文档库 最新最全的文档下载
当前位置:文档库 › 基于Savitzky-Golay算法的曲线平滑去噪

基于Savitzky-Golay算法的曲线平滑去噪

基于Savitzky-Golay算法的曲线平滑去噪
基于Savitzky-Golay算法的曲线平滑去噪

数字图像去噪典型算法仿真与分析

数字图像去噪典型算法仿真与分析 个人信息********* 摘要:图像去噪是数字图像处理中的重要环节和步骤。本文首先介绍了常见的图像噪声;然后,在介绍图像去噪的基本方法和原理的基础上,讨论了均值滤波、中值滤波和维纳滤波三种典型的图像去噪方法;最后,对包含有高斯噪声和椒盐等噪声的图像进行去噪,并对其去噪效果进行了仿真和分析比较,得出了三种方法各自的适用性特点。 关键词:图像去噪;均值滤波;中值滤波;维纳滤波 Simulation and Analysis of Image De-noising Methods in Digital Image Name:*** (个人信息****) Abstract: Image denoising is one of the most important parts and steps of image processing. Firstly, the paper introduces the common image noise. Then, based on the principle and methods of eliminating image noise, it discusses mean filtering, median filtering, and Wiener filtering which are typical image donoising. Finally, it uses these methods to eliminate image noise which contains Gaussian noise and salt&pepper noise. And through comparing and analyzing the effect of these methods, it concludes the applicability of each method in different application. Key words: image denoising; mean filtering; median filtering; Wiener filtering 0 引言 数字图像是现代人们获取信息的主要来源。由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会收到多种噪声的污染。一般来说,现实中的图像都是带噪图像。噪声使图像变得模糊,甚至淹没图

小波阈值去噪

基于小波阈值的图像去噪方法研究 摘要:本文根据已有的阈值处理函数的优缺点,提出了一种新的阈值处理函数,用于图像的小 波阈值去噪.实验表明,该方法比传统的硬阈值函数与软阈值函数具有更好的去噪效果 关键字:小波阈值去噪,阈值函数 0 引言 图像在获取或传输过程中会因各种噪声的干扰使质量下降,这将对后续图像的处理产生 不利影响.所以必须对图像进行去噪处理,而去噪所要达到的目的就是在较好去除噪声的基 础上,良好的保持图像的边缘等重要细节.近年来,小波理论得到了迅速的发展和广泛的应用. 由于其具有低熵性,多分辨性,去相关性和选基灵活性等优点,在图像去噪领域得到广泛的应 用.本文提出一种新阈值函数,并将其应用于小波阈值去噪,该函数是现有软、硬阈值函数的 推广,通过调整参数,可以克服硬阈值函数不连续和软阈值函数有偏差的缺点。 1 小波阈值处理 小波阈值收缩法是Donoho 和Johnstone 提出的,其主要理论依据是,小波变换具有很强的 去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却 分布于整个小波域内.因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值.可 以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声. 于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零.小波阈值收缩法 去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈 值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的“收缩 (shrinkage)”处理.最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的图 像. 2 阈值函数的选取 阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数不同处理策略,是阈值去噪中 关键的一步。 设w 表示小波系数,T 为给定阈值,sign(*)为符号函数,常见的阈值函数有: 硬阈值函数: ? ??<≥=T w T w w w new ,0, (1) 软阈值函数: ? ??<≥-=T w T w T w w w new ,0),)(sgn( (2) 分析(1)(2)式可以得出:硬阈值函数在阈值点是不连续的,软阈值函数,原系数和分解得 到的小波系数总存在着恒定的偏差,这将影响重构的精度.同时这两种函数不能表达出分解 后系数的能量分布。因此,寻找一种新阈值函数,使它既能实现阈值函数的功能,又具有高阶 导数,同时可以体现出分解后系数的能量分布,将是我们的目标。我们提出一种新的阈值函 数为:

