文档库 最新最全的文档下载
当前位置:文档库 › VRLA蓄电池在光伏系统的应用

VRLA蓄电池在光伏系统的应用

VRLA蓄电池在光伏系统的应用
VRLA蓄电池在光伏系统的应用

VRLA蓄电池在光伏系统的应用

中国幅员辽阔,人口分布不均,东密西疏,因地理环境和经济相对落后等原因,造成一些地区的电力相对匮乏,国家电力电网无法覆盖,无法集中供电,或者电网质量不稳定,给当地的经济发展,人民生活的改善造成一定的障碍。尤其在中国的北方、西北等地问题尤为突出,迫切需要有适合当地区使用的稳定可靠的电力系统。现在常用的单独供电系统有发电机组、太阳能系统、风力发电系统、风光互补系统。

发电机组,以一次能源作为动力源推动内燃机,内燃机传动发电机,发电机做磁力线切割运动产生电能。而一次能源资源越来越稀少,价格越来越高,并且严重影响自然环境。

太阳能系统、风力发电系统、风光互补系统,以自然界取之不尽用之不完的光能、风能作为能量源,通过一定装换装置转化为可以使用的电能,此能源自然、环保,充分体现了节能、环保、爱地球的理念。而此类电源能够持续供电的能力需要储能设备提供保障,目前主要使用的储能设备有镉镍电池、VRLA蓄电池。但由于成本,原材料缺乏等原因,镉镍电池逐步被VRLA蓄电池取代。下面以光伏系统为例介绍一下VRLA蓄电池在光伏系统的应用。

光伏系统介绍

一.光伏系统的工作原理

在光照条件好的情况下,太阳电池组件产生一定的电动势,通过组件的串并联形成太阳能电池方阵,使得方阵电压达到系统输入电压的要求。一部分供给电力系统使用,一部分通过充放电控制器对蓄电池进行充电,将光能转换而来的电能储存起来。在光照条件达不到要求时,蓄电池组再通过逆变器提供电力系统所需的电力。

二.光伏系统的组成

光伏系统是由太阳能电池方阵,蓄电池组,充放电控制器,逆变器等设备组成。其各部分设备的作用是:

(1)太阳能电池方阵:在有光照情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生"光生电压",这就是"光生伏打效应"。在光生伏打效应的作用下,太阳能电池的两端产生电动势,将光能转换成电能,是能量转换的器件。太阳能电池一般为硅电池,分为单晶硅太阳能电池,多晶硅太阳能电池和非晶硅太阳能电池三种。

(2)蓄电池组:其作用是储存太阳能电池方阵受光照时发出的电能并可随时向负载供电。

(3)控制器:自动控制电力的选择,在市电、太阳能电、蓄电池电之间选择,对蓄电池充电。

(4)逆变器:是将直流电转换成交流电的设备。

光伏系统对蓄电池性能要求分析

一.光伏发电系统用蓄电池的工作条件

在光伏电站使用环境中,光照条件好时(白天),太阳能电池组件接收太阳光,输出电能,一部分直流和交流负载工作,另一部分供给蓄电池充电;光照条件不好时(夜晚或阴雨

天),太阳能电池组件无法工作,蓄电池组供电,供给直流或交流负载,蓄电池是处于循环状态,所以,在这种使用环境下,蓄电池的寿命为循环寿命。

应用于光伏系统中的蓄电池的工作条件和蓄电池应用在其它场合的工作条件不同。其主要区别可以概括为以下几点:

(1)充电率非常小, 由于成本,位置空间等问题,太阳电池投入数量会受到很大的限制,为了保证电力系统的正常使用,往往提供给蓄电池的充电电力变得十分有限,平均充电电流一般为0.05C10~0.1C10,很少达到0.1C10A。

(2)放电率非常小,太能系统设计时需要考虑到最大负载容量,最长后备时间,配置的蓄电池容量较大,而实际使用过程中负载相对设计负载小得多,蓄电池放电率通常为C20~C240,或者更小。

(3)由于受到自然资源的限制,蓄电池只有在有日照时才能充电:即充电时间受到限制。

(4)不能按给定的充电规律对蓄电池进行充电。

二.光伏发电系统对VRLA蓄电池的性能要求

光伏发电系统中的蓄电池频繁处于充电—放电的反复续循环中,由于日照的不稳定性,过充电和深放电的不利情况时有发生,加之光伏发电系统大部分在西部地区使用,海拔都在2500M以上。因此,对光伏发电系统中的蓄电池有如下要求:

(1)具有深循环放电性能,充放电循环寿命长;

(2)耐过充电能力强;

(3)过放电后容量恢复能力强;

(4)良好的充电接受能力;

(5)电池在静态环境中使用时,电解液不易分层;

(6)具有免维护或少维护的性能;

(7)应具备良好的高、低温充放电特性;

(8)能适应高海拔(海拔都在2500M以上)地区的使用环境;

(9)蓄电池组中各蓄电池一致性良好。

太阳能光伏发电系统(PVsyst运用)

扬州大学能源与动力工程学院本科生课程设计 题目:北京市发电系统设计 课程:太阳能光伏发电系统设计 专业:电气工程及其自动化 班级:电气0703 姓名:严小波 指导教师:夏扬 完成日期: 2011年3月11日

