文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计概率历史的介绍.doc

概率论与数理统计概率历史的介绍.doc

概率论与数理统计概率历史的介绍.doc
概率论与数理统计概率历史的介绍.doc

一、概率定义的发展与分析

1.古典定义的历史脉络

古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种

多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能. 16 世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰

子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等

数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812 年,法国数学家拉普拉斯(1749 —1827 )在《概率的分析理论》中给出概率的古

典定义:事件 A 的概率等于一次试验中有利于事件 A 的可能结果数与该事件中所有可

能结果数之比.

2.古典定义的简单分析

古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它

适用的条件有二:( 1)可能结果总数有限;( 2)每个结果的出现有同等可能.其中

第( 2)条尤其重要,它是古典概率思想产生的前提.

如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工

作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要

n r 的各种排列(或总数为n r)的各种组合)看成是等可能的,

求,就是将总数为 P( , ) C( ,

通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,

而且有数学上的.

“ 用性的狭窄性”促使雅各布 ?伯努利( 1654 — 1705 )“ 找另一条途径找到所期待的果”,就是他在研究古典概率的另一重要成果:伯努利大数定律.条定律告我“ 率具有定性”,所以可以“用率估概率”,而也以后概率的定奠定了思想基.“古典定数学上的”在特朗(1822 — 1900 )悖中表

得淋漓尽致,它揭示出定存在的矛盾与含糊之,致了拉普拉斯的古典定

受到猛烈批.

3.定的史脉

概率的古典定然直,但是适用范有限.正如雅各布?伯努利所:“?? 种方法适用于极罕的象.”因此,他通察来确定果数目的比例,并且“即使是没受教育和的人,凭天生的直,也会清楚地知道,可利用

的有关的次数越多,生的就越小”.然原理,但是其科学明

并不,在古典概型下,伯努利了一点,即“当次数愈来愈大,率接近概率”.

事上,不于古典概型适用,人确信“从中察的率定性”的事是一个普遍律.1919 年,德国数学家 ?米塞斯( 1883 — 1953 )在《概率基研究》一中提出了概率的定:在做大量重复,随着次数的增加,某个事件出的率是在一个固定数的附近,示出一定的定性,把个

固定的数定一事件的概率.

虽然统计定义不能像古典定义那样确切地算出概率,但是却给出了一个估计概率

的方法.而且,它不再需要“等可能”的条件,因此,从应用的角度来讲,它的适用范围更广.但是从数学理论上讲,统计定义是有问题的.

在古典概率的场合,事件概率有一个不依赖于频率的定义——它根本不用诉诸于

试验,这样才有一个频率与概率是否接近的问题,其研究导致伯努利大数定律.在统计定义的场合这是一个悖论:你如不从承认大数定律出发,概率就无法定义,因而谈不上频率与概率接近的问题;但是你如承认大数定律,以便可以定义概率,那大数定律就是你的前提,而不是一再需要证明的论断了.

5.公理化定义的历史脉络

正因为古典定义和统计定义数学理论上的这样或那样的问题,所以到了19 世纪,无论是概率论的实际应用还是其自身发展,都要求对概率论的逻辑基础作出更加严格

的考察.

1900 年,38 岁的希尔伯特(1862 — 1943)在世界数学家大会上提出了建立概率

公理系统的问题,这就是著名的希尔伯特23 个问题中的第 6 个问题.这引导了一批数学家投入这方面的工作.在概率公理化的研究道路上,前苏联数学家柯尔莫哥洛夫(1903 — 1987)成绩最为卓著,1933 年,他在《概率论基础》中运用集合论和测度论

表示概率论的方法赋予了概率论严密性.

为什么直到 20 世纪才实现了概率论的公理化,这是因为20世纪初才完成了勒贝格测度与积分理论以及抽象测度与积分理论,而这都是概率论公理化体系建立的基

础.

柯尔莫哥洛夫借助实变函数论和测度论来定义概率概念,形成了概率论的公理化

体系,他的公理体系既概括了古典定义、统计定义的基本特性,又避免了各自的局限.例如,公理中有一条,是把事件概率的存在作为一个不要证明的事实接受下来,

在这个前提下,大数定律就成为一个需要证明且可以得到证明的论断,这就避免了“4”

中统计定义的数学理论上的问题;而公理中关于“概率存在”的规定又有其实际背景,这就是概率的古典定义和统计定义.所以,我们说,概率论公理体系的出现,是概率

论发展史上的一个里程碑,至此,概率论才真正成为了严格的数学分支.

二、关于概率定义教学的几点思考

对于概率的定义,教科书是先给出古典定义,然后再给出统计定义.这与历史上概率定义的发展相吻合,从“简单到复杂”.在教学中,我们不仅要明了这种顺序的设

计意图,而且还要抓住不同定义的特点和思想,以引导学生更好地理解概率.

1.古典定义的教学定位

在前面的分析中,我们说“等可能”是古典概率非常重要的一个特征,它是古典概率思想产生的前提.正是因为“等可能”,所以才会有了“比率”.因此,“等可能性”和“比率”是古典定义教学中的两个落脚点.

“等可能”是无法确切证明的,往往是一种感觉,但是这种感觉是有其实际背景的,例如,掷一枚硬币,“呈正面”“呈反面”是等可能的,因为它质地均匀;而掷一枚图钉,“钉帽着地”“顶针着地”不是等可能的,因为图钉本身给我们的感觉就是帽重钉轻.因此,“等可能”并不要多么严密的物理上或化学上的分析,只需要通过例子感知一下“等

可能”和“不等可能”即可,以便让学生明白古典定义的适用对象须具备的条件.