去噪算法的分析与实现

去噪算法的分析与实现 摘要为了进一步提高一些图像处理效果如边缘检测质量和适用性,也对噪声滤波处理进行了分析,实验结果标明,在去除椒盐噪声方面,中值滤波优于双边滤波;双边滤波对低频的噪声却有很好的效果;高斯滤波对高斯噪声有很好的处理效果;双边滤波用处理时间的代价换取了边缘磨平少的效果,而高斯滤波恰恰相反。 关键词噪声;滤波;图像处理 1 选题背景 图像的滤波重建是图像处理学的一个重要分支,早在20世纪40年代,N.Wiener就阐明了再平稳条件下的线性滤波理论,即Wiener滤波器理论,这些理论在控制领域得到了广泛的应用。但是Wiener要求储量大,计算的复杂度高,在后来的图像处理领域逐渐诞生了双边滤波,高斯滤波,中值滤波等算法。 优化边缘检测算法,加入了各种滤波算法,通过编写一些小的程序实现各种滤波的过程,这是优化图像的一种方式也是图像处理的一般步骤,滤波的目的是减少图像上噪声和失真,但是使用滤波算法或多或少都会减少边缘的强度,因而图像的增强和滤波之间是一个折衷的选择。滤波的图像效果会有些模糊,也称为模糊处理。 实现滤波的算法有很多种,CV_BLUR(简单滤波)、CV_BLUR_NO_SCALE (简单无缩放变换的滤波)、CV_MEDIAN(中值滤波)、CV_GAUSSIAN(高斯滤波)、CV_BILATERAL(双边滤波)。 2 主要滤波算法原理分析 2.1 高斯滤波 滤波算法中,周围局部领域的像素值决定了目标点的像素值。具体实现在2D高斯滤波中分别将不同的高斯权重值也就是加权平均之后得到的当前点的最后结果。然而此处的高斯权重因子是利用了两个像素之间的空间距离得出的。通过高速分布曲线我们可以看出,离目标像素越远的点对最终结果的贡献越小,反之则越大。 2.2 双边滤波 双边滤波是在高斯滤波中加入一部分权重来得到更好的处理效果,应用了卷积原理。先对其进行离散化,这个步骤是在处理前完成的。而且没有必要对每一个局部像素从整张图像上都用加权操作这个过程,从距离上,如果像素超了一定程度,其实实际上对目标像素的影响是非常非常小的,几乎可以忽略不计。

顾客满意度研究的方法

顾客满意度研究方法 随着我国加入步伐的临近,允许部分外资进入我国服务业,就意味着更多的外资保险、银行和通信等行业公司进入大陆市场,同中国众多企业分食国内市场的蛋糕。国际跨国企业抢滩中国市场销售他们产品的同时,也无形中带来了他们先进的管理经验和服务意识,顾客满意度管理理念因此应运在国内萌芽并逐步开始发展。顾客满意度管理理念强调顾客的需要和满意度是全面质量管理中的关键,创造顾客价值和顾客满意是其核心,这样围绕顾客满意度的调研开始在市场研究行业中得到重视并兴起。 一、顾客满意度的含义 顾客满意度是顾客感觉状态下的一种水平,它来源于顾客对企业的某种产品服务所设想的绩效或产出与自己的期 望所进行的对比。也就是说"满意"不仅仅是顾客对服务、服务态度、产品质量、价格等方面直观的满意,更深一层的含义是企业所提供的产品服务与顾客期望、要求等吻合的程度如何?因而就产生了顾客对企业的产品服务的不同满意程度。 "顾客满意"的产生是在年代初。当时的美国市场竞争环境日趋恶劣,美国电报公司为了使自己处于有利的竞争优势,

开始尝试性地了解顾客对目前企业所提供服务的满意情况,并以此作为服务质量改进的依据,取得了一定的效果。与此同时,日本本田汽车公司也开始应用顾客满意作为自己了解情况的一种手段,并且更加完善了这种经营战略。 在年代中期,美国政府建立了"马尔科姆·鲍德里奇全国质量奖"(),以鼓励企业应用"顾客满意"。这一奖项的设立大大推动了"顾客满意"的发展。当然,它不只是单纯考核企业顾客满意度最终得分,而是测评企业通过以"顾客满意"为中心所引发的一系列进行全面质量管理的衡量体系。、、先施等都是这一奖项的获得者,但至今为止,全球每年获得这一奖项的企业没有超过五名。 "马尔科姆·鲍德里奇全国质量奖"测评内容及各部分 内容所占的比例如下:

指数平滑法

指数平滑法 移动平均法的预测值实质上是以前观测值的加权和,且对不同时期的数据给予相同的加权。这往往不符合实际情况。指数平滑法则对移动平均法进行了改进和发展,其应用较为广泛。 1. 指数平滑法的基本理论 根据平滑次数不同,指数平滑法分为:一次指数平滑法、二次指数平滑法和三次指数平滑法等。但它们的基本思想都是:预测值是以前观测值的加权和,且对不同的数据给予不同的权,新数据给较大的权,旧数据给较小的权。 ①一次指数平滑法 设时间序列为,则一次指数平滑公式为: 式中为第t周期的一次指数平滑值;为加权系数,0<<1。 为了弄清指数平滑的实质,将上述公式依次展开,可得: 由于0<<1,当→∞时,→0,于是上述公式变为: 由此可见实际上是的加权平均。加权系数分别为, ,…,是按几何级数衰减的,愈近的数据,权数愈大,愈远的数据, 权数愈小,且权数之和等于1,即。因为加权系数符合指数规律,且又具有平滑数据的功能,所以称为指数平滑。 用上述平滑值进行预测,就是一次指数平滑法。其预测模型为: 即以第t周期的一次指数平滑值作为第t+1期的预测值。 ②二次指数平滑法 当时间序列没有明显的趋势变动时,使用第t周期一次指数平滑就能直接预测第t+1期之值。但当时间序列的变动出现直线趋势时,用一次指数平滑法来预测仍存在着明显的滞后偏差。因此,也需要进行修正。修正的方法也是在一次指数平滑的基础上再作二次指数平滑,利用滞后偏差的规律找出曲线的发展方向和发展趋势,然后建立直线趋势预测模型。故称为二次指数平滑法。