目录 1光伏软件Meteonorm和PVsyst的介绍---------------------------------------------3 1.1 Meteonorm--------------------------------------------------------------------------3 1.2 PVsyst-------------------------------------------------------------------------------4 2中国北京市光照辐射气象资料-------------------------------------------------------11 3独立光伏系统设计----------------------------------------------------------------------13 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)-----------------------------13 3.2蓄电池容量设计(电压:24V,48V)----------------------------------------13 3.3太阳能电池板容量设计,倾角设计--------------------------------------------13 3.4太阳能电池板安装间隔计算及作图。-----------------------------------------16 3.5逆变器选型--------------------------------------------------------------------------17 3.6控制器选型--------------------------------------------------------------------------17 3.7系统发电量预估--------------------------------------------------------------------18

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计 1引言 开发新能源和可再生资源是全世界面临的共同课题,在新能源中,太阳能发电已成为全球发展最快的技术。太阳能作为一种清洁无污染的能源,开发前景十分广阔。然而由于太阳存在着间隙性,光照强度随着时间不断变化等问题,这对太阳能的收集和利用装置提出了更高的要求(见图1)。目前很多太阳能电池板阵列基本都是固定的,不能充分利用太阳能资源,发电效率低下。据测试,在太阳能电池板阵列中,相同条件下采用自动跟踪系统发电设备要比固定发电设备的发电量提高35%左右。 所谓太阳能跟踪系统是能让太阳能电池板随时正对太阳,让太阳光的光线随时垂直照射太阳能电池板的动力装置,能显著提高太阳能光伏组件的发电效率。目前市场上所使用的跟踪系统按照驱动装置分为单轴太阳能自动跟踪系统和双轴太阳能自动跟踪系统。所谓单轴是指仅可以水平方向跟踪太阳,在高度上根据地理和季节的变化人为的进行调节固定,这样不仅增加了工作量,而且跟踪精度也不够高。双轴跟踪可以在水平方位和高度两个方向跟踪太阳轨迹,显然双轴跟踪优于单轴跟踪。 图1 太阳能的收集装置现场 从控制手段上系统可分为传感器跟踪和视日运动轨迹跟踪(程序跟踪)。传感器跟踪是利用光电传感器检测太阳光线是否偏离电池板法线,当太阳光线偏离电池板法线时,传感器发出偏差信号,经放大运算后控制执行机构,使跟踪装置从新对准太阳。这种跟踪装置,灵敏度高,但是遇到长时间乌云遮日则会影响运行。视日运动轨迹跟踪,是根据太阳的实际运行轨迹,按照预定的程序调整跟踪装置。这种跟踪方式能够全天候实时跟踪,其精度不是很高,但是符合运行情况,应用较广泛。 从主控单元类型上可以分为PLC控制和单片机控制。单片机控制程序在出厂时由专业人员编写开发,一般设备厂家不易再次进行开发和参数设定。而学习使用PLC比较容易,通过PLC厂家技术人员的培训,设备使用厂家的技术人员可以很方便的学会简单的调试和编写,并且PLC能够提供多种通讯接口,通讯组网也比较方便简单。

独立光伏系统设计

独立光伏系统设计 姓名:周玉湘班级:2011级应用物理班学号:20111043104 摘要:独立光伏发电系统也叫离网光伏发电系统。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。太阳能是各种可再生能源中基本能源,而太阳能发电又是太阳能最重要的应用。随着不可再生能源的消耗,经济所需能源日益增长,应该注重可再生能的开发与利用。独立光伏系统的开发,可以解决部分偏远地区并网用电不方便的问题,从而大大的方便了人们的生活且节约了资源。 关键词:独立、组成、设计、可再生 引言:太阳能发电系统分大小,但基本流程是:用电设备输入电压、功率、每天工作时间、 连续阴雨天天数考虑、当地日照时间查询、气象查询等综合因数,然后根据这些设计太阳能 系统配置。 一、光伏技术概论 太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、海洋能、水能等都来自太阳能,广义地说,太阳能包含以上各种可再生能源。太阳能作为可再生能源的一种,则是指太阳能的直接转化和利用。通过转换装置把太阳辐射能转换成热能利用的属于太阳能热利用技术,再利用热能进行发电的称为太阳能热发电,也属于这一技术领域;通过转换装置把太阳辐射能转换成电能利用的属于太阳能光发电技术,光电转换装置通常是利用半导体器件的光伏效应原理进行光电转换的,因此又称太阳能光伏技。 光生伏特效应简称为光伏效应,指光照使不均匀半导体或半导体与金属组合的不同部位之间产生电位差的现象。光生伏特效应就是光伏系统设计的核心技术环节。 产生这种电位差的机理有好几种,主要的一种是由于阻挡层的存在。以下以P-N结为例说明。 同质结可用一块半导体经掺杂形成P区和N区。由于杂质的激活能量ΔE 很小,在室温下杂质差不多都电离成受主离子N A -和施主离子N D +。在PN区交 界面处因存在载流子的浓度差,故彼此要向对方扩散。设想在结形成的一瞬间,在N区的电子为多子,在P区的电子为少子,使电子由N区流入P区,电子与空穴相遇又要发生复合,这样在原来是N区的结面附近电子变得很少,剩下未经中和的施主离子N D +形成正的空间电荷。同样,空穴由P区扩散到N