2.统计定义的教学定位

从直观上讲,统计定义是非常容易接受的,但是它的内涵是非常深刻的,涉及到

大数定律.在初中阶段,我们不可能让学生接触其严格的形式和证明.因此,统计定

义定位在其合理性和必要性是比较恰当的.

如何让学生体会其合理性和必要性?罗老师的课堂教学比较好地实现了这两

点.从教学顺序来看,罗老师将“掷硬币”作为归纳统计定义的例子,“掷硬币”可以用古典定义求概率,所以概率值是明确的,而通过试验的方法计算得到的频率就可以和

这个明确的概率值相比较,如此更容易让学生体会到“频率具有稳定性”这一事实,从

而感受到“用频率估计概率”的合理性;罗老师将“掷图钉”作为统计定义的应用,“掷图钉”不能用古典定义求概率,由此能让学生体会到学习统计定义计算事件概率的必要

性.从教学手段来看,罗老师主要采用了“学生试验”的方法,学生的亲自试验在这节

课所起的作用是无可代替的:“亲自试验”获得的结果能够给学生以真实感和确切感;

“亲自试验”能够让学生感受到频率的随机性和稳定性等特点.所以,像概率与统计的学习,学生应该有更多的主动权和试验权,在动手和动脑中感受概率与统计的思想和

方法.

3.概率与统计教学的背后:专业素养的提升

在课题研讨时,教师们表现出这样一些困惑:随着试验次数的增加,频率就越来越稳定?频率估计概率,一定要大量试验?实验次数多少合适?事实上,这些问题涉及的就是概率与统计的专业素养.对于大多数教师而言,概率与统计相对而言比较陌生,这是很自然的,因为在教师自身接受的数学专业学习中,概率与统计就是一个弱项.但是,既然要向学生教授概率与统计,那么还是需要有“一桶水”的.就像上面的问题,翻阅任何一本《概率论与数理统计》,都可以给我们知识上的答案,而翻阅一下相关的科普读物或史料,就可以给我们思想方法上的答案.

举个例子:

伯努利大数定律:设 m 是 n 重伯努利试验中事件 A 出现的次数,又 A 在每次试验中出现的概率为 p(),则对任意的,有.狄莫弗 -拉普拉斯极限定理:设 m 是 n 重伯努利试验中事件 A 出现的次数,又 A 在每次试验中出现的概率为p(),则.

伯努利大数定律只是告诉我们,当 n 趋于无穷时,频率依概率收敛于概率

p .伯努利的想法是:只要n充分大,那么频率估计概率的误差就可以如所希望的

小.值得赞赏的是,他利用了“依概率收敛”而不是更直观的p ,因为频率是随

着试验结果变化的,在 n 次试验中,事件 A 出现 n 次也是有可能的,此时p 就不成立了.

伯努利不仅证明了上述大数定律,而且还想知道:若想要把一个概率通过频率而

确定到一定的精确度,要做多少次观察才行.这时,伯努利大数定律无能为力,但是狄莫弗 -拉普拉斯极限定理给出了解答:

.( *)

例如研究课中掷硬币的问题,若要保证有95% 的把握使正面向上的频率与其概率0.5 之差落在 0.1 的范围内,那要抛掷多少次?根据( *)式,可以估计出.

三、概率论发展简史

概率论有悠久的历史,它的起源与博弈问题有关。可追溯到15世纪末至16世纪中期,意大利的一些学者开始研究掷骰子等赌博中的一些简单问题,例如比较掷两个骰子出现总点数为9 或 10 的可能性大小。

1494 年,意大利数学家巴乔利(L.Pacioli,1445-1517),在其著作《算术、几何

及比例性质摘要》中记载:A,B 两人进行一场公平赌博,约定先赢得 s=6 局者获胜。而

在 A 胜局且

B 胜局时中断。巴乔利认为该赌博最多需要进行(

s-1

2

+1=11 局,因而赌金分配方案应为与之比,即的比例来分配赌本 .

1539 年,卡尔达诺 (G.Cardano,1501-1576) ,通过实例指出巴乔利的分配方案是

错误的,指出这样不考虑赌徒可能再赢得局数的算法是错误的。他认为,对于 A 有利的情形是:若再赌 1 场则 A 胜;若再赌 2 场,则 B 先胜 A 后胜;若再赌 3 场,则 B 先胜 2 场而 A 胜最后 1 场;若再赌 4 场,则 B 先胜 3 场而 A 胜最后 1 场。只有在赌 4

场B 全胜时才对 B 有利。于是得出应按(1+2+3+4 )/1 来分赌本。他也没有找到正确

的解法。

1556 年,塔塔利亚( Niccolo Fontana,1499-1557, 绰号 Tartaglia )也批评了巴乔利的解法,并甚至怀疑能找到数学解答的可能性。“类似问题应属于法律而非数学,故无论如何分配都有理由上诉。”不过,他也提出一种解法(略)

