文档库 最新最全的文档下载
当前位置:文档库 › 随机过程笔记

随机过程笔记

随机过程笔记
随机过程笔记

随机过程笔记

2015-05-10 许铁混沌巡洋第一部分:为什么要研究随机过程?人类认识世界的历史,就是一认识和描绘各种运动的历史,从宏观的天体运动到分子的运动,到人心理的运动-我们通称为变化,就是一个东西随时间的改变。

人们最成功的描绘运动的模型是牛顿的天体运动,确定性是牛顿体系最大的特征。给定位置和速度,运动轨迹即确定。但是20实际后的科学却失去了牛顿美丽的确定性光环。

因为当人们试图描绘一些真实世界,充满复杂而未知因素的运动时候,人们发现不确定的因素(通常称之为噪音)对事物的变化至关重要,而牛顿的方法几乎难以应用。而我们所能够给出的最好的对事物变化的东西,是一套叫概率论的东西。而与之相应的产生的一个全新的研究运动的方法-随机过程, 对不确定性下的运动进行精细的数学描述。

我们周边充满了各种各样的数据,所谓大数据时代,这些数据最基本的特点就是含有巨量的噪音,而随机过程就是从这些噪音里提取信息的武器。

* 其实我们生活中也处处充满“噪音”。比如说我们每天发邮件,经常有一些人时回时不回。那些不回的人到底是忘了还是真的不想回,我们却不知道。一个书呆子统计学家会告诉你,你无法从一次的行为评判他,而要看他一贯的表现。

第一个随机过程方法的伟大胜利是爱因斯坦的布朗运动。一些小花粉在水里,受到水分子不停碰撞,而呈现随机的运动(花粉颗粒由于很小比较容易受到水分子热扰动的影响)。研究这些花粉的微小运动似乎有点天然呆,我们却从中找到了分子世界重要的信息。而花粉那无序与多变的轨道,也为我们提供了随机运动的范式(随机游走)。

计算机生成的十个粒子的布朗运动轨迹

如果给随机过程打个比方,它就像是一个充满交叉小径的花园。你站在现在的点上,看未来的变化,未来有千万种变化的方式,每一种可能又不断分叉变化出其它可能。第

二部分:描述随机过程的武器

随机过程怎么研究?几样神器是不可缺少的。

1. 概率空间:面对不可确定的未来,无非有两件事需要关心,一个是有哪些可以实现的可能,一个是每种可能的大小,前者定义一个事件空间(态空间),后者定义一个数-概率。关键这些信息从哪里来呢?我们如何知道要发生

什么?又如何知道多多大可能发生?-- 历史。

概率论的思维基点其实是: 日光之下并无新事。我们对未来的预测来源于对过于的经验积累,而沟通过去经验与

未来预测的工具就是概率。所谓一件事发生可能性大小,就是一件事在历史中发生的频率。

当然很多情况下概率也可以通过已知理论用演绎法推得,

但是最根本的,还是由经验确定的概率。概率,我们中学数学都学过它是一个事件出现的频率,但它的含义其实很深很深。因为一个事件出现的频率来自于历史,而概率却用于对未来的预测,因此,概率包含的一个基本假设就是未来和过去的一致性-你要用概率,你所研究的对象要有可重复性。这其实假设了概率所研究的事件具有的某种稳定性,一旦这些一个过程是一个随时间剧烈变化的过程,概率几乎就不能应用。所以这里只能说概率是一种近似,他对于研究那些比较简单的物理过程,如投掷硬币,才完全有效。所以,所谓概率空间,只能是一种近似,他是人类现有知识的总和,我们用它描述已知的未知,但是却从来无法描述未知的未知-被我们称作黑天鹅的事件,因为真正的未来,永远无法只有已知的可能性(感兴趣的请参看本人旧文-高斯与天鹅)。在大多数时候,我们还是日光之下并无新事,因此,概论的威力依然不可小觑。有关概率空间的思维,可以立刻灭掉一些看似烧脑实际脑残的题目:假设你在进行一个游戏节目。现给三扇门供你选择:一扇门后面是一辆轿车,另两扇门后面什么都没有。你的目的当然是要想得到比较值钱的轿车,但你却并不能看到门后面的真实情况。主持人先让你作第一次选择。在你选择了一扇门后,知道其余两扇门后面是什么的主持人,打开了另一扇门给你看,而且,当然,那里什么都没有。现在主持人告诉你,你还有一次选择的机会。

那么,请你考虑一下,你是坚持第一次的选择不变,还是改变第一次的选择,更有可能得到轿车?