光伏发电系统中太阳电池和蓄电池组的安装

INDUSTRY FORUM| 技术应用| 光伏发电系统中 太阳电池和蓄电池组的安装 1 太阳电池方阵的安装 太阳电池方阵有3种安装形式:(1)安装在柱上;(2)安装在地面上;(3)安装在屋顶上。采用哪一种安装形式取决于诸多因素,包括方阵尺寸、可利用的空间、采光条件、防止破坏和盗窃、风负载、视觉效果及安装难度等。除“屋顶集成”的光伏模块外,所有太阳电池方阵都要求使用金属支架,支架除要有一定强度外,还要有利于固定和支撑。方阵的框架应该十分坚固,要有足够的硬度,重量要轻。方阵支架必须能经受大风和冰雪堆积物的附加重,不会因为人为的和一些大动物破坏造成方阵坍塌。 方阵支架需要地脚支柱,目的有2个:(1)离地面有一定高度,便于通风;(2)北方冬季堆积在太阳电池板下面的雪可能会腐蚀电池板,地脚支柱可防止融化的雪落到电池板上。 一年之内,至少在夏天和冬天改变2次电池板倾角,以此方式固定的太阳电池方阵有利于增加发电量。而且,手动改变倾角的太阳电池板对风压的耐受能力较好。 决定在屋顶安装电池板之前,工作人员中最好有一个建筑工程师,先检查一下屋顶。要确定屋顶能否承受附加的太阳电池板的重量、要安装的设备重量、堆积的冰雪重量以及安装期间站在屋顶上人的重量等。 太阳电池板应该面向中午的太阳,而不需要对着指 南针的方向,这一点在地志图和太阳能参考书中都有说

INDUSTRY FORUM| 技术应用| 明。太阳电池板与水平面的最小倾角是10°,这样可使落在太阳电池板上的雨水很快地滑落到地面上,从而保持了电池板表面的清洁。 在这3种安装形式中,在地面上安装是最简单的。在柱上安装太阳电池板的难度依电池板离地的高度而定。而在屋顶上安装电池板的难度由屋顶是否陡峭而定。在比较陡的屋顶上工作不仅非常危险,而且也更加耗时费力。绳子、铲车、脚手架可以提高安装速度。在安装过程中,太阳电池板的表面应该用东西覆盖,从而减小对电池板电气性能的损伤。在光伏电站四周修建围墙是一种常规做法,可以保证系统安全,使牲畜无法靠近设备。 2 蓄电池组的安装 蓄电池的安装须注重以下要点:安全、布线、温度、腐蚀、通风和灰尘等。 构成蓄电池的原材料(铅和硫酸)、蓄电池的重量以及能量释放方式,都使蓄电池的使用具有不安全因素。蓄电池内部经常含有腐蚀性的酸,这种酸不仅可以烧伤皮肤、眼睛,也可以损坏衣服。在对蓄电池进行操作时要佩戴保护装置,如护目镜、手套和围裙等。中和剂(碳酸氢钠是其中很有效的一种)和清洗水应该放在四周,以便在皮肤和眼睛沾上酸后进行清洗。所有设备的把手都应该是绝缘的。在抬放蓄电池时必须小心,以防止设备损坏,较大的深循环电池在移动时需要使用铲车。 蓄电池是电化学设备,对温度很敏感。此外,蓄电池电解液含有水,假如水结冰,则蓄电池可能会永久性损坏。大多数蓄电池都有最佳的温度范围,可将电池置于绝热容器里或采取措施防止太阳光直射。大多数昂贵的蓄电池装有有源温度控制系统,例如,液体冷却系统、防冻系统或者包裹在蓄电池外面的电“毯”。因此,蓄电池室和容器必须保持清洁。多数类型的蓄电池都会释放出气体,这些气体可能具有腐蚀性,也可能会爆炸,因此必须提供足够的通风,以防止这些气体积聚。 蓄电池组既可以放在单独的容器里,也可以放在室内。装有相当小的蓄电池组的器皿,应该用抗腐蚀性材料制成,例如塑料。大的蓄电池组可以装在便于运输的大容器里,也可放在建筑房屋内。任何情况下,都应把蓄电池和系统的其他部分隔离开来。 蓄电池的正确布线,对系统的安全和效率都十分重要。大多数蓄电池组由许多单个蓄电池组成,对这些单个蓄电池进行串、并联,以获得需要的电压和电流特性。任何引起电流和电压不稳定的因素都可能使蓄电池组里的某些单个电池过充电,也可能使某些单个电池充电不足,假如这种情况持续一段时间,可能会使蓄电池永久性损坏。导致蓄电池出现上述问题的原因有:连接点接触不良、连接处受腐蚀、连接线过长、过多的并联支路或没有采用防反电路等。最后,还应注重将标有正、负极的电缆正确地连接到蓄电池组的对应端。此外,应尽量使多支路蓄电池组的每条支路的参数、连接都完全一致。例如,一条支路的蓄电池引线比另一条支路的蓄电池引线长,这可能会增加较长蓄电池引线支路的内部阻抗,使该支路阻抗变大,这样会造成另一条支路的蓄电池过度使用。

关于编制太阳能光伏发电自动跟踪系统项目可行性研究报告编制说明

太阳能光伏发电自动跟踪系统项 目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司 编制时间:https://www.wendangku.net/doc/9013768816.html, 高级工程师:高建

关于编制太阳能光伏发电自动跟踪系统项 目可行性研究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (8) 2.1项目提出背景 (8) 2.2本次建设项目发起缘由 (8) 2.3项目建设必要性分析 (8) 2.3.1促进我国太阳能光伏发电自动跟踪系统产业快速发展的需要 (9) 2.3.2加快当地高新技术产业发展的重要举措 (9) 2.3.3满足我国的工业发展需求的需要 (9) 2.3.4符合现行产业政策及清洁生产要求 (9) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (10) 2.3.6增加就业带动相关产业链发展的需要 (10) 2.3.7促进项目建设地经济发展进程的的需要 (11) 2.4项目可行性分析 (11) 2.4.1政策可行性 (11) 2.4.2市场可行性 (11) 2.4.3技术可行性 (12) 2.4.4管理可行性 (12) 2.4.5财务可行性 (13) 2.5太阳能光伏发电自动跟踪系统项目发展概况 (13)

PVsyst家用独立光伏发电系统的优化设计.