17 世纪中叶,法国数学家帕斯卡、费马及荷兰数学家惠更斯基于排列组合的方法

研究了一些较复杂的赌博问题,他们解决了“合理分配赌注问题”(即“得分问题”,)、“输光问题”等等。

1654 年,法国一位名叫梅累的狂热赌徒向帕斯卡提出一个困扰他很久的问题:“两个赌徒相约赌若干局,谁先赢 s 局就算是谁赢。可是当一个赌徒 A 赢 a 局(a<s),而另一个赌徒 B 赢 b 局(b <s)时,赌博因故终止了,问赌本应如何分配?”帕斯卡将这个问题和他的解法寄给费尔马,这是 1654 年 7 月 29 日电事情。

帕斯卡在信中先以特例说明了其对问题的解法。 A、B 都拿 12 枚金币, 5 局 3 胜。

(1)A 已赢 2 局,B 赢 1 局。再赌 1 局,若 A 胜,则拿走 24 枚金币;若 B

胜,则他们各自取回 12 枚金币,因此,A 所得金币应为 24/2+12/2=18

枚, B 应为 0/2+12/2=6枚。

(2)A 已赢 2 局,B 赢 0 局。再赌 1 局,若 A 胜,则拿走 24 枚金币;若 B 胜,则结果同(1)他们各自取回 12 枚金币,因此,A 所得金币应为

24/2+18/2=21 枚,B 应为 0/2+6/2=3 枚。

(3)

费尔马从不同的理由出发也给出正确的解法。其方法不是直接计算赌徒赢局的概

率,而是计算期望的赢值。

( 4)费尔马认为,两赌徒离全胜所差局数分别为 s-a 局,s-b 局,则最多再进行 2s-a-b+1 局即可定胜负。所以再赌 2 局,共有 4 种情况:MM ,MP,

PM,PP;前 3 种情况都是梅累先胜 3 局,只有第 4 种情况保罗先胜 3

局,所以梅累所得金币应为24*3/4=18枚,保罗应为24*1/4=6枚。

1657 年荷兰数学家惠更斯是从与帕斯卡差不多的理由出发解决了这一问题:如果

某人在 u+v 个等概率的场合中有u 个场合可赢得α,而有 v 个场合可赢得β,则他所

期望的收入可用 (u α+v β)/(u+v) 来估计,从而导致了现今称之为数学期望的概念(惠

更斯在 1657 年出版的《论赌博中的计算》一书,成为概率论的早期著作,首次明确提

出数学期望的概念)。

使概率论成为数学的一个分支的真正奠基人则是瑞士数学家雅各布第一·伯努利,他考虑了掷 n 个骰子时所得点数总和等于m 的可能性问题,指出这种场合的数目等于( X X 2X 3X 4X 5X 6 )n的展开式中X m这一项的系数,开了母函数方法

的先河。他建立了概率论中第一个极限定理,即伯努利大数律;该定理断言:设事件

A 的概率 P(A) =p ( 0

从而 m/n 为事件 A 出现的频率,

则当 n→∞时,式中ε为任一正实数。

这一结果发表于他死后8 年(1713 )出版的遗着《推测术》(Ars conjectandi )中。这里所说的事件的概率,应理解为事件发生的机会的一个测度,即公理化概率测度(详见后)。 1716 年前后,A。棣莫弗对 p=1/2 情形,用他导出的关于 n!的渐近公

式(即所谓斯特林公式)进一步证明了渐近地服从正态分布(德国数学家C。F。高

斯于 1809 年研究测量误差理论时重新导出正态分布,所以也称为高斯分布)。棣莫

弗的这一结果后来被法国数学家P。-S。拉普拉斯推广到一般的p(0

极限定理)的原始形式。拉普拉斯对概率论的发展贡献很大。他在系统总结前人工作

的基础上,写出了《概率的分析理论》(1812 年出版,后又再版 6 次)。在这一着作中,他首次明确规定了概率的古典定义(通常称为古典概率,见概率),并在概率论

中引入了更有力的分析工具,如差分方程、母函数等,从而实现了概率论由单纯的组

合计算到分析方法的过渡,将概率论推向一个新的发展阶段。拉普拉斯非常重视概率

论的实际应用,对人口统计学尤其感兴趣。

继拉普拉斯以后,概率论的中心研究课题是推广和改进伯努利大数律及棣莫弗-

拉普拉斯极限定理。在这方面,俄国数学家∏。Л。切比雪夫迈出了决定性的一步,1866 年他用他所创立的切比雪夫不等式建立了有关独立随机变量序列的大数律。次年,又建立了有关各阶绝对矩一致有界的独立随机变量序列的中心极限定理;但其证

