能是这样定义的:有两个互相联系的变量x 和y ,如果每当变量x 取定了某个数值后,按照一定的规律就可以确定y 的对应值,那么称y 是x 的函数,并记作:y =f (x ),(A .1);其中x 叫做自变量,y 叫做因变量,f 是一个函数记号,它表示y 和x 数值的对应关系.有时把y =f (x )也记作y =y (x ).如果在同一个问题中遇到几个不同形式的函数,也可以用其它字母作为函数记号,如?(x )、ψ(x )等等.① 常见的函数可以用公式来表达,例如()32y f x x ==+,21 2ax bx +,c x ,cos2x π,ln x ,x e 等等. 在函数的表达式中,除变量外,还往往包含一些不变的量,如上面出现的13 2 2 e π、 、、、和a b c 、、等,它们叫做常量;常量有两类:一类如1 3 2 2 e π、 、、、等,它们在一切问题中出现时数值都是确定不变的,这类常量叫做绝对常量;另一类如a 、b 、c 等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量.在数学中经常用拉丁字母中最前面几个(如a 、b 、c )代表任意常量,最后面几个(x 、y 、z )代表变量. 当y =f (x )的具体形式给定后,就可以确定与自变量的任一特定值x 0相对应的函数值f (x 0).例如: (1)若y =f (x )=3+2x ,则当x =-2时y =f (-2)=3+2×(-2)=-1.一般地说,当x =x 0时,y =f (x 0)=3+2x 0. (2)若()c y f x x ==,则当0x x =时,00()c f x x =. 1.2 函数的图形 在解析几何学和物理学中经常用平面上的曲线来表示两个变量之间的函数关系,这种方法对于直观地了解一个函数的特征是很有帮助的.作图的办法是先在平面上取一直角坐标系,横轴代表自变量x ,纵轴代表因变量(函数值)y =f (x ).这样一来,把坐标为(x ,y )且满足函数关系y =f (x )的那些点连接起来的轨迹就构成一条曲线,它描绘出函数的面貌.图A -1便是上面举的第一个例子y =f (x )=3+2x 的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:(-2,-1)、(-1,1)、(0,3)、(1,5)、(2,7),各点连接成一根直线.图A -2是 第二个例子()c y f x x ==的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为: 1(,4)4c 、1 (,2)2 c 、(1,)c 、(2,)2c 、(4,)4c ,各点连接成双曲线的一支. 1.3 物理学中函数的实例 反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的.下面举几个例子. (1)匀速直线运动公式:s =s 0+vt .(A .2) 此式表达了物体作匀速直线运动时的位置s 随时间t 变化的规律,在这里t 相当于自变量x ,s 相当于因变量y ,s 是t 的函数.因此记作:s =s (t )=s 0+vt ,(A .3) 式中初始位置s 0和速度v 是任意常量,s 0与坐标原点的选择有关,v 对于每个匀速直线运动有一定的值,但对于不同的匀速直线运动可以取不同的值.图A -3是这个函数的图形,它是一根倾斜的直线.易知它的斜率等于v .

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

几种常见不等式的解法

题目高中数学复习专题讲座几种常见解不等式的解法 高考要求 不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式 重难点归纳 解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题 (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法 (2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法 (3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法 (4)掌握含绝对值不等式的几种基本类型的解法 (5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式 (6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论 典型题例示范讲解 例1已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[- 1,1],m +n ≠0时 n m n f m f ++) ()(>0 (1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式 f (x + 21)<f (1 1-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求 实数t 的取值范围 命题意图 本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力 知识依托 本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用 错解分析 (2)问中利用单调性转化为不等式时,x + 21∈[-1,1],1 1-x ∈[-1,1]必不可少,这恰好是容易忽略的地方

高一数学不等式的解法人教版知识精讲

高一数学不等式的解法人教版 【同步教育信息】 一. 本周教学内容: 不等式的解法 二. 数学目标: 1. 会解c b ax c b ax >+<+,两类不等式。 2. 了解一元二次不等式、一元二次函数、一元二次方程的联系。 3. 掌握一元二次不等式的解法步骤,能熟练地解一元二次不等式。 三. 知识讲解: c b ax c b ax >+?>+或)0(>-<+c c b ax )0(><+<-?<+c c b ax c c b ax 4. 分式不等式的解法: 利用不等式的性质可以把分式不等式 0)()(0)()(>??>x g x f x g x f ???≠≥??≥0 )(0)()(0)() (x g x g x f x g x f

0)()(0)()(+++++x x x (*) 解: (1)当3-------x x x ,∴ 3-++----x x x ,∴ 3-++++--x x x ,∴ 1->x ,x 无解 (4)当1-≥x 时,(*)化为3321>+++++x x x ,∴ 1->x ,∴ 1->x 综上,不等式的解集为}1,3|{->---+x x (*) 解: (1)当3--+--x x ,即36>,∴ 3--++x x ,23>x ,∴ 23>x 或2 3 -,∴ 3≥x 综合(1)(2)(3)得}2 3 ,23|{>---+x x 或333-<--+x x ,略。 [例4] 解不等式1032 <+x x 解:2501032 <<-?<-+x x x ,∴ 20<≤x ,∴ 22<<-x ∴ 原不等式的解集为}22|{<<-x x 另解:原不等式化为???<-+≥010302x x x 或? ??<--<01030 2x x x 解得22<<-x [例5] 解不等式4652 2-<+-x x x 解:原不等式化为???<+->+-?-<+-<-0 1050 252465422 2 2 x x x x x x x ∴ 2>x ∴ 原不等式的解集为}2|{>x x

相关文档
相关文档 最新文档