《太阳能光伏发电原理与应用》 课程设计 课题名称:家用独立光伏发电系统的优化设计 专业班级: 学生学号: 学生姓名: 学生成绩: 指导教师:刘国华 课题工作时间:2012.6.11 至2012.6.15 武汉工程大学教务处

一、课程设计的任务和要求 要求:1、具备独立查阅光伏发电器件参数、光伏发电控制电路、光伏发电系统设计相关文献和资料的能力;能提出并较好地的实施方案;具有收集、加 工各种信息及获得新知识的能力。 2、具备独立设计光伏发电系统的能力,能对光伏发电系统的结构配置进行 研究、分析及优化的能力。 3、具备采用计算机软件进行数值计算、仿真、绘图等能力。 4、工作努力,遵守纪律,工作作风严谨务实,按期圆满完成规定的任务。 5、综述简练完整,立论正确,论述充分,结论严谨合理;文字通顺,技术 用语准确,符号统一,编号齐全,书写工整规范,图表完备、整洁、正 确。 6、工作中有创新意识,对前人工作有一定改进或独特见解。 7、内容不少于3000字,图和计算结果可以打印。 技术参数:1、光伏发电系统安装地点:武汉; 2、使用非晶硅光伏电池; 3、负载表 数量功率使用时间 荧光灯8 18w/盏5h/天 电视机,电脑 2 120w/个3h/天 洗衣机 1 600wh/天 电冰箱 1 1000wh/天 任务:1、选择适当的光伏电池、蓄电池、逆变器和控制器; 2、设计合适的光伏发电系统电路原理图; 3、利用PVsyst软件模拟优化此电路,对结果进行分析和总结。 二、进度安排 1、2012.6.11 选题、熟悉PVsyst软件 2、2012.6.12 分析查找资料、提出设计方案 3、2012.6.13 光伏发电系统各部件的选型、系统的优化设计 4、2012.6.14 讨论、修改、进一步优化方案,写出初稿 5、2012.6.15 整理课程设计报告、交稿 三、参考资料或参考文献 1、杨金焕、于化丛、葛亮著. 太阳能光伏发电应用技术. 第1版. 电子工业出版 社. 2009年。 2、李钟实著. 太阳能光伏发电系统设计施工与维护. 第1版. 人民邮电出版社. 2010年。 3、PVsyst软件应用教程。 指导教师签字:刘国华2012年 6 月 1 日 教研室主任签字:2012年6 月2 日

光伏发电技术及应用

巩义三中专“光伏发电技术及应用”专业 一、培养规格与培养目标 培养规格:中职,初中起点三年制两年的在校学习,半年实习,半年顶岗实习,三年后完成学业发中专毕业证;高中起点一年制,主要学习专业理论和专业技能课,一年后完成规定的学业,发放专业合格证,安排就业。 培养目标:本专业面向光伏发电系统,培养德、智、体、美全面发展,适应光伏发电产业发展需要,具有光伏发电基础理论知识,系统掌握光伏发电及应用技术,具有现代企业管理意识,能在光伏发电及应用领域,包括电能检测、设备控制、发电技术管理等方面能够胜任岗位需要的中、初级技术应用性人才。 二、课程模块设置 本专业中专起点共设置4个模块,分别是:公共基础课、专业基础课、专业课、实践课。 高中起点设置3个模块,分别是:专业基础课、专业课、实践课。 三、课程设置 中专起点: 1.公共基础课。 (1)德育课:职业生涯规划、职业指导与法律、经济政治与社会、哲学与人生。 (2)文化基础课:语文、数学、英语、物理、化学、计算机应用基础、体育与健康教育。 (3)选修课:普通话口语训练、礼仪与交际、书法。

2.专业基础课。电工电子技术、光伏发电系统概论、机械制图、机械基础。 3.专业课。 (1)必修课:太阳能光伏发电技术、太阳电池原理与工艺、太阳电池材料。 (2)选修课:太阳能光伏发电系统工程、光伏检测与分析、单片机技术。 4.本专业统设必修综合实践包括电工与电子学实验、金工实习、综合实训(光伏)。 高中起点: 1.专业基础课。电工电子技术、光伏发电系统概论、机械制图。 2.专业课。 (1)必修课:太阳能光伏发电技术、太阳电池原理与工艺、太阳电池材料。 (2)选修课:太阳能光伏发电系统工程、光伏检测与分析、单片机技术。 就业面向:具有在太阳能光伏系统及相关领域从事系统安装与维护、调试、生产运行、技术管理、产品检测与质量控制等方面的工作能力。毕业生主要面向光伏企业。也可以从事光伏专业职业教育的实践教学工作。 2010年12月6日

100kW光伏并网发电系统典型案例解

100kW光伏并网发电系统典型案例解 100kW光伏并网发电系统典型案例解析 1、项目地点分析 本项目采用光伏并网发电系统设计方案,应用类别为村级光伏电站项目。项目安装地为江西,江西位于位于中国的东南部,长江中下游南岸。地处北纬24°29′-30°04′,东经113°34′-118°28′之间。项目所在地坐标为北纬25°8′,东经114°9′。根据查询到的经纬度在NASA上查询当地的峰值日照时间如下: (以下数据来源于美国太空总署数据库) 从上表可以看出,项目建设地江西在国内属于二三类太阳能资源地区,年平均太阳能辐射量峰值平均每天为3.41kWh/m2,年平均太阳能总辐射量峰值为:3.41kWh/m2*365=1244.65 kWh/m2。 2、光伏组件 2.1光伏组件的选择 本项目选用晶硅太阳能电池板,单块功率为260Wp。下面是一组多晶硅的性能参数,组件尺寸为1650*990*35mm。 2.2光伏组件安装角度