设一次指数平滑为,则二次指数平滑的计算公式为: 若时间序列从某时期开始具有直线趋势,且认为未来时期亦按此直线趋势变化,则与趋势移动平均类似,可用如下的直线趋势模型来预测。 式中t为当前时期数;T为由当前时期数t到预测期的时期数;为第t+T期的预测 值;为截距,为斜率,其计算公式为: ③三次指数平滑法 若时间序列的变动呈现出二次曲线趋势,则需要用三次指数平滑法。三次指数平滑是在二次指数平滑的基础上再进行一次平滑,其计算公式为: 三次指数平滑法的预测模型为: 其中: ④加权系数的选择 在指数平滑法中,预测成功的关键是的选择。的大小规定了在新预测值中新数据和原预测值所占的比例。值愈大,新数据所占的比重就愈大,原预测值所占比重就愈小,反之亦然。 若把一次指数平滑法的预测公式改写为: 则从上式可以看出,新预测值是根据预测误差对原预测值进行修正得到的。的大小表明了修正的幅度。值愈大,修正的幅度愈大,值愈小,修正的幅度愈小。因此,值既代表了预测模型对时间序列数据变化的反应速度,又体现了预测模型修匀误差的能力。

顾客满意度指数理论及方法

顾客满意度指数()理论与方法 顾客满意度指数()理论与方法 顾客与顾客满意 顾客 通常,顾客有狭义和广义的概念。狭义的顾客是指产品和服务的最终使用者或接受者。广义的顾客,按照过程模型的观点,一个过程输出的接受者即为顾客。企业可以看作是由许多过程构成的过程网络,其中某个过程是它前面过程的顾客,又是它向后过程的供方。如果划定系统的边界,那么在企业内部存在着内部供方和内部顾客,在企业外部存在外部供方和外部顾客,广义的顾客概念模型见图因此企业作为一个系统而言,有内部顾客和外部顾客。戴明曾说过生产线上最重要的顾客是工人,这里的工人就是内部顾客。某企业汽车空调的接受者—主机厂和修配站以及零配件经销商就是该企业的外部顾客。我们常说下道工序是上道工序的顾客,指的是广义顾客的概念。不同情况下,企业的顾客可以是一个人、一个目标群体、一个组织。广义的顾客的概念已被广泛接受和运用。 图广义顾客概念模型

顾客满意 按照预期期望理论,所谓顾客满意是指顾客的感觉状况水平,这种水平是顾客对企业的产品和服务所预期的绩效和顾客的期望进行比较的结果。如果所预期的绩效不及期望,那么顾客就不满意;如果所预期的绩效与期望相称,那么顾客就满意;如果所预期的绩效超过期望,那么顾客就十分满意。摩托罗拉公司质量总裁戴尔从企业的角度指出“顾客满意是成功地理解某一顾客或某部分顾客的偏好,并着手为满足顾客需要作出相应努力的结果。” 模型 模型有助于人们理解顾客满意的概念,的顾客满意模型见图,把产品和服务的质量特性分为三类: 当然质量。是指产品和服务应当具备的质量,对这类质量特性,顾客通常不做表述,因为他们假定这是产品和服务所必须提供的。例如电视机图像清晰,汽车油箱不漏油,服务人员态度和蔼等。这类质量特性如果实现的程度很充分,也不会增加顾客的满意,相反,则会导致顾客的严重不满。 期望质量。是指顾客对产品和服务有具体要求的质量特性。例如:汽车耗油量、维修人员的快捷服务、医生诊断的准确性、低的费用、高的可靠性等。这类质量特性的实现程度与顾客的满意程度同步增加。产品和服务的这类质量特性容易度量,是竞争分析的基准。 迷人质量。产品和服务所具有的这类质量特性是顾客所没有想到的,超越了顾客的期望。这类质量特性能激起顾客的购买欲望,并

Excel指数平滑法

Excel应用案例 指数平滑法 移动平均法的预测值实质上是以前观测值的加权和,且对不同时期的数据给予相同的加权。这往往不符合实际情况。指数平滑法则对移动平均法进行了改进和发展,其应用较为广泛。 ? ? 1. 指数平滑法的基本理论 根据平滑次数不同,指数平滑法分为:一次指数平滑法、二次指数平滑法和三次指数平滑法等。但它们的基本思想都是:预测值是以前观测值的加权和,且对不同的数据给予不同的权,新数据给较大的权,旧数据给较小的权。 ? ? ①一次指数平滑法 ? ? 设时间序列为,则一次指数平滑公式为: ? ? ? ? 式中为第 t周期的一次指数平滑值;为加权系数,0<<1。 ? ? 为了弄清指数平滑的实质,将上述公式依次展开,可得: ? ? ? ? 由于0<<1,当→∞时,→0,于是上述公式变为: ? ? ? ? 由此可见实际上是的加权平均。加权系数分别为,,…,是按几何级数衰减的,愈近的数据,权数愈大,愈远的数据, 权数愈小,且权数之和等于1,即。因为加权系数符合指数规律,且又具有平滑数据的功能,所以称为指数平滑。 ? ? 用上述平滑值进行预测,就是一次指数平滑法。其预测模型为: ? ? ? ? 即以第t周期的一次指数平滑值作为第t+1期的预测值。 ? ? ②二次指数平滑法