明不严格,后来由Α。Α。马尔可夫于 1898 年补证。1901 年Α。М。李亚普诺夫利用

特征函数方法,对一类相当广泛的独立随机变量序列,证明了中心极限定理。他还利

用这一定理第一次科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。

继李亚普诺夫之后,Α。Я。辛钦、Α。Η。柯尔莫哥洛夫、 P。莱维及 W 。费勒等人在随机变量序列的极限理论方面作出了重要贡献。

到 20 世纪 30 年代,有关独立随机变量序列的极限理论已臻完备。在此期间,由于实际问题的需要,特别是受物理学的刺激,人们开始研究随机过程。

1905 年 A。爱因斯坦和 R。斯莫卢霍夫斯基各自独立地研究了布朗运动。他们用不同的概率模型求得了运动质点的转移密度。但直到1923 年,N 。维纳才利用三角级数首次给出了布朗运动的严格数学定义,并证明了布朗运动轨道的连续性。1907 年马尔可夫在研究相依随机变量序列时,提出了现今称之为马尔可夫链(见马尔可夫过程)的概念;而马尔可夫过程的理论基础则由柯尔莫哥洛夫在1931 年所奠定。稍后一些时候,辛钦研究了平稳过程的相关理论(1934)。所有这些关于随机过程的研究,都是基于分析方法,即将概率问题化为微分方程或泛函分析等问题来解决。从1938 年开始,莱维系统深入地研究了布朗运动,取得了一系列重要成果,他充分利用概率的直觉性,将逻辑与直觉结合起来,倡导了研究随机过程的一种新方法,即概率方法。这种方法的特点是着眼于随机过程的轨道性质。莱维对概率论的另一重要贡献是建立了独立增量过程的一般理论。他的着作《随机过程与布朗运动》(1948)至今仍是随机过程理论的一本经典着作。现代概率论的另外两个代表人物是J。L。杜布和伊藤清,前者创立了鞅论,后者创立了布朗运动的随机积分理论。

在概率发展史中特别值得一提的是柯尔莫哥洛夫在1933 年建立了概率论的公理化体系。

概率论公理化体系的建立

早在拉普拉斯给出概率的古典定义之前,人们就提出了几何概率的概念,这是研究有无穷多个可能结果的随机现象问题的,着名的布丰(曾译蒲丰)投针问题

(1777 )就是几何概率的一个早期例子。19世纪,几何概率逐步发展起来。但到19

世纪末,出现了一些自相矛盾的结果。

以着名的贝特朗悖论为例:在圆内任作一弦,求其长超过圆内接正三角形边长的

概率。此问题可以有三种不同的解答:

①由于对称性,可预先指定弦的方向。作垂直于此方向的直径,只有交直径

于 1/4 点与 3/4 点间的弦,其长才大于内接正三角形边长。设所有交点是

等可能的,则所求概率为1/2 (图 1 之 a)图

②由于对称性,可预先固定弦的一端。仅当弦与过此端点的切线的交角在

60 °~0之间°,其长才合乎要求。设所有方向是等

可能的,则所求概率

为 1/3 (图 1 之 b )。

③弦被其中点位置惟一确定。只有当弦的中点落在半径缩小了一半的同心圆

内,其长才合乎要求。设中点位置都是等可能的,则所求概率为 1/4 (图 1

之 c)。

这个问题之所以有不同解答,是因为当一随机试验有无穷多个可能结果时,有时

很难客观地规定“等可能”这一概念。这反映了几何概率的逻辑基础是不够严密的。几何概率这类问题说明了拉普拉斯关于概率的古典定义带有很大的局限性。当严密的概

率公理化系统建立后,几何概率才能健康地发展且有广泛的应用。

虽然到了 19 世纪下半叶,概率论在统计物理学中的应用及概率论的自身发展已突

破了概率的古典定义,但关于概率的一般定义则始终未能明确化和严格化。这种情况

既严重阻碍了概率论的进一步发展和应用,又落后于当时数学的其他分支的公理化潮

流。 1900 年,D.希尔伯特在世界数学家大会上公开提出了建立概率论公理化体系的

问题,最先从事这方面研究的是庞加莱、波莱尔及伯恩斯坦。关于概率论与测度论有

联系这一重要思想就出自波莱尔。伯恩斯坦于1917 年构造了概率论的第一个公理化体系。20 年代以后,相继出现了J。M 。凯恩斯及 R。 von 米泽斯等人的工作。凯恩斯主张把任何命题都看作是事件。例如,“明天将下雨”,土“星上有生命”,某“出土文物是某年代的产品”,等等。他把一事件的概率看作是人们根据经验对该事件的可信

程度,而与随机试验没有直接联系,因此,通常称为主观概率。从凯恩斯起,对主观概率提出了几种公理体系,但没有一种堪称权威。也许,主观概率的最大影响不在概率论领域自身,而在数理统计学中近年来出现的贝叶斯统计学派。和主观概率学派相对立的是以米泽斯为代表的概率的频率理论学派。米泽斯把一事件的概率定义为该事件在独立重复随机试验中出现的频率的极限,并把此极限的存在性作为他的第一条公理。他的第二条公理是,对随机选取的子试验序列,事件出现的频率的极限也存在并且极限值相等。

严格说来,这第二条公理没有确切的数学含义。因此,这种所谓公理化在数学上是不可取的。此外,象某个事件在一独立重复试验序列中出现无穷多次这一事件的概

率,在米泽斯理论中是无法定义的。这种频率法的理论依据是强大数律,它具有较强的直观性,易为实际工作者和物理学家所接受。但随着科学的进步,它又已逐渐被绝大多数物理学家所抛弃。

20 世纪初完成的勒贝格测度(见测度论)和勒贝格积分理论以及随后发展起来的

抽象测度和积分理论,为概率论公理体系的确立奠定了理论基础。人们通过对概率论的两个最基本的概念即事件与概率的长期研究,发现事件的运算与集合的运算完全类似,概率与测度有相同的性质。到了30年代,随着大数律研究的深入,概率论与测度论的联系愈来愈明显。例如强、弱大数律中的收敛性(见概率论中的收敛)与测度论中的几乎处处收敛及依测度收敛完全类似。在这种背景下,柯尔莫哥洛夫于

1933 年在他的《概率论基础》一书中第一次给出了概率的测度论式的定义和一套严密

的公理体系。这一公理体系着眼于规定事件及事件概率的最基本的性质和关系,并用这些规定来表明概率的运算法则。它们是从客观实际中抽象出来的,既概括了概率的古典定义、几何定义及频率定义的基本特性,又避免了各自的局限性和含混之处。这一公理体系一经提出,便迅速获得举世的公认。它的出现,是概率论发展史上的一个里程碑,为现代概率论的蓬勃发展打下了坚实的基础。