回答这个问题的关键即事件空间,在主持人打开门之前,

事件空间即车的位置有三种可能,你有1/3 的可能拿到车。当主持人选择打开门的时候,它实际上帮你做了一个选择,那就是告你某个车库没有车,这时候事件空间发生了变化,因为你的已知变了。如果说以前的事件空间是或者你选择的车库有车(1/3),或者另外两个车库中的某一个有车(各1/3)。现在的情况呢?被打开的车库有车的概率变为0,因此你选择的车库没车的情况下车的位置已经变成确定的了,概率为2/3。而原来你车库有车的选项却不受到这一事件的影响(依然1/3概率),所以你当然要选择换车库。这个例子第一个说明的道理是概率是主观的,来自于你头脑中的信息。回

过头看,主持人的举动增加了你对两个车库的信息,而车是不变的,所以你要根据新的信息调整概率空间。* 此实例是好的思维方法的力量的典范,如果你没有这个事件空间的角度,恐怕要做无数的试验了。条件概率:现实生活中的一般都以条件概率的形式出现,即给定一定的已知条件,信息我们会得到什么样的概率。对这一大类问题可以引出整个贝叶斯分析理论,将在后续篇章中介绍。

2. 随机变量:你投掷筛子,得到6个结果,每种结果有1/6 的可能。你把态空间的种种可能性都用数字表达出来,

用一套用轻度装逼的数学语言描述,就是随机变量。这个东西包含所有输出的可能性以及相应的概率,这些可能性(态空间)和概率的对应关系我们称之为分布函数。如果态空间是连续的,我们就得到连续的分布函数形式。

图:一个二维高斯分布

分布函数:

随机变量已经包含了两个随机过程研究的核心武器:态空间和分布函数。分布函数是提取随机过程内有用信息的第一手段。分布函数-是在大量数据中提取信息的入口。

随机变量的实现:随机变量可以看做一个实验,你在实验之前,结果是不确定的,你所有的是一团可能性。当你做

完实验,却得到一个唯一的结果,只是预先不可知。

期望:对一个随机变量,已知其分布函数,可以定义一

个期望。这个东西由每个结果的取值和它的可能性共同决定,表达未来结果的加权平均值。实际中我们可以用实验的方

法确定这个数字,就是所谓蒙特卡洛方法,不停的投筛子然后做个统计,你所得到的结果的平均就是期望。(平均值和

期望的区别就是第一个来自已有的数据的平均,第二是对根据已有的平均对未来的预测。)关于期望包含着一种投资世界里的基本思维方式,就是对收益的幅值和风险(概率)一起考虑。经常有一些时候一些出现机会极少而收益特别大的可能性决定了期望,如果你的心脏足够强大,就应该充分考

虑这些高风险高收益的可能。

相关性:对于两个随机变量,你可以定义一个相关性covariance,描述一个随机变量随另一个而变化的趋势。这个函数特别有用,它是现实生活中我们说两个事物相关性的精确表达。

理解这个算式特别简单,这个量就是x和y波动乘积的期望,当两个变量是此消彼长,则为负,共生共荣则为正,若两个过程不相关,则为0.

方差:上述关系当x=y我们得到方差,方差就是自己和自己的关联函数,当随机变量比较接近正态分布时候它可以描绘波动性的大小。

对于N个随机变量,任意两个随机变量可得到一个covariance,而这样一组covariance构成大名鼎鼎的covariance matrix.

测量分布函数的武器-蒙特卡洛方法:

搞定一个分布函数,笨办法也是最有用的方法就是蒙特卡洛方法。一般筛子情况下,筛子有6各面,每个面出现的概率有1/6,但是万一筛子被做过手脚呢?所以最好的方法还是所谓蒙特卡洛抽样,不停的玩,知道你认为你可以稳定得到每次可能性出现的频率。所谓笨办法确是最常用的,尤其是随着高速计算机的普及。一些重大的工程,涉及太