? ? 当时间序列没有明显的趋势变动时,使用第t周期一次指数平滑就能直接预测第t+1期之值。但当时间序列的变动出现直线趋势时,用一次指数平滑法来预测仍存在着明显的滞后偏差。因此,也需要进行修正。修正的方法也是在一次指数平滑的基础上再作二次指数平滑,利用滞后偏差的规律找出曲线的发展方向和发展趋势,然后建立直线趋势预测模型。故称为二次指数平滑法。 ? ? 设一次指数平滑为,则二次指数平滑的计算公式为: ? ? ? ? 若时间序列从某时期开始具有直线趋势,且认为未来时期亦按此直线趋势变化,则与趋势移动平均类似,可用如下的直线趋势模型来预测。 ? ? ? ? 式中t为当前时期数;T为由当前时期数t到预测期的时期数;为第t+T 期的预测值;为截距,为斜率,其计算公式为: ? ? ? ? ? ? ③三次指数平滑法 ? ? 若时间序列的变动呈现出二次曲线趋势,则需要用三次指数平滑法。三次指数平滑是在二次指数平滑的基础上再进行一次平滑,其计算公式为: ? ? ? ? 三次指数平滑法的预测模型为: ? ? ? ? 其中: ? ? ? ? ? ? ? ? ④加权系数的选择 ? ? 在指数平滑法中,预测成功的关键是的选择。的大小规定了在新预测

图像去噪去噪算法研究 开题报告

图像去噪去噪算法研究论文开题报告 (1)选题的目的、意义 目的: 由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会受到多种噪声的污染,影响了图像的视觉效果,甚至妨碍了人们正常识别。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。这些噪声在图像上常表现为—引起较强视觉效果的孤立象素点或象素块[1]。一般,噪声信号与要研究的对象不相关它以无用的信息形式出现,扰乱图像的可观测信息。要构造一种有效抑制噪声的滤波必须考虑两个基本问题能有效地去除目标和背景中的噪声;同时,也要能很好的保护图像目标的形状、大小及特定的几何和拓扑结构特征。 意义: 噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量[2] [3]。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要[4] [5]。图像去噪作为图像处理的一个重要环节,可以帮助人们更加准确地获得我们所需的图像特征,使其应用到各个研究领域,帮助解决医学、物理、航天、文字等具体问题。如何改进图像去噪算法,以有效地降低噪声对原始图像的干扰程度,并且增强视觉效果,提高图像质量,使图像更逼真,仍存在继续研究的重要意义。 (2)国内外对本课题涉及问题的研究现状 针对图像去噪的经典算法,科学工作者通过努力,提出了一些的改进算法,比如模拟退火法[6]。但是模拟退火法存在的问题是计算过程复杂,计算量大,即使使用计算机代替人工计算也会耗用大量时间。后来在众多研究者的努力下,产生了很多其他不同的方法。而现今已卓有成效的非线性滤波方法有正则化方法、最小能量泛函方法、各向异性扩散法[7] [8]。 目前常用的降噪方法有在空间域进行的,也有将图像数据经过傅里叶等变换以后转到频域中进行的[9]。其中频域里的滤波需要涉及复杂的域转换运算,相对而言硬件实现起来会耗费更多的资源和时间。在空间域进行的方法有均值或加权后均值滤波、中值或加权中值滤波、最小均方差值滤波和均值或中值的多次迭代等。实践证明,这些方法虽有一定的降噪效果,但都有其局限性。比如加权均值在细节损失上非常明显;而中值仅对脉冲干扰有效,对高斯噪声却无能为力[10] [11] [12] [13]。实上,图像噪声总是和有效数据交织在一起,若处理不当,就会使边界轮廓、线条等变得模糊不清,反而降低了图像质量。 对于去除椒盐噪声,主要使用中值滤波算法。中值滤波是在1970年由Tukey提出的一种一维滤波器。它主要是指用实心邻域范围内的所有值的中值代替所作用的点值,但是必须注意的是邻域内的点的个数是正奇数,这是为了保证取中值的便利性,若是偶数,则中值就会产生两个[14] [15]。中值滤波以一种简单的非线性平滑技术。它是以排序统计理论作为基础,有效抑制噪声的非线性处理数字信号技术。中值滤波对消除椒盐噪声非常有效。在图像处理中,常用中值滤波保护图像边缘信息,它是一种经典的去除图像噪声算法[16]。但是它在去除图像噪声过程中,往往会将图像的细节比如细线、棱角的地方破坏掉。后来

一次指数平滑法(精.选)