根据项目所在地理位置坐标,项目所在地坐标为项目所在地坐标为北纬25°8′,东经114°9′,光伏组件安装最佳倾角为20°如下图所示: 2.3组件阵列间距及项目安装面积 采用260Wp的组件,组件尺寸为1650*990*35mm,共用400块太阳能电池板, 总功率104kWp。根据下表公式可以计算出组件的前后排阵列间距为2.4m,单 块组件及其间距所占用面积为2.39㎡。

104kWp光伏组件组成的光伏并网发电系统占地面积为2.39*400=956㎡,考虑到安装间隙、周围围墙等可能的占地面积,大约需要1000㎡。 3、光伏支架 本项目为水平地面安装,采用自重式支架安装方式。自重式解决方案适用于平屋顶及地面系统。利用水泥块压住支架底部的铝制托盘,起到固定系统的作用。

自动跟踪太阳能光伏发电系统方案

自动跟踪太阳能光伏发电系统方案 方案需求 ?光伏发电管理急需精细化,降本增效。 ?传统光伏支架未能最大化利用太阳能,无法跟踪光照。 ?光伏板依靠本地维护人员巡检管理,人工成本高,且存在漏检现象。 方案介绍 宇飞太阳能自主研发的自动跟踪太阳能光伏发电系统,是一种能随着太阳角度变化,按照一定的算法,控制太阳能板转动,增加有效受光面积,从而增加电厂发电量带来更高收益的自动化控制系统,可以理解为“向日葵”。 自动跟踪太阳能光伏发电系统其实是一套负反馈控制系统,工控机采集角度传感器信息后,根据当前角度与目标角度的差异,下发控制指令驱动电机带动推拉杆运动使太阳能板旋转,直至采集回来的当前角度与目标角度吻合。 系统组成 自动跟踪太阳能光伏发电系统由:太阳能跟踪支架,太阳能组件,带监控模块的MPPT控制器,蓄电池,逆变器及连接线缆组成。 太阳能跟踪支架规格参数

1、立柱直径:φ220mm 2、立柱高度:650mm 3、安装容量:最大6块450W 4、光伏板倾角:25度角度固定 5、抗风能力:14级,带细钢丝绳斜拉结构; 6、材料:不锈钢材料 7、旋转精度:1度 8、旋转速率:12分钟旋转半圈 9、旋转角度:220度, 10、提高发电量:天气晴好情况下,冬季提高发电量15%;春秋季提高30%;夏季提高45%;综合全年提高25-35%(不同地区发电量提高有区别) 11、控制器电源:12V由光伏板输出供电(或者提供集中12V 直流供电) 12、控制方式:将光伏板固定好,并将追日控制器接好电源线后,天气晴朗条件下旋转立柱自动带着光伏板跟踪太阳;在天阴时,自动转入时控控制状态,每隔5分钟自动旋转1度; 13、而且每个旋转立柱内部都有同步控制系统,确保每台旋转立柱每次旋转的角度完全一致,光伏板以最强光强功率发电。晚上天黑,自动回东。 14、由多个旋转立柱组成的各种规模的光伏电站,由于旋转立柱的东限位位置全部一致,旋转立柱内置机械同步装置,可以确

太阳能光伏系统的分类

太阳能光伏系统的分类 目录 内容提要 (2) 引言 (2) 1.小型太阳能供电系统(SmallDC) (3) 2.简单直流系统(SimpleDC) (3) 3.大型太阳能供电系统(LargeDC) (3) 4.交流、直流供电系统(AC/DC) (3) 5.并网系统(UtilityGridConnect) (4) 6.混合供电系统(Hybrid) (4) 7.并网混合供电系统(Hybrid) (7)

太阳能光伏系统的分类详细介绍 关键词: 光伏系统独立系统混合系统 一般我们将光伏系统分为独立系统、并网系统和混合系统。如果根据太阳能光伏系统的应用形式,应用规模和负载的类型,对光伏供电系统进行比较细致的划分。还可以将光伏系统细分为如下六种类型:小型太阳能供电系统(SmallDC);简单直流系统(SimpleDC);大型太阳能发电系统(LargeDC);交流、直流供电系统(AC/DC);并网系统(UtilityGridConnect);混合供电系统(Hybrid);并网混合系统。下面就每种系统的工作原理和特点进行说明。 1.小型太阳能供电系统(SmallDC) 该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。如在我国西部地区就大面积推广使用了这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。 2.简单直流系统(SimpleDC) 该系统的特点是系统中的负载为直流负载而且对负载的使用时间没有特别 的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控制器,系统结构简单,直接使用光伏组件给负载供电,省去了能量在蓄电池中的储存和释放过程,以及控制器中的能量损失,提高了能量利用效率。其常用于PV水泵系统、一些白天临时设备用电和一些旅游设施中。下图显示的就是一个简单直流的PV水泵系统。这种系统在发展中国家的无纯净自来水供饮的地区得到了广泛的应用,产生了良好的社会效益。