多复杂不好确定因素时候,我们就让计算机模拟,设计一系列的蒙特卡洛抽样来求得一些结果。* 此名来自Monte Carlo 摩纳哥的赌场,其实赌场里也可以产生一些最厉害的数学思想。抽样:在计算机里研究牵扯随机变量的过程最基本的方法就是抽样,抽样就是已知分布函数取得一个随机的结果的过程。我们要在计算机里模拟一个随机过程都是通过抽样来实现的。抽样的成功与否决定这些计算机模拟(simulation)能在多少程度逼近真实。计算机的抽样都是

基于最简单的随机数生成器产生的,产生概率均等的均与分布(Uniform distribution)。但是这些“随机数”实际是早已设定好的,因此更准备的被称作“伪随机数”。而对于更加复杂

的分布函数的抽样,则有如层出不穷的算法解决它,比如

大名鼎鼎的Markov Chain Monte Carlo (MCMC)方法,

将在之后的章节介绍。

第三部分:什么是随机过程

确定性过程研究一个量随时间确定的变化,而随机过程描述的是一个量随时间可能的变化,在这个过程里,每一个时刻变化的方向都是不确定的,或者说随机过程就是由一系列随机变量组成,每一个时刻系统的状态都由一个随机变量表述,而整个过程则构成态空间的一个轨迹(随机过程的实现)。一个随机过程最终实现,会得到一组随时间变化的数值(态空间里的轨迹),实践中我们都是从数据结果中推测一个随

机过程的性质的。刚说过概率是建立在可重复性上,是一个理想模型,而建立在此上的随机过程就更是一个理想化的模型,它暗含的是历史可无限重复,然后你把他们收集在一起看一看。我在一开头的说的充满分叉小径的花园是一种比喻,但说的也是你需要站在平时时空(每一个时空包含一种历史的可能性)的角度来看一个随机过程的全貌。我们立刻发现这是一个超级复杂的问题,因为一个随机过程具有无限多可能性。试想象一个最简单的随机过程,这个过程由N步组成,每一步都有两个选择(0,1),那么可能的路径就有2的N次方个,这个随机过程就要由2^N-1个概率来描述(概率只和为一减掉一个维度),用数学物理的语言就是极高维度的问题。* 离散的时间序列是清晰表述随机过程的入门方式,虽然更一般的表述是时间是连续的因此,能否研究一个随机过程的关键就是减少问题的维度-这也是物理的核心思想。

一下讲一下达到这个目的发明的神器:

马尔科夫过程(Markov Processes)

马尔科夫过程,是随机过程中的精华部分,其地位犹如牛顿定律在力学的地位。对于最一般的随机过程,是无限复杂的,幸好,在我们日常生活中,很多随机过程符合或近似更简单的模型。其中目前一种最有效的框架成为马尔科夫过程. 所谓马尔科夫过程,即随机过程的每一步的结果最多只

与上一步有关,而与其它无关。好比你不停撒筛子,你每一次的结果不会影响未来的成绩。

马尔可夫链(Markov chain):makov过程用数学语言表述就是马尔科夫链,就像一台熊熊驶过的火车,前一个车厢(上一步)拉着后一个(下一步),向前运行。

如果一个过程是markov过程,这个过程就得到了神简化,你只需要知道第n步是如何与第n-1步相关的,一般由一组条件概率表述,就可以求得整个过程。一个巨大的随机过程,其内核仅仅是这样一组条件概率,而知道了这组条件概率,就可以衍生整个过程。

图:一个典型的markov过程,每一个的结果只与上一步相关,我们只需要一组条件概率(箭头)来描述,每个条件概率告你如果态空间中的某一个事件发生,那么从这一点出发,下一个事件发生的概率。我们不妨多想一下,如果第n步和第n-1步的关系不是随机的,而是确定的,那我们得到了什么?我们联想到牛顿力学,牛顿力学也是此刻的状态决定下一刻的变化,其本质也是链式法则,通过此刻与此刻最邻近的未来的关系,衍生出整个宇宙的过去和未来,其灵魂同样是降维。或者说markov就是随机过程里的牛顿法则。