现代概率论的内容

由于科学技术中许多实际问题的推动以及概率论逻辑基础的建立,概率论从 20 世纪 30 年代以来得到了迅速的发展。

目前其主要研究内容大致可分为极限理论,独立增量过程,马尔可夫过程,平稳过程和时间序列,鞅和随机微分方程,点过程等。此外,包括组合概率(用组合数学方法解决只涉及有限个基本事件的概率问题)、几何概率等在内的一些属于古典范畴

的问题,至今仍有人在继续研究,并有新的发展。

极限理论是研究与随机变量序列或随机过程序列的收敛性有关的问题的理论。20 世纪 30 年代以后,有关随机变量序列的极限理论(主要是中心极限定理)的研究,是将独立序列情形的结果推广到鞅差序列和更一般的弱相依序列等情形,以及研究收敛速度问题。近年来,由于统计力学的需要,人们开始研究强相依随机变量序列的非

中心极限定理。

自1951 年M 。唐斯克提出不变原理(见随机过程的极限定理)后,有关随机过程序列的弱收敛的研究成了极限理论的一个中心课题。ю。Β。普罗霍洛夫及 A。 B。

斯科罗霍德在这方面作出了最主要的贡献。1964 年 V。斯特拉森的工作出现后,引起

了有关随机过程序列的强收敛的研究,这就是强不变原理。近年来,鞅论方法已渗透到这一领域,使许多经典结果的证明得到简化和统一处理,并且还导致一些新的结果。

人们最早知道的独立增量过程是在物理现象中观察到的布朗运动和泊松过程,一般的独立增量过程的研究,归功于莱维,它在20世纪40年代已臻成熟。在这些研究中,包含了许多重要的方法和概念,概率论的许多近代研究课题都直接或间接地受其

启发与影响。

在实际中遇到的很多随机现象有如下的共同特性:它的未来的演变,在已知它目前状态的条件下与以往的状况无关。描述这种随时间推进的随机现象的演变模型就是

马尔可夫过程。

20 世纪 50 年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法); 1936 年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进

一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程── 扩散过程,开辟了研究马尔可夫过程的又一重要途径。近年来,鞅论方法也已渗透到马尔可夫过程的研究中,它与随机微分方程结合在一起,已成为目前处理多维扩散过程的工具。此外,马尔可夫过程与分析学中的位势论有密切的联系。对马尔可夫过程的研究,推动了位势理论的发展,并为研究偏微分方程提供了概率论的方法。最近十多年发展起来的吉布斯随机场和无穷粒子随机系统,是由于统计物理的需要而提出的。

许多自然的和生产过程中的随机现象表现出某种平稳性。一种平稳性是过程在任意一些时刻上的联合概率分布随时间推移不变,这种平稳性称为严平稳性。严平稳过

程的研究与遍历理论有密切的联系。如果上述对概率分布的要求放宽为仅对二阶相关

矩的要求,即过程在任意两时刻上的协方差随时间推移不变,则称这种平稳性为宽平

稳性。关于宽平稳过程的研究,辛钦、柯尔莫哥洛夫和维纳等人运用傅里叶分析和泛

函分析的工具,在 40 年代已经找出了过程的相关函数及过程本身的谱分解式,并且较完满地解决了有应用意义的预测问题。许多应用问题还要求根据观测数据去建立这

些数据所来自的随机过程的模型。为此产生了时间序列分析这一课题,提出了宽平稳序列的自回归滑动平均(ARMA )模型以及一些非线性模型。

鞅是另一类重要的随机过程。从20 世纪 30 年代起,莱维等人就开始研究鞅序列,把它作为独立随机变量序列的部分和的推广。40 年代到 50 年代初,杜布对鞅进行了系统的研究,得到有名的鞅不等式、停止定理和收敛定理等重要结果。 1962 年, P。A。迈耶解决了杜布提出的连续时间的上鞅分解为鞅及增过程之差的问题。在解决这个问题的过程中,出现了很多新鲜而深刻的概念,使鞅和随机过程一般理论的内容大

大丰富起来。鞅的研究丰富了概率论的内容,并引起人们用它所提供的新方法新概念

对概率论中许多经典的内容重新审议,把以往认为是复杂的东西纳入鞅论的框架而加

以简化。此外,利用上鞅的分解定理,可以把伊藤清的对布朗运动的随机积分推广到

对一般鞅乃至半鞅的随机积分;因而,更一般的随机微分方程的研究也随之发展。随

机微分方程理论不仅可以用来研究马尔可夫过程,它还是解决滤波问题的必要工具。

最近出现的流形上的随机微分方程又和微分几何及分析力学的研究发生了密切的联系。鞅论还对本学科以外的位势理论、调和分析及复变函数论等提供了有用的工具。

点过程是从所谓计数过程发展出来的,它们的特点是,可用落在不相重叠的集合

上的随机点数目的联合概率分布来刻画整个过程的概率规律。最基本的计数过程是泊

松过程, 1943 年, C。帕尔姆将它作为最简单的输入流应用于研究电话业务问题;