光伏发电系统中蓄电池研究报告

光伏发电系统中蓄电池的研究.txt48微笑,是春天里的一丝新绿,是骄阳下的饿一抹浓荫,是初秋的一缕清风,是严冬的一堆篝火。微笑着去面对吧,你会感到人生是那样温馨。本文由yungfily贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。毕业设计<论文)开题报告 1.文献综述:结合毕业设计<论文)课题情况,根据所查阅的文献资料,每人撰写2500 字以上的文献综述,文后应列出所查阅的文献资料。 文献综述 引言 当阳光照射到太阳能电池时,可在没有机械转动或污染性副产物的情况下,将入射能量直接转换为电能。太阳能电池早已不再是实验室仅有的珍品,它已有几十年的使用历史,从最初的航天用电池,到现在的地面电力系统。在不久的将来,这类电池的制造技术很可能得到显著改进。这样,太阳能电池将可以在核实的价格下生产,从而对世界能源需求做出重要贡献。 太阳能发电发展史 太阳光发电的历史可以追溯到 1800 年,伯克莱氏发现对某种半导体材料照光后,会引起其福安特性的改变。最终,发现了光伏效应,并以此半导体制成太阳能电池。其后,对硒、氧化铜等半导体材料研究,同样发现此种光伏显影,也制成类似的太阳能电池。1954 年,美国贝尔实验室的皮尔松、佛朗等三名科学家利用硅晶体材料开发出性能良好的太阳能电池,其变换效率达到6%,经过不断改良后成为现在的硅太阳能电池的原型。在应用方面,硅太阳能电池最早用于人造卫星<美国先驱者 1 号)的电源,继后用于孤岛的灯塔、远离城市的山顶无线电中继站等特殊场合。1976 年,美国CA 公司的卡尔松发明了非晶硅太阳能电池。该电池的变换效率虽低于单晶硅,但制造时可以任意选配电压电流比,故大量用于计算机、手机和各种家用电子产品作为电源。由于太阳能电池较其他能源价格高,目前,它在与常规能源<火力、水力发电)的竞争XX处于劣势地位,需要政府在政策与法律方面给予资助才能促进其发展和普及。例如,德国在 1991 年发布了鼓励“再生能源发展法”,从法律上规定,电力公司有义务以一定合理价格,收购太阳能发电的多余电力。日本从 1992 年开始规定电力公司收购太阳光发电和水力发电等分散型能源的多余电力的具体办法<例如,安装逆潮 流电度表及如何计价)。2003 年,日本又颁布 RPS 法<新能源利用的特别措施),其内容包含设立清洁能源电力发展基金和市民安装小型太阳能发电装置的资金补助<一般补助金额可达全部设备购置费的50%)。以上举措均对太阳能发电等新能源的发展起了促进作用。日本从 1994 年开始制定住宅用太阳能发电系统的规划,预计到 2018 年实施的总发电量目标为 5000MW。 蓄电池性能要求 在目前价格下,光伏系统的竞争优势在于其高可靠性和低维维修费用。为了实现这些特性,所涉及的系统通常配备较大的辅助蓄电池储能装置,使它能顺利地渡过可能的最差日照期。一般而言,独立光伏系统的维修主要是蓄电池的维修。对于如此大容量的蓄电池来说,蓄电池上的充放电循环是一种季节性的循环,夏天对蓄电池充电,而冬天让蓄电池放电。在这种季节性循环之上又加上小得多的日循环,白天给蓄电池充电,而晚上消耗掉其荷电的很小部分。由于这种随季节更换而变化的储能特性,采用低自放电率的蓄电池是十分重要的。另外,还希望有高的充电效率<能够从蓄电池输出的电荷量与向蓄电池充电的电荷量之比)。 铅-酸蓄电池组

5kWp光伏太阳能并网发电系统

5kWp光伏太阳能并网发电系统 设 计 方 案 设计人:申小波(Mellon) 单位:个人 电话: 日期: 2013年10月27日

目录 一、光伏太阳能并网发电系统简介 (2) 二、项目地点及气候辐照状况 (2) 三、相关规范和标准 (5) 四、系统结构与组成 (5) 五、设计过程 (6) 1、方案简介 (6) 2、设计依据 (6) 3、组件设计选型 (7) 4、直流防雷汇流箱设计选型 (9) 5、交直流断路器 (11) 6、并网逆变器设计选型 (13) 7、电缆设计选型 (14) 8、方阵支架 (15) 9、配电室设计 (15) 10、接地及防雷 (15) 11、数据采集检测系统 (16) 六、仿真软件模拟设计 (17) 七、接入电网方案 (22)

八、设备配置清单及详细参数 (22) 九、系统建设及施工 (22) 十、系统安装及调试 (23) 十一、运行及维护注意事项 (26) 十二、设计图纸 (28) 十三、工程预算投资分析报告 (32)

5kWp光伏太阳能并网发电系统配置方案 一、光伏太阳能并网发电系统简介 并网系统(Utility Grid Connected)最大的特点:太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网,并网系统中光伏方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者产生的电能不能满足负载需求时就由电网供电。 因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用光伏方阵所发的电力,从而减小了能量的损耗,并降低了系统的成本。但是系统中需要专用的并网逆变器,以保证输出的电力满足电网电力对电压、频率等电性能指标的要求。因为逆变器效率的问题,还是会有部分的能量损失。这种系统通常能够并行使用市电和太阳能太阳电池组件阵列作为本地交流负载的电源,降低了整个系统的负载缺电率,而且并网系统可以对公用电网起到调峰作用。但并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生一些不良的影响,如谐波污染,孤岛效应等。 二、项目地点及气候辐照状况 图片来自Google地球 1、项目地点为:江苏省泰州市XX区XX镇; 2、纬度:32°22’,经度:120°12’; 3、平均海拔高度:7m;