一次指数平滑法 一次指数平滑法是指以最后的一个第一次指数平滑。如果为了使指数平滑值敏感地反映最新观察值的变化,应取较大阿尔法值,如果所求指数平滑值是用来代表该时间序列的长期趋势值,则应取较小阿尔法值。同时,对于市场预测来说,还应根据中长期趋势变动和季节性变动情况的不同而取不同的阿尔法值,一般来说,应按以下情况处理:1.如果观察值的长期趋势变动接近稳定的常数,应取居中阿尔法值(一般取0.6—0.4)使观察值在指数平滑中具有大小接近的权数;2.如果观察值呈现明显的季节性变动时,则宜取较大的阿尔法值(一般取0.6一0.9),使近期观察在指数平滑值中具有较大作用,从而使近期观察值能迅速反映在未来的预测值中;3.如果观察值的长期趋势变动较缓慢,则宜取较小的e值(一般取0.1—0.4),使远期观察值的特征也能反映在指数平滑值中。在确定预测值时,还应加以修正,在指数平滑值S,的基础上再加一个趋势值b,因而,原来指数平滑公式也应加一个b。

8.1.2 指数平滑法 移动平均法的预测值实质上是以前观测值的加权和,且对不同时期的数据给予相同的加权。这往往不符合实际情况。指数平滑法则对移动平均法进行了改进和发展,其应用较为广泛。 1. 指数平滑法的基本理论 根据平滑次数不同,指数平滑法分为:一次指数平滑法、二次指数平滑法和三次指数平滑法等。但它们的基本思想都是:预测值是以前观测值的加权和,且对不同的数据给予不同的权,新数据给较大的权,旧数据给较小的权。 ①一次指数平滑法 设时间序列为,则一次指数平滑公式为: 式中为第t周期的一次指数平滑值;为加权系数,0<<1。 为了弄清指数平滑的实质,将上述公式依次展开,可得: 由于0<<1,当→∞时,→0,于是上述公式变为: 由此可见实际上是的加权平均。加权系数分别为,,…,是按几何级数衰减的,愈近的数据,权数愈大,愈远的数据,权数 愈小,且权数之和等于1,即。因为加权系数符合指数规律,且又具有平滑数据的功能,所以称为指数平滑。 用上述平滑值进行预测,就是一次指数平滑法。其预测模型为: 即以第t周期的一次指数平滑值作为第t+1期的预测值。 ②二次指数平滑法 当时间序列没有明显的趋势变动时,使用第t周期一次指数平滑就能直接预测第t+1期之值。但当时间序列的变动出现直线趋势时,用一次指数平滑法来预测仍存在着明显的滞后偏差。因此,也需要进行修正。修正的方法也是在一次指数平滑的基础上再作二次指数平滑,利用滞后偏差的规律找出曲线的发展方向和发展趋势,然后建立直线趋势预测模型。故称为二次指数平滑法。

图像椒盐噪声与高斯噪声去噪方法研究

德州学院毕业论文开题报告书 2011年3月16日院(系)物理系专业电子信息工程 姓名田程程学号200700802041 论文题目图像椒盐噪声与高斯噪声去噪方法研究 一、选题目的和意义 图像去噪的最终目的是改善给定的图像,解决实际图像由于噪声干扰而导致图像质量下降的问题。通过去噪技术可以有效地提高图像质量,增大信噪比,更好的体现原来图像所携带的信息,作为一种重要的预处理手段,人们对图像去噪算法进行了广泛的研究。在现有的去噪算法中,有的去噪算法在低维信号图像处理中取得较好的效果,却不适用于高维信号图像处理;或者去噪效果较好,却丢失部分图像边缘信息,或者致力于研究检测图像边缘信息,保留图像细节。如何在抵制噪音和保留细节上找到一个较好的平衡点,成为近年来研究的重点。 二、本选题在国内外的研究现状和发展趋势 随着各种数字仪器和数码产品的普及,图像和视频已成为人类活动中最常用的信息载体,它们包含着物体的大量信息,成为人们获取外界原始信息的主要途径。然而在图像的获取、传输和存贮过程中常常会受到各种噪声的干扰和影响而使图像降质,并且图像预处理算法的好坏又直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,所以为了获取高质量数字图像,很有必要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。所以,降噪处理一直是图像处理和计算机视觉研究的热点。

三、课题设计方案 本设计为图像椒盐噪声与高斯噪声去噪方法研究 一、研究高斯噪声和椒盐噪声特性 二、研究去噪算法,提出适合去除高斯噪声和椒盐噪声的算法 三、计算机仿真 四、计划进度安排 第一周至第二周:根据寒假期间针对论文题目收集的有关资料,认真分析和整理资料,形成撰写论文的大体框架。对论文的撰写形成明确地认识,认真书写开题报告,完成开题报告并上交。 第三周至第五周:学习和研究图像椒盐噪声与高斯噪声去噪方法。 第六周至第十一周:对前期的关于图像椒盐噪声与高斯噪声去噪方法的研究进行总结。 第十二周:根据论文指导意见和建议对论文进行修改和完善后形成论文终稿。