1955 年,辛钦又以严密的数学观点作了整理和发展。

在60 年代以前,点过程的研究主要限于泊松过程及其推广的过程。以后,由于大量实际问题的需要以及随机测度论和现代鞅论的推动,进一步把实轴上的点过程(即计数过程)推广到一般的可分完备度量空间上,在内容和方法上都有根本性的进展。

现代概率论的应用

概率论的发展史说明了理论与实际之间的密切关系。许多研究方向的提出,归根

到底是有其实际背景的。反过来,当这些方向被深入研究后,又可指导实践,进一步扩大和深化应用范围。概率论作为数理统计学的理论基础是尽人皆知的。下面简略介

绍一下概率论本身在各方面的应用情况。

在物理学方面,高能电子或核子穿过吸收体时,产生级联(或倍增)现象,在研究电了 - 光子级联过程的起伏问题时,要用到随机过程,常以泊松过程、弗瑞过程或

波伊亚过程作为实际级联的近似,有时还要用到更新过程(见点过程)的概念。当核子穿到吸收体的某一深度时,则可用扩散方程来计算核子的概率分布。物理学中的放射性衰变,粒子计数器,原子核照相乳胶中的径迹理论和原子核反应堆中的问题等的

研究,都要用到泊松过程和更新理论。湍流理论以及天文学中的星云密度起伏、辐射传递等研究要用到随机场的理论。探讨太阳黑子的规律及其预测时,时间序列方法非常有用。

化学反应动力学中,研究化学反应的时变率及影响这些时变率的因素问题,自动催化反应,单分子反应,双分子反应及一些连锁反应的动力学模型等,都要以生灭过程(见马尔可夫过程)来描述。

随机过程理论所提供的方法对于生物数学具有很大的重要性,许多研究工作者以

此来构造生物现象的模型。研究群体的增长问题时,提出了生灭型随机模型,两性增

长模型,群体间竞争与生克模型,群体迁移模型,增长过程的扩散模型等等。有些生物现象还可以利用时间序列模型来进行预报。传染病流行问题要用到具有有限个状态

的多变量非线性生灭过程。在遗传问题中,着重研究群体经过多少代遗传后,进入某一固定类和首次进入此固定类的时间,以及最大基因频率的分布等。

许多服务系统,如电话通信,船舶装卸,机器损修,病人候诊,红绿灯交换,存货控制,水库调度,购货排队,等等,都可用一类概率模型来描述。这类概率模型涉及的过程叫排队过程,它是点过程的特例。排队过程一般不是马尔可夫型的。当把顾客到达和服务所需时间的统计规律研究清楚后,就可以合理安排服务点。

在通信、雷达探测、地震探测等领域中,都有传递信号与接收信号的问题。传递信号时会受到噪声的干扰,为了准确地传递和接收信号,就要把干扰的性质分析清楚,然后采取办法消除干扰。这是信息论的主要目的。噪声本身是随机的,所以概率论是信息论研究中必不可少的工具。信息论中的滤波问题就是研究在接收信号时如何最大

限度地消除噪声的干扰,而编码问题则是研究采取什么样的手段发射信号,能最大限度地抵抗干扰。在空间科学和工业生产的自动化技术中需要用到信息论和控制理论,而研究带随机干扰的控制问题,也要用到概率论方法。

概率论进入其他科学领域的趋势还在不断发展。值得指出的是,在纯数学领域内用概率论方法研究数论问题已经有很好的结果。在社会科学领域,特别是经济学中研

究最优决策和经济的稳定增长等问题,也大量采用概率论方法。正如拉普拉斯所说:“生活中最重要的问题,其中绝大多数在实质上只是概率的问题。”

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计的发展

数理统计学前沿简介 (陈希孺院士访谈) 一、概率论与数理统计学的产生和发展 记者:陈希孺院士,请你谈谈概率论与数理统计学学科的诞生和发展情况。 陈希孺院士:我们先从数理统计学开始,数理统计学是研究收集数据、分析数据并据以对所研究的问题作出一定的结论的科学和艺术。数理统计学所考察的数据都带有随机性(偶然性)的误差。这给根据这种数据所作出的结论带来了一种不确定性,其量化要借助于概率论的概念和方法。数理统计学与概率论这两个学科的密切联系,正是基于这一点。 统计学起源于收集数据的活动,小至个人的事情,大至治理一个国家,都有必要收集种种有关的数据,如在我国古代典籍中,就有不少关于户口、钱粮、兵役、地震、水灾和旱灾等等的记载。现今各国都设有统计局或相当的机构。当然,单是收集、记录数据这种活动本身并不能等同于统计学这门科学的建立,需要对收集来的数据进行排比、整理,用精炼和醒目的形式表达,在这个基础上对所研究的事物进行定量或定性估计、描述和解释,并预测其在未来可能的发展状况。例如根据人口普查或抽样调查的资料对我国人口状况进行描述,根据适当的抽样调查结果,对受教育年限与收入的关系,对某种生活习惯与嗜好(如吸烟)与健康的关系作定量的评估。根据以往一般时间某项或某些经济指标的变化情况,预测其在未来一般时间的走向等,做这些事情的理论与方法,才能构成一门学问——数理统计学的内容。