独立光伏发电系统设计

独立光伏发电系统设计 目录 1引言 (1) 2 独立光伏发电系统工作原理 (1) 3 独立光伏发电系统的设计 (2) 3.1 系统容量的设计 (2) 3.2 太阳能电池组件及方阵的设计 (3) 3.2.1 光伏组件方阵设计需要考虑的问题 (3) 3.2.2 太阳能电池组件(方阵)的方位角与倾斜角 (4) 3.2.3 一般设计方法 (4) 3.3 直流接线箱的选型 (5) 3.4 光伏控制器的选型 (7) 3.6 光伏逆变器的选型 (8) 结论 (9)

独立光伏发电系统设计 摘要 太阳能光伏发电是一种最具可持续发展理想特征的可再生能源发电技术,发展太阳能光伏发电系统也具有很高的可行性,首先能缓解我国目前的能源问题以及日益严重的环境问题,还能解决边远地区居民用电难,成本高的问题。本论文将从小型独立系统的发电原理,系统设计原理,及其本身具有的优势结合其受众群体的所需考虑的各方面因素来设计适合家庭使用的小型系统。通过理论与实际市场调查相结合的方法设计适合全国各地人民使用的优惠且实用的系统。 关键词:小型;独立光伏发电;系统;优惠实用 1引言 当下,许多国家已把发展可再生能源作为未来实现可持续发展的重要方式,而中国也将以太阳能为代表的可再生能源作为未来低碳经济的重要组成部分。近年来,国家财政对太阳能产业的补贴力度逐年增强。独立光伏发电系统是指未与公共电网相连接的太阳能光伏发电系统,其输出功率提供给本地负载(交流负载或直流负载)的发电系统。其主要应用于远离公共电网的无电地区和一些特殊场所,如为公共电网难以覆盖的边远偏僻农村、海岛和牧区提供照明、看电视、听广播等基本生活用电,也可为通信中继站、气象站和边防哨所等特殊处所提供电源。 2 独立光伏发电系统工作原理 通过太阳能电池将太阳辐射能转换为电能的发电系统称为太阳能光伏发电系统。其主要结构由太阳能电池组件(或方阵)、蓄电池(组)、光伏控制器、逆变器(在有需要输出交流电的情况下使用)以及一些测试、监控、防护等附属设施构成。 太阳能电池方阵吸收太阳光并将其转化成电能后,在防反充二极管的控制下为蓄电池组充电。直流或交流负载通过开关与控制器连接。控制器负责保护蓄电池,防止出现过充或过放电状态,即在蓄电池达到一定的放电深度时,控制器将自动切断负载,当蓄电池达到过充电状态时,控制器将自动切断充电电路。有的控制器能够显示独立光伏发电系统的充放电状态,并能贮存必要的数据,甚至还具有遥测、遥信和遥控的功能。在交流光伏发电系统中,DC-AC逆变器将蓄电池组提供的直流电变成能满足交流负载需要的交流电。

光伏并网发电系统设计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。 U R L

图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。在系统中,DC-DC 变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT原理及电路设计 MPPT原理 由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。其搜索算法可分为自寻优和非自寻优两种类别。所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。典型的追踪方法有扰动观测法和增量导纳法等。增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,通常采用扰动观测法算法]1[。 扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,

独立光伏系统蓄电池的选择

独立光伏系统蓄电池的选择 关键字:光伏系统蓄电池 1 引言 伴随社会经济的飞速发展,能源消耗持续增加,环境问题日益突出,开发、利用太阳能作为新能源成为大势所趋。太阳能发电无需燃料,具有无污染、安全、无噪声、运行简单可靠、资源的相对广泛性和充足性、长寿命等其他常规能源所不具备的优点。光伏能源被认为是二十一世纪最重要的新能源、可再生的绿色能源。太阳能光伏发电系统应用非常广泛,依据应用的形式不同一般可分为两大类:独立光伏系统和并网光伏系统。其中独立光伏系统应用相对广泛,日常生活中可见太阳能手电筒、太阳能路灯、太阳能充电器等均属于此类系统。 独立光伏系统一般由四个基础部分组成:光伏电池阵列、储能系统(蓄电池)、直流控制系统、负载,如图1所示。 图1 独立光伏系统组成 在独立的光伏系统中,蓄电池的作用主要是储存能量,在晚上或多云等气候情况下,光伏阵列不能提供足够的能量时,蓄电池供给负载,保证系统的正常运行。它是仅次于太阳能光伏阵列的重要组成部分,也是对系统性能可靠性、系统成本影响最大的部分之一。本文探讨如何在保证系统正常工作、最大使用寿命、最大限度降低成本的情况下,为独立光伏系统选择并确定参数合理、数量合适的蓄电池。 2 蓄电池的选择 (1)方法 独立光伏系统蓄电池的选择过程主要包括三个方面:蓄电池种类、蓄电池的容量和蓄电池组串并联的确定。 蓄电池种类很多,主要有铅酸蓄电池、锂离子蓄电池、镍氢电池等。目前,由于产品技术的成熟性和成本等因素,一些小型简单的独立光伏系统中使用镍氢电池,但应用较少;多数的独立光伏系统