小波阈值图像去噪算法及MATLAB仿真实验

龙源期刊网 https://www.wendangku.net/doc/9f210820.html, 小波阈值图像去噪算法及MATLAB仿真实验 作者:刘钰马艳丽刘艳霞 来源:《数字技术与应用》2010年第06期 摘要:本文研究了小波阈值图像的去噪方法,并与其它图像去噪方法进行了比较。对lena图像进行MATLAB仿真实验,得到了主观效果图和客观效果的PSNR。研究发现,小波阈值图像去噪无论主观效果还是客观效果都优于其他图像去噪方法。 关键词:小波阈值去噪 Wavelet Thresholding Algorithm of Image Denoising and MATLAB Simulation Experiments Liu Yu11,2Ma Yanli11Liu Yanxia11 (1. College of Information Science and Project ,Hebei North University,Zhangjiakou075000;2. College of Electron Information Project,Tianjin University,Tianjin300072) Abstract:In this paper,research on wavelet thresholding algorithm of image denoising and compare with orther algorithms of image denoising.Then Lena on MATLAB simulation experiment images, receive the image of subjective effect and the PSNR of objective effect. Research found that waveletthresholding for image denoising effect regardless of the subjective or objective effect are superior to other algorithms of image denoising. Key words:wavelet;threshold;denoising 1 引言 近年来,小波图像去噪方法已成为去噪的一个重要分支和主要研究方向,具有“数字显微镜”之称的小波变换在时频域具有多分辨率的特性,可同时进行时频域的局部分析和灵活地对信号 局部奇异特征进行提取以及时变滤波[1]。利用小波对含噪信号进行处理时,可有效地达到滤除噪声和保留信号高频信息,得到对原信号的最佳恢复。 在图像去噪领域中,应用小波理论进行图像去噪受到许多专家学者的重视,并取得了非常好的效果。具体来说,小波去噪方法的成功主要得益于小波具有如下特点[2-6]:

matlab图像去噪算法设计(精)只是分享

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。实验一:均值滤波对高斯噪声的效果 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9 subplot(2,3,3);imshow(K1); title('改进后的图像1'); subplot(2,3,4); imshow(K2); title('改进后的图像2');

小波阈值去噪的基本原理_小波去噪阈值如何选取

小波阈值去噪的基本原理_小波去噪阈值如何选取 小波阈值去噪的基本原理小波阈值去噪的基本思想是先设置一个临界阈值,若小波系数小于,认为该系数主要由噪声引起,去除这部分系数;若小波系数大于,则认为此系数主要是由信号引起,保留这部分系数,然后对处理后的小波系数进行小波逆变换得到去噪后的信号。具体步骤如下: (1)对带噪信号f(t)进行小波变换,得到一组小波分解系数Wj,k; (2)通过对小波分解系数Wj,k进行阈值处理,得到估计小波系数Wj,k,使Wj,k-uj,k尽可能的小; (3)利用估计的小波系数Wj,k进行小波重构,得到估计信号f(t),即为去噪后的信号。提出了一种非常简洁的方法对小波系数Wkj,进行估计。对f(k)连续做几次小波分解后,有空间分布不均匀信号s(k)各尺度上小波系数Wkj,在某些特定位置有较大的值,这些点对应于原始信号s(k)的奇变位置和重要信息,而其他大部分位置的Wkj,较小;对于白噪声n(k),它对应的小波系数Wkj,在每个尺度上的分布都是均匀的,并随尺度的增加Wkj 把低于的小波函数Wkj,(主要由信号n(k Wkj,(主要由信号s(k)引起),则予以保留或进行收缩,从而得到估计小波系数Wkj,它可理解为基本由信号s(k)引起,然后对Wkj进行重构,就可以重构原始信号。 本文提出的小波阈值去噪方法可以分为5步描述:(1)对带噪图像g(i,j)进行s层正交冗余小波变换,得到一组小波分解系数Wg(i,j)(s,j),其中j=1,2,s,s表示小波分解的层数。 小波阈值去噪法有着很好的数学理论支持,实现简单而又非常有效,因此取得了非常大的成功,并吸引了众多学者对其作进一步的研究与改进。这些研究集中在两个方面:对阈值选取的研究以及对阈值函数的研究。 阈值的确定在去噪过程中至关重要,目前使用的阈值可以分为全局阈值和局部适应阈值两类。其中,全局阈值是对各层所有的小波系数或同一层内不同方向的小波系数都选用同一

MATLAB中的阈值获取和阈值去噪(超级有用)

1.阈值获取 MATLAB中实现阈值获取的函数有ddencmp、thselect、wbmpen和wwdcbm,下面对它们的用法进行简单的说明。 (1)ddencmp的调用格式有以下三种: (1)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2,X) (2)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wp',X) (3)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wv',X) 函数ddencmp用于获取信号在消噪或压缩过程中的默认阈值。输入参数X为一维或二维信号;IN1取值为'den'或'cmp','den'表示进行去噪,'cmp'表示进行压缩;IN2取值为'wv'或'wp',wv表示选择小波,wp表示选择小波包。返回值THR是返回的阈值;SORH是软阈值或硬阈值选择参数;KEEPAPP表示保存低频信号;CRIT是熵名(只在选择小波包时使用)。 (2)函数thselect的调用格式如下: THR=thselect(X,TPTR); THR=thselect(X,TPTR)根据字符串TPTR定义的阈值选择规则来选择信号X的自适应阈值。 自适应阈值的选择规则包括以下四种: *TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。 *TPTR='heursure',使用启发式阈值选择。 *TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).