这样的统计学始于何时?恐怕难于找到一个明显的、大家公认的起点。一种受到某些著名学者支持的观点认为,英国学者葛朗特在1662年发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。中世纪欧洲流行黑死病,死亡的人不少。自1604年起,伦敦教会每周发表一次“死亡公报”,记录该周内死亡的人的姓名、年龄、性别、死因。以后还包括该周的出生情况——依据受洗的人的名单,这基本上可以反映出生的情况。几十年来,积累了很多资料,葛朗特是第一个对这一庞大的资料加以整理和利用的人,他原是一个小店主的儿子,后来子承父业,靠自学成才。他因这一部著作被选入当年成立的英国皇家学会,反映学术界对他这一著作的承认和重视。 这是一本篇幅很小的著作,主要内容为8个表,从今天的观点看,这只是一种例行的数据整理工作,但在当时则是有原创性的科研成果,其中所提出的一些概念,在某种程度上可以说沿用至今,如数据简约(大量的、杂乱无章的数据,须注过整理、约化,才能突出其中所包含的信息)、频率稳定性(一定的事件,如“生男”、“生女”,在较长时期中有一个基本稳定的比率,这是进行统计性推断的基础)、数据纠错、生命表(反映人群中寿命分布的情况,至今仍是保险与精算的基础概念)等。 葛朗特的方法被他同时代的政治经济学家佩蒂引进到社会经济问题的研究中,他提倡在这类问题的研究中不能尚空谈,要让实际数据说话,他的工作总结在他去世后于1690年出版的《政治算术》一书中。 当然,也应当指出,他们的工作还停留在描述性的阶段,不是现代意义下的数理统计学,那时,概率论尚处在萌芽的阶段,不足以给数理统计学的发展提供充分的理论支持,但不能由此否定他们工作的重大意义,作为现代数理统计学发展的几个源头之一,他们以及后续学者在人口、社会、经济等

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

概率论与数理统计概率历史的介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,

而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

概率论与数理统计必考大题解题索引

概率论与数理统计必考大题解题索引 编制:王健 审核: 题型一:古典概型:全概率公式和贝叶斯公式的应用。 【相关公式】 全概率公式: ()()()()()() n 1122S P()=|()||()() (|)() =()(|)()(|). i n n E S A E B A P A B P B P A B P B P A B P B P AB P B A P A P A P A B P B P A B P B +++= =+12设实验的样本空间为,为的事件,B ,B ,……,B 为的划分,且>0,则有: P ?…其中有:。特别地:当n 2时,有: 贝叶斯公式: ()()i 1 00(1,2,,),()(|)() (|)()(|)() =()(|)() (|)()(|)()(|)() i i i i n i i j E S A E A P B i n P B A P A B P B P B A P A P A B P B P AB P A B P B P B A P A P A B P B P A B P B =>>===== +∑12n 设实验的样本空间为。为的事件,B ,B ,……,B 为S 的一个划分,且P ,……则有:特别地: 当n 2时,有: 【相关例题】 1.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。现从出厂的产品中任取一件,求: (1)恰好取到不合格品的概率; (2)若已知取到的是不合格品,它是第二家工厂生产的概率。 解:设事件 表示:“取到的产品是不合格品”;事件i A 表示:“取到的产品是第i 家工 厂生产的”(i =123,,)。 则Ω== 3 1i i A ,且P A i ()>0,321A A A 、、两两互不相容,由全概率公式得 (1)∑=?=3 1 )|()()(i i i A A P A P A P 1000/37100 210035100410025100510040=?+?+?=

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率论与数理统计知识点总结详细

概率论与数理统计知识 点总结详细 Document number:PBGCG-0857-BTDO-0089-PTT1998

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

(完整word版)概率论与数理统计教案(48课时)

《概率论与数理统计》课程教案 第一章 随机事件及其概率 一.本章的教学目标及基本要求 (1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,; (3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。了解概 率的公理化定义。 (5) 理解条件概率、全概率公式、Bayes 公式及其意义。理解事件的独立性。 二.本章的教学内容及学时分配 第一节 随机事件及事件之间的关系 第二节 频率与概率 2学时 第三节 等可能概型(古典概型) 2 学时 第四节 条件概率 第五节 事件的独立性 2 学时 三.本章教学内容的重点和难点 1) 随机事件及随机事件之间的关系; 2) 古典概型及概率计算; 3)概率的性质; 4)条件概率,全概率公式和Bayes 公式 5)独立性、n 重伯努利试验和伯努利定理 四.教学过程中应注意的问题 1) 使学生能正确地描述随机试验的样本空间和各种随机事件; 2) 注意让学生理解事件,,,,,A B A B A B A B AB A ???-=Φ…的具体含义,理解 事件的互斥关系; 3) 让学生掌握事件之间的运算法则和德莫根定律; 4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组 合,复习排列、组合原理; 5) 讲清楚抽样的两种方式——有放回和无放回; 五.思考题和习题 思考题:1. 集合的并运算?和差运算-是否存在消去律?

2. 怎样理解互斥事件和逆事件? 3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点? 习题: 第二章 随机变量及其分布 一.本章的教学目标及基本要求 (1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续 型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律 或密度函数及性质; 二.本章的教学内容及学时分配 第一节 随机变量 第二节 第二节 离散型随机变量及其分布 离散随机变量及分布律、分布律的特征 第三节 常用的离散型随机变量 常见分布(0-1分布、二项分布、泊松分布) 2学时 第四节 随机变量的分布函数 分布函数的定义和基本性质,公式 第五节 连续型随机变量及其分布 连续随机变量及密度函数、密度函数的性质 2学时 第六节 常用的连续型随机变量 常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时 三.本章教学内容的重点和难点 a) 随机变量的定义、分布函数及性质; b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何 事件的概率; c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布); 四.教学过程中应注意的问题 a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解; b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系; c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系; d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任