中使用铅酸蓄电池,应用广泛。国家还制定了GB/T22473-2008《储能用铅酸蓄电池》标准,用以规范该类铅酸蓄电池产品的要求。本文以下的内容均以铅酸蓄电池为基础。 蓄电池的容量选择与很多因素有关,主要有日负载需求、蓄电池最大放电深度、独立运行天数、安装地环境温度。 独立光伏系统的蓄电池容量,要保证系统在太阳光照连续低于平均值的情况下负载仍可以在一定时间内持续正常工作。在光照度低于平均值的情况下,太阳能电池组件产生的电能,不能完全补充每日负载需求从蓄电池中消耗能量而产生的空缺,这样蓄电池就会处于亏电状态。如果在一定时间内光照度始终低于平均值,蓄电池持续放电以供给负载的需要,蓄电池的荷电状态持续下降。但是为了避免蓄电池的损坏,这样的放电过程只能允许持续一定的时间,直到蓄电池的荷电状态到达安全的最低值,即蓄电池的最大放电深度。这里我们将持续放电时间称为:独立运行天数,即光伏系统在没有任何外来能源的情况下蓄电池供给负载正常工作的天数。 独立运行天数的确定主要与两个因素有关:光伏系统安装地点的气象条件(最大连续阴雨天数)、负载对应用场合的重要程度。通常我们将光伏系统安装地点的最大连续阴雨天数作为光伏系统的独立运行天数,同时还要综合考虑负载对应用场合的重要程度。对于应用场合重要的光伏应用系统,如通信、医院等重要部门,必须考虑系统的独立运行天数较长,一般考虑为(7~14)天,相对应的电池容量也需较大。对于其他应用场合的光伏应用系统,系统的独立运行天数、以及对应的电池容量大小可以根据实际情况确定。 同时,由于铅酸蓄电池的额定容量会随着温度的变化而变化(见图2),当蓄电池温度下降时,蓄电池的容量会下降,所以安装地气温对确定蓄电池的容量非常重要。如果安装地的气温较低,实际需要的蓄电池容量就要比常温条件下需要的蓄电池容量大,才能保证在不影响蓄电池使用寿命的情况下满足负载的用电需求。大多数铅酸蓄电池生产企业一般会提供相关的蓄电池温度-容量修正曲线。在该曲线上可以查到对应温度的蓄电池容量修正系数。

光伏系统蓄电池容量计算复习课程

光伏系统蓄电池容量 计算

太阳能电源设计 硅太阳能阵列板容量是指平板式太阳能发电功率W P。太阳能发电功率量值取决于负载24小时所消耗的电力H(WH)。由负载额定电压与负载24小时消耗的电力,决定了负载消耗的容量P(AH),再考虑到平均每天日照时数及阴雨天影响,则可算出太阳能阵列板工作电流I P(A)。 由负载额定电压选取蓄电池标称电压,确定蓄电池的浮充电压V F(V),再考虑到太阳能阵列板因温度升高而引起的温升压降V T(V)及反充二极管P一N 结的压降V D(v)所造成的影响,则可计算出太阳能阵列板工作电压V P(V)。 故,太阳能阵列板容量W P 为: W P =I P V P (1) 由W P,V P确定阵列板的串联块数和并联组数。至此,太阳能阵列板设计完毕。 1 太阳能阵列板容量W P的计算,在设计单位和生产厂家均按上述的太阳能阵列板的设计步骤进行,但是,在应用单位均按下述方法来计算太阳能阵列的容量W P(即输出功率)。 1.1 针对负载消耗功率并根据当地太阳资源确定太阳能阵列板工作电压V P为: V P =1.2V L (2) (2)式中VL—负载电压。 1.2 确定太阳能阵列板工作电流I P : (1)连续无太阳时段内,所耗蓄电池容量Pl应为蓄电池总容量P的0.8倍。 P L =0.8P (3) (2)若每天日照时数T为4个峰值日光,则希望在两天内充满耗掉电能所需太阳能阵列板工作电流I P为: I P =(P L )/(2T) (4) 为了太阳能阵列板安全运行,至少将太阳能阵列板的能量减少10肠,考虑到纬度的影响,则取: I P =(2P L )/(2T) (5) 将(3)式代人(5)便得: I P=0.8×√2P 2T =0.56P T (6) 故,太阳能阵列板容量WP为: W P =I P V P =(0.67PV L )/T (7) 2蓄电池容最计算 蓄电池容量由下列因素决定 2.1蓄电池放电极限 蓄电池单独工作天数里,在特殊气候条件下,蓄电池允许放电达到蓄电池所剩容量占正常额定容量的20%。 2.2蓄电池每天可放电量 如果太阳能阵列板容量足够大,能满足负载一个汛期的需求,蓄电池的充电状态永远是 100%,这利于延长蓄电池的寿命。然而在某些环境下,为n天的需要增加太阳能阵列板容量是不经济的,所以在设计时常用蓄电池解决季节变化问题,季节周期放电深度应低于蓄电池容量的30%。但是,在一些少见的恶劣气候条件

太阳能光伏发电系统(PVsyst运用)

能源与动力工程学院 课程设计 题目:发电系统设计 课程:太阳能光伏发电系统设计专业:电气工程及其自动化班级:电气 姓名: 指导教师: 完成日期:

目录 1光伏软件Meteonorm和PVsyst的介绍---------------------------------------------3 1.1 Meteonorm--------------------------------------------------------------------------3 1.2 PVsyst-------------------------------------------------------------------------------4 2中国北京市光照辐射气象资料-------------------------------------------------------11 3独立光伏系统设计----------------------------------------------------------------------13 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)-----------------------------13 3.2蓄电池容量设计(电压:24V,48V)----------------------------------------13 3.3太阳能电池板容量设计,倾角设计--------------------------------------------13 3.4太阳能电池板安装间隔计算及作图。-----------------------------------------16 3.5逆变器选型--------------------------------------------------------------------------17 3.6控制器选型--------------------------------------------------------------------------17 3.7系统发电量预估--------------------------------------------------------------------18

相关文档
相关文档 最新文档