Markov是不是真的是一个历史无关的过程?No!虽然

第N+1步只与第N步有关,但是第N步又包含第N-1步,所以通过链式法则,历史的信息还是可以传递到现在的。

经典表述:马尔科夫链的核心条件概率表达式就是这台火车链接不同车厢的链条。如果这个条件概率关系不随时间变化,我们就得到经典的稳态马尔科夫链。它有一个良好的性质,就是当这个过程启动一段时间就会进入统计稳态,稳态的分布函数与历史路径无关。一个简单的例子:关于生育偏好是否影响男女比例的问题。我们知道过去的人喜欢生男孩,往往生女孩子就不停生,直到生到一个男生为止,因此就造成很多一大堆姐姐只有一个弟弟的家庭。我接触过的一些特别聪明的人都会认为这样的行为会影响男女比例。大部分人觉得会造成女孩比例多,少数人认为会增加男孩比例。实际呢?一言以蔽之:不变。为什么?生育问题是典型的稳态马尔科夫过程,下一次生育不受上一次生育的影响。根据马氏过程的特性,你知道历史无需考虑历史路径,最终的平衡概率只取决于每一步的概率。所以无论你怎么玩,不论是你拼命想生男孩还是女孩,都无法影响人口比例。但是有一招却是有影响的,就是打胎。为什么?答案依然很简单,你改变了每一步的概率。这就是马尔科夫过程的威力和魅力,可惜人生却不是马尔科夫过程,因为每一步都高度依赖于过去n步,因此人生是高度历史路径依赖的。关于马尔科夫过程的进一步理解及几个经典的随机

过程范式将在下文讲解

随机信号分析期末总复习提纲重点知识点归

第 一 章 1.1不考 条件部分不考 △雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义 相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况) △随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58) △ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61 ( )()() () ( ) ()()2 2 1 () 2112 2 22 11 ,,exp 2 2exp ,,exp 22T T x m X X X X X n n X T T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E e jM U σπσμ---?? --??= = -????? ? ?? ?? ?? ??=-==- ?? ??? ????? ?? C C C u u r u u r u u r u u r u u r u u r L u r u r u u r u r L 另外一些性质: []()20XY XY X Y X C R m m D X E X m ??=-=-≥??

第二章 随机过程的时域分析 1、随机过程的定义 从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ?→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系? 3、随机过程的概率密度P7 4、特征函数P81。(连续、离散) 一维概率密度、一维特征函数 二元函数 4、随机过程的期望、方差、自相关函数。(连续、离散) 5、严平稳、宽平稳的定义 P83 6、平稳随机过程自相关函数的性质: 0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88 2 2 2() ()()()()(0)()X X X X X X X X X X C R m R R R R τττρτσ σ--∞= = -∞= 非周期 相关时间用此定义(00()d τρττ∞ =?) 8、两个随机过程之间的“正交”、“不相关”、“独立”。 (P92 同一时刻、不同时刻) 9、两个随机过程联合平稳的要求、性质。P92

应用随机过程学习总结

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

第三章_随机过程教案

第三章随机过程 本节首先介绍利用matlab现有的库函数根据实际需要直接产生均分分布和高斯分布随机变量的方法,然后重点讲解蒙特卡罗算法。 一、均匀分布的随机数 利用MATLAB库函数rand产生。rand函数产生(0,1)内均匀分布的随机数,使用方法如下: 1)x=rand(m);产生一个m×m的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 2)x=rand(m,n);产生一个m×n的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 3)x=rand;产生一个随机数。 举例:1、产生一个5×5服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5) 2、产生一个5×3服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5,3) 二、高斯分布的随机数 randn函数产生均值为0,方差为1的高斯分布的随机数,使用方法如下: 1)x=randn(m);产生一个m×m的矩阵,所含元素都是均值

为0,方差为1的高斯分布的随机数。 2)x=randn(m,n);产生一个m×n的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 3)x=randn;产生一个均值为0,方差为1的高斯分布的随机数。 举例:1、产生一个5×5的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5) 2、产生一个5×3的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5,3) 3、产生一个5×3的矩阵,所含元素都是均值为0,方差为4的高斯分布的随机数。 x=2×randn(5,3) 三、蒙特卡罗仿真 1、蒙特卡罗算法 蒙特卡罗估计是指通过随机实验估计系统参数值的过程。蒙特卡罗算法的基本思想:由概率论可知,随机实验中实验的结果是无法预测的,只能用统计的方法来描述。故需进行大量的随机实验,如果实验次数为N,以 N表示事件A发 A 生的次数。若将A发生的概率近似为相对频率,定义为 N N。 A 这样,在相对频率的意义下,事件A发生的概率可以通过重