*TPTR='minimaxi',用极大极小原理选择阈值。 阈值选择规则基于模型 y = f(t) + e,e是高斯白噪声N(0,1)。(3)函数wbmpen的调用格式如下: THR=wbmpen(C,L,SIGMA,ALPHA); THR=wbmpen(C,L,SIGMA,ALPHA)返回去噪的全局阈值THR。THR 通过给定的一种小波系数选择规则计算得到,小波系数选择规则使用Birge-Massart的处罚算法。{C,L]是进行去噪的信号或图像的小波分解结构;SIGMA是零均值的高斯白噪声的标准偏差;ALPHA是用于处罚的调整参数,它必须是一个大于1的实数,一般去ALPHA=2。 设t*使crit(t)=-sum(c(k)^2,k<=t) + 2 * SIGMA^2 * t*(ALPHA+log(n/t))的最小值,其中c(k)是按绝对值从大到小排列的小波包系数,n是系数的个数,则THR=|c(t*)|。 wbmpen(C,L,SIGMA,ALPHA,ARG)计算阈值并画出三条曲线。 2 * SIGMA^2 * t*(ALPHA+log(n/t)) sum(c(k)^2, k<=t) crit(t) (4)wdcbm的调用格式有以下两种: (1)[THR,NKEEP]=wdcbm(C,L,ALPHA); (2)[THR,NKEEP]=wdcbm(C,L,ALPHA,M); 函数wdcbm是使用Birge-Massart算法获取一维小波变换的阈值。返回值THR是与尺度无关的阈值,NKEEP是系数的个数。[C,L]是要进行压缩或消噪的信号在j=length(L)-2层的分解结构;LAPHA

二次平滑曲线Matlab

二次指数平滑法程序 线性指数平滑法Matlab程序,代码如下: 注:Data-原始数据 s-一次和二次平滑结果 at-预测式中的a参数 bt-预测式中的b参数 y1-预测结果 本例是取alpha为0.8时的情况 arr=[0;6;8.3;9.8;13;15;13.5;26.1;80.3;86;102.6]; [m,n]=size(arr); alf=0.2; for j=1:2 s(1,j)=arr(1,1) end for i=2:m for j=1:2 if j==1 s(i,j)=alf*arr(i,1)+(1-alf)*s(i-1,j); else s(i,j)=alf*s(i,j-1)+(1-alf)*s(i-1,j); end end end temp=alf/(1-alf); for i=1:m at(i,1)=2*s(i,1)-s(i,2); bt(i,1)=temp*(s(i,1)-s(i,2)); yy(i+1)=at(i,1)+bt(i,1); end for i=2:11 y1(i-1)=yy(i); end for i=2:11 b(i-1)=arr(i); end for i=1:3 y2(i)=at(m,1)+bt(m,1)*(i+1); end year=[1999:2011]; year=year'; y1=y1'; y2=y2';

b=b'; data=cat(1,y1,y2); data1=cat(1,b,y2); % plot(year,data,'-rs','markerFaceColor','g', 'MarkerSize',3); % plot(year,data,'-rs',year,data1,'-rs');

小波阈值去噪算法的设计及其应用

北方民族大学学士学位论文论文题目:小波阈值去噪算法的设计及其应用 院(部)名称:数学与信息科学学院 学生姓名:黄慧东 专业:信息与计算科学学号:20100433指导教师姓名:黄永东 论文提交时间:2013年5月14日 论文答辩时间: 学位授予时间: 北方民族大学教务处制

小波阈值去噪算法的设计及其应用 摘要 本文主要阐述了小波阈值去噪算法的设计及其应用. 第一章对小波进行了初步的介绍,“小波分析”是分析未经过任何处理的信号所含有的不同的性质,进而用于图像处理、小波滤波、数据隐藏等.比如声音信号频率的高低,发声时间的长短、振幅、旋律等各个方面.从平稳的波形之中发现突变的尖峰.小波分析是依照各种小波基函数对分解原始信号的一种分析方法. 第二章介绍了小波滤波并列举了几种常用的小波滤波算法.时至今日,小波滤波成为了一种新的滤波思路,其功能除了去噪、降噪以外,还兼有平滑、锐化和保留信号特征的功能. 第三章则较为详细介绍了小波阈值去噪算法并进行了算法设计,最后还给出了小波阈值去噪算法的应用实例.小波阈值去噪就是将经过小波分解后的信号通过选取适当的阈值过滤掉带噪信号,再用小波逆变换进行小波重构. 关键字:小波分析,小波变换,小波滤波,小波阈值去噪.