《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学) 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ??? ????=n n n n o S 1001, ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生 表示为:A+B+C (4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾). 从而由加法定理得 P (AB )=P (A )+P (B )-P (A ∪B ) (*) (1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6, (2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。 7.[四] 设A ,B ,C 是三事件,且0)()(,4 1 )()()(=== ==BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )

概率论与数理统计数学实验

概率论与数理统计数学实验 目录 实验一几个重要的概率分布的MATLAB实现 p2-3 实验二数据的统计描述和分析 p4-8 实验三参数估计 p9-11 实验四假设检验 p12-14 实验五方差分析 p15-17 实验六回归分析 p18-27

实验一 几个重要的概率分布的MATLAB 实现 实验目的 (1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解 Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。 例1 求正态分布()2,1-N ,在x=1.2处的概率密度。 解:在MATLAB 命令窗口中输入: normpdf(1.2,-1,2) 结果为: 0.1089 例2 求泊松分布()3P ,在k=5,6,7处的概率。 解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3) 结果为: 0.1008 0.0504 0.0216 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。 解:在MATLAB 命令窗口中输入: unifcdf(2.5,1,3)-unifcdf(-2,1,3) 结果为: 0.75000

例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。 解:在MATLAB 命令窗口中输入: norminv(0.995,1,2) 结果为: 6.1517 例5 求t 分布()10t 的期望和方差。 解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v = 1.2500 例6 生成一个2*3阶正态分布的随机矩阵。其中,第一行3个数分别服从均值为1,2,3;第二行3个数分别服从均值为4,5,6,且标准差均为0.1的正态分布。 解:在MATLAB 命令窗口中输入: A=normrnd([1 2 3;4 5 6],0.1,2,3) A = 1.1189 2.0327 2.9813 3.9962 5.0175 6.0726 例7 生成一个2*3阶服从均匀分布()3,1U 的随机矩阵。 解:在MATLAB 命令窗口中输入: B=unifrnd(1,3,2,3) B = 1.8205 1.1158 2.6263 2.7873 1.7057 1.0197 注:对于标准正态分布,可用命令randn(m,n);对于均匀分布()1,0U ,可用命令rand(m,n)。

概率论与数理统计浙大版概述

§3.2 二维 r.v.的条件分布 ,2,1,,),(====j i p y Y x X P ij j i 设二维离散型 r.v. ( X ,Y )的分布 若 )(1>===∑∞ =?j ij i i p x X P p 则称 ? = ===i ij i j i p p x X P y Y x X P )(),(为在 X = x i 的条件下, Y 的条件分布律 ,2,1=j ) (i j x X y Y P ===记作 二维离散 r.v.的条件分布律

若 , 0)(1 >===∑∞ =?i ij j j p y Y P p 则称 j ij j j i p p y Y P y Y x X P ?====)(),(为在 Y = y j 的条件下X 的条件分布律 ,2,1=i ) (j i y Y x X P ===记作 类似乘法公式 ) ()(),(i j i j i x X y Y P x X P y Y x X P ======) ()(j i j y Y x X P y Y P ====或 ,2,1,=j i

类似于全概率公式 ) ,()(1 1∑∑∞ =∞======j j i j ij i y Y x X P p x X P ) ()(1 j j j i y Y P y Y x X P ====∑∞ = ,2,1=i ) ,()(1 1∑∑∞ =∞======i j i i ij j y Y x X P p y Y P ) ()(1i i i j x X P x X y Y P ====∑∞ = ,2,1=j

例1把三个球等可能地放入编号为 1, 2, 3 的三个盒子中, 每盒可容球数无限. 记X 为落入 1 号盒的球数, Y 为落入 2 号盒的球数,求 (1) 在Y = 0 的条件下,X 的分布律; (2) 在X = 2 的条件下,Y 的分布律.

概率论与数理统计考试试卷与答案

0506 一.填空题(每空题2分,共计60 分) 1、A、B 是两个随机事件,已知p(A) 0.4,P(B) 0.5,p(AB) 0.3 ,则p(A B) 0.6 , p(A -B) 0.1 ,P(A B)= 0.4 , p(A B) 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2 只,则第一次、第二次取红色球的概率为:1/3 。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25 。( 3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。 3、设随机变量X 服从B(2,0.5)的二项分布,则p X 1 0.75, Y 服从二项分 布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从B(100,0.5),E(X+Y)= 50 , 方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、 0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取 一件。 ( 1)抽到次品的概率为:0.12 。 2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 6、若随机变量X ~N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则P{ 2 X 4} 0.815 , Y 2X 1,则Y ~ N( 5 ,16 )。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1 ,D(Y)=2, 且 X、Y 相互独立,则:E(2X Y) - 4 ,D(2X Y) 6 。 8、设D(X) 25 ,D( Y) 1,Cov( X ,Y) 2,则D(X Y) 30 9、设X1, , X 26是总体N (8,16)的容量为26 的样本,X 为样本均值,S2为样本方 差。则:X~N(8 ,8/13 ),25S2 ~ 2(25),X 8 ~ t(25)。 16 s/ 25 10、假设检验时,易犯两类错误,第一类错误是:”弃真” ,即H0 为真时拒绝H0, 第二类错误是:“取伪”错误。一般情况下,要减少一类错误的概率,必然增大另一类错误的概率。如果只对犯第一类错误的概率加以控制,使之

相关文档
相关文档 最新文档