随机过程知识点汇总

第一章 随机过程得基本概念与基本类型 一.随机变量及其分布 1.随机变量, 分布函数 离散型随机变量得概率分布用分布列 分布函数 连续型随机变量得概率分布用概率密度 分布函数 2.n 维随机变量 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量得数字特征 数学期望:离散型随机变量 连续型随机变量 方差: 反映随机变量取值得离散程度 协方差(两个随机变量): 相关系数(两个随机变量): 若,则称不相关。 独立不相关 4.特征函数 离散 连续 重要性质:,,, 5.常见随机变量得分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布 均匀分布略 正态分布 指数分布 6.N维正态随机变量得联合概率密度 )}()(2 1ex p{||)2(1 ),,,(121221a x B a x B x x x f T n n ---=-π ,,正定协方差阵 二.随机过程得基本概念 1.随机过程得一般定义 设就是概率空间,就是给定得参数集,若对每个,都有一个随机变量与之对应,则称随机变量族就是上得随机过程。简记为。 含义:随机过程就是随机现象得变化过程,用一族随机变量才能刻画出这种随机现象得全部统计规律性。另一方面,它就是某种随机实验得结果,而实验出现得样本函数就是随机得。 当固定时,就是随机变量。当固定时,时普通函数,称为随机过程得一个样本函数或轨道。 分类:根据参数集与状态空间就是否可列,分四类。 也可以根据之间得概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程得分布律与数字特征 用有限维分布函数族来刻划随机过程得统计规律性。随机过程得一维分布,二维分布,…,维分布得全体称为有限维分布函数族。随机过程得有限维分布函数族就是随机过程概率特征得完整描述。在实际中,要知道随机过程得全部有限维分布函数族就是不可能得,因此用某些统计特征来取代。 (1)均值函数 表示随机过程在时刻得平均值。

概率论与随机过程考点总结

概率论与随机过程考点总 结 This manuscript was revised by the office on December 10, 2020.

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞ ===0 )()(k k k k z p z E z g !) 0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2σ=DX 指数分布 ???<≥=-0,00,)(x x e x f x λλ λ1=EX 21 λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X

电子科大随机信号分析随机期末试题答案

电子科技大学2014-2015学年第 2 学期期 末 考试 A 卷 一、设有正弦随机信号()cos X t V t ω=, 其中0t ≤<∞,ω为常数,V 是[0,1)均匀 分布的随机变量。( 共10分) 1.画出该过程两条样本函数。(2分) 2.确定02t πω=,134t πω=时随机信号()X t 的 一维概率密度函数,并画出其图形。(5 分) 3.随机信号()X t 是否广义平稳和严格平 稳?(3分) 解:1.随机信号()X t 的任意两条样本函 数如题解图(a)所示: 2.当02t πω=时,()02X πω=,()012P X πω??==????, 此时概率密度函数为:(;)()2X f x x πδω =

当34t πω=时, 3()42X πω=-,随机过程的一维 概率密度函数为: 3. ()[]1cos cos 2E X t E V t t ωω==???? 均值不平稳, 所以()X t 非广义平稳,非严格平稳。 二、设随机信号()()sin 2X n n πφ=+与 ()()cos 2Y n n πφ=+,其中φ为0~π上均 匀分布随机变量。( 共10分) 1.求两个随机信号的互相关函数 12(,)XY R n n 。(2分) 2.讨论两个随机信号的正交性、互不 相关性与统计独立性。(4分) 3.两个随机信号联合平稳吗?(4分) 解:1.两个随机信号的互相关函数 其中()12sin 2220E n n ππφ++=???? 2. 对任意的n 1、n 2 ,都有12(,)0XY R n n =, 故两个随机信号正交。

又 故两个随机信号互不相关, 又因为 故两个随机信号不独立。 3. 两个随机信号的均值都平稳、相关函数都与时刻组的起点无关,故两个信号分别平稳,又其互相关函数也与时刻组的起点无关,因而二者联合平稳。 三、()W t 为独立二进制传输信号,时隙长度T 。在时隙内的任一点 ()30.3P W t =+=????和 ()30.7P W t =-=????,试求( 共10分) 1.()W t 的一维概率密度函数。(3分) 2.()W t 的二维概率密度函数。(4分) 3.()W t 是否严格平稳?(3分)