design of wavelet threshold denoising algorithm and its application abstract this article focuses on the wavelet thresholding algorithm design and its application. the first chapter introduces the wavelet conducted preliminary, " wavelet analysis " is an analysis of various changes in the characteristics of the original signal , and further used in data compression, noise removal , feature selection. for example singing signal: the treble or bass, sound duration , undulating melody and so on. wavelet analysis is the use of a variety of " wavelet function " on "raw signal" decomposition. the second chapter introduces the wavelet filtering and lists several commonly used wavelet filtering algorithms. today, wavelet filtering has become a new filter ideas, in addition to its function noising , noise reduction , it also combines smooth, sharpen and retain the function of the signal characteristics . the third chapter is a more detailed description of the wavelet thresholding algorithm and algorithm design , and finally gives the wavelet thresholding algorithm examples . wavelet thresholding is based on the effective signal and noise have different properties at different decomposition scale , constructed using mathematical tools appropriate threshold , and the target signal wavelet coefficients thresholding keywords: wavelet analysis, wavelet transform, wavelet filtering, wavelet thresholding .

心音去噪的研究与实现

心音去噪的研究与实现 心音是最重要的信号之一。然而,许多外界因素会影响心音信号的采集。心音是弱电气信号以至很弱的外部噪声就能导致信号中的病理和生理信息的错误判断,从而导致疾病的错诊。因此对心音信号去噪的研究非常重要。 本文提出了一种基于matlab的更系统的心音去噪的研究与分析。基于matlab的心音去噪的研究首先应用matlab的强大的图像处理功能将含噪心音信号变换到小波域,用小波变换在母粒的层次上对其进行分解,并采用软阈值函数的小波变换阈值法去噪,得到小波分解系数,采用这样的方法信号的去噪效果显著改善了。根据小波分解得到的各段分解系数,利用小波变换合成重构信号。最后,本文是使用陷波滤波器消除50HZ的工频和35HZ的机电干扰信号。 引言 心音信号是用于检测心脏性能,获取生理和病理信息的重要信号之一。然而,在心音信号的采集过程中不可避免的会受到周围噪音的影响,比如电磁干扰,工频噪声,由人本身的呼吸、肺音产生的电干扰等。因此,我们采集到的是混合信号。有时噪声信号会严重干扰有效信号,造成有效信号的丢失,这对于提取相应的病理信息是及其不利的。为了减少有用信息的缺失,去噪是采集信号中的至关重要的过程。心音信号去噪旨在消除干扰信号保留有效信号。 1.1研究的背景 国外稍早于国内开始研究心音信号的去噪。Liang H,Lukkarinens,Hartimo I在1997年提出了基于信号包络图的心音分段算法,采用了小波的分解与重构,使用shannon平均能量包络计算,选定阈值,找出峰值点位置,利用小波变换识别S1和S2。Hebden等主要运用统计学原理和神经网络识别S1和S2。由于识别过程不需要同时记录心音图作为参考信号,不仅节省了存储空间,也免于了隔离设备的限制,更重要的是,在某种程度上节约了费用。另外,从2005年起如何提取第三心音S3成为了研究热点。由于低振幅、低频率、持续时间短,提取S3成了个难题。提取S1和S2的方法可以获得准确的结果但计算比较复杂且不适用于S3。Kumar等首先采用小波阈值变换过滤从含噪心音中分离出S1,S2,和S3,然后使用高频标记和识别S3。 在中国,心音分析仍处于初级阶段,时间频率分析已应用于心音信号的处理。现阶段已经完成了信号的线性分析(短时傅里叶变换,小波变换和Garbo expanding)非线性时频分析(winger-Ville分布, 科恩分布和时频分布级数),提出了心音信号处理的应用和研究。然而,心音信号去噪仍停留在硬件去噪水平。 1.2研究的价值 心音信号包含了心脏各部分的心理病理信息.更重要的是心音信号易被心血管疾病影响,心音信号检测是心血管疾病无创性检测的重要方法。 在采集心音信号的过程中,心音信号易受外界噪声的干扰(人本身呼吸的声音,皮肤摩擦的声音,工频噪声(50HZ),机电干扰(35HZ)和外部环境的高斯白噪声)。这样的情况下部分有用的心音信号就丢失了,导致诊断疾病的准确性和精度降低了。传统的去噪方法仅使用硬件去噪,但去噪效果不尽人意。更糟糕的是,硬件去噪中频率干扰很容易被引入。本文提出matlab编程去噪算法,最小化有效信息的损失,以便更有效地消除噪声。 2.心音数据库的建设 研究基于matlab的心音去噪,去噪需采用不同类型的心音信号。我们数据库里,心音去噪包括正常心音和非正常心音数据库。前者包括正常心音信号,快速的心跳声音,心底和心尖部正常心音。后者则包括第二心音的重叠率的分裂、减弱、增强,第一心音的分裂、减

相关文档