通信原理知识点归纳

1.2.1 通信系统的一般模型 1.2.3 数字通信的特点 (1) 抗干扰能力强,且噪声不积累 (2) 传输差错可控 (3) 便于处理、变换、存储,将来自不同信源的信号综合到一起传输 (4) 易于集成,使通信设备微型化,重量轻 (5) 易于加密处理,且保密性好 1.3.1 通信系统的分类 按调制方式分类:基带传输系统和带通(调制)传输系统 。调制传输系统又分为多种 调制,详见书中表1-1。 按信号特征分类:模拟通信系统和数字通信系统 按传输媒介分类:有线通信系统和无线通信系统 3.1.2 随机过程的数字特征 均值(数学期望): 方差: 相关函数 3.2.1 平稳随机过程的定义 (1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔τ 有关。 把同时满足(1)和(2)的过程定义为广义平稳随机过程。 3.2.2 各态历经性 如果平稳过程使下式成立 则称该平稳过程具有各态历经性。 3.2.4 平稳过程的功率谱密度 非周期的功率型确知信号的自相关函数与其功率谱密度是一对傅里叶变换。这种关系对平稳随机过程同样成立,即有 []∫∞∞?=dx t x xf t E ),()(1ξ} {2)]()([)]([t a t E t D ?=ξξ2121212212121),;,()] ()([),(dx dx t t x x f x x t t E t t R ∫∫ ∞∞?∞∞?==ξξ???==)()(τR R a a ∫∫ ∞ ∞?∞∞??==ω ωπτττωωτξωτξd e P R d e R P j j )(21)()()(

3.3.2 重要性质 广义平稳的高斯过程也是严平稳的。 高斯过程经过线性变换后生成的过程仍是高斯过程。 3.3.3 高斯随机变量 (1)f (x )对称于直线 x = a ,即 (2) 3.4 平稳随机过程通过线性系统 输出过程ξo (t )的均值: 输出过程ξo (t )的自相关函数: 输出过程ξo (t )的功率谱密度: 若线性系统的输入是平稳的,则输出也是平稳的。 如果线性系统的输入过程是高斯型的,则系统的输出过程也是高斯型的。 3.5 窄带随机过程 若随机过程ξ(t )的谱密度集中在中心频率f c 附近相对窄的频带范围Δf 内,即满足Δf << f c 的条件,且 f c 远离零频率,则称该ξ(t )为窄带随机过程。 3.7 高斯白噪声和带限白噪声 白噪声n (t ) 定义:功率谱密度在所有频率上均为常数的噪声 - 双边功率谱密度 - 单边功率谱密度 4.1 无线信道 电磁波的分类: 地波:频率 < 2 MHz ;距离:数百或数千千米 天波:频率:2 ~ 30 MHz ;一次反射距离:< 4000 km 视线传播:频率 > 30 MHz ;距离: 4.3.2 编码信道模型 P(0 / 0)和P(1 / 1) - 正确转移概率,P(1/ 0)和P(0 / 1) - 错误转移概率 P (0 / 0) = 1 – P (1 / 0) P (1 / 1) = 1 – P (0 / 1) 2)(0 n f P n =)(+∞<

随机过程知识点

第一章:预备知识 §1、1 概率空间 随机试验,样本空间记为Ω。 定义1、1 设Ω就是一个集合,F 就是Ω的某些子集组成的集合族。如果 (1)∈ΩF; (2)∈A 若F ,∈Ω=A A \则F; (3)若∈n A F , ,,21=n ,则 ∞=∈1n n A F; 则称F 为-σ代数(Borel 域)。(Ω,F )称为可测空间,F 中的元素称为事件。 由定义易知: . 216\,,)5)4(111F A A A i F A F B A F B A F i i n i i n i i i ∈=∈∈∈∈?∞ === ,,则,,,)若(; 则若(; 定义1、2 设(Ω,F )就是可测空间,P(·)就是定义在F 上的实值函数。如果 ()()()()∑∞ =∞==???? ???=?≠=Ω≤≤∈1121,,,31210,)1(i i i i j i A P A P A A j i A A P A P F A 有 时,当)对两两互不相容事件(; )(; 任意 则称P 就是()F ,Ω上的概率,(P F ,,Ω)称为概率空间,P(A)为事件A 的概率。 定义1、3 设(P F ,,Ω)就是概率空间,F G ?,如果对任意 G A A A n ∈,,,21 , ,2,1=n 有: (),1 1∏===???? ??n i i n i i A P A P 则称G 为独立事件族。 §1、2 随机变量及其分布 随机变量X ,分布函数)(x F ,n 维随机变量或n 维随机向量,联合分布函 数,{}T t X t ∈,就是独立的。 §1、3随机变量的数字特征 定义1、7 设随机变量X 的分布函数为)(x F ,若?∞ ∞-∞<)(||x dF x ,则称 )(X E =?∞ ∞-)(x xdF 为X 的数学期望或均值。上式右边的积分称为Lebesgue-Stieltjes 积分。 方差,()()[]EY Y EX X E B XY --=为X 、Y 的协方差,而 DY DX B XY XY = ρ 为X 、Y 的相关系数。若,0=XY ρ则称X 、Y 不相关。 (Schwarz 不等式)若,,22∞<∞

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

应用随机过程教学大纲

《应用随机过程A》课程教学大纲 课程编号: L335001 课程类别:专业限选课适用专业:统计学专业 学分数:3学分学时数: 48学时 应修(先修)课程:数学分析、概率统计、微分方程、高等代数 一、本课程的地位和作用 应用随机过程是数学与应用数学专业的专业限选课程,是统计学专业的专业课程之一。随机过程是研究客观世界中随机演变过程规律性的学科,随机过程的研究对象为随时间变化的随机现象,即随时间不断变化的随机变量,通常被视为概率论的动态部分。随着科学技术的发展,它已广泛地应用于通信、控制、生物、地质、经济、管理、能源、气象等许多领域,国内外许多高等工科院校在研究生中设此课程,大量工程技术人员对随机分析的方法也越来越重视。通过本课程的学习,使学生初步具备应用随机过程的理论和方法来分析问题和解决问题的能力。 二、本课程的教学目标 使学生掌握随机过程的基本知识,通过系统学习,学生的概率理论数学模型解决随机问题的能力得到更加进一步的提高,特别在经济应用上,通过本课程的学习,可以让数学专业的学生很方便地转向在金融管理、电子通讯等应用领域的研究。 三、课程内容和基本要求 ?”记号标记既(用“*”记号标记难点内容,用“?”记号标记重点内容,用“* 是重点又是难点的内容。) 第一章预备知识 1.教学基本要求 (1)掌握概率空间, 随机变量和分布函数, 矩母函数和特征函数的概念和相关性质。 (2)掌握条件概率, 条件期望和独立性的概念和相关性质。 (3)了解概率中收敛性的概念和相互关系。 2.教学内容 (1)概率空间 (2)▽随机变量和分布函数

(3)▽*数字特征、矩母函数和特征函数 (4)▽*条件概率、条件期望和独立性 (5)收敛性 第二章随机过程的基本概念和类型 1.教学基本要求 (1)掌握随机过程的定义。 (2)了解有限维分布族和Kolmogorov定理。 (3)掌握独立增量过程和独立平稳增量过程概念。 2.教学内容 (1)基本概念 (2)▽*有限维分布和Kolmogorov定理 (3)▽随机过程的基本类型 第三章 Poisson过程 1.教学基本要求 (1)了解计数过程的概念。 (2)掌握泊松过程两种定义的等价性。 (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布。(4)了解泊松过程的推广。 2.教学内容 (1)▽ Poisson过程 (2)▽* 与Poisson过程相联系的若干分布 (3)* Poisson过程推广 第四章更新过程 1.教学基本要求 (1)掌握更新过程的定义和基本性质。 (2)掌握更新函数、更新方程。 (3)了解更新定理及其应用,更新过程的若干推广。 (4)了解更新过程的若干推广。 2.教学内容

概率论与随机过程考点总结定稿版

概率论与随机过程考点 总结 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?=ρ 若0=ρ,则称Y X ,不相 关。 独立?不相关?0=ρ

4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞ -=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞ ===0 )()(k k k k z p z E z g !) 0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2σ=DX 指数分布 ???<≥=-0,00,)(x x e x f x λλ λ1=EX 21 λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X T n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ?=)(正定协方差阵 3.随机向量的变换 二.随机过程的基本概念 1.随机过程的一般定义

随机过程学习总结

随机过程学习报告 通过这一段时间以来的学习,我认识到我们的生活中充满了随机过程的实例,在生活中我们经常需要了解在一定时间间隔[0,t)内某随机事件出现次数的统计规律,如到某商店的顾客数;某电话总机接到的呼唤次数;在电子技术领域中的散粒噪声和脉冲噪声;已编码信号的误码数等。在我们的专业学习——通信工程中,研究数字通信中已编码信号的误码流,数模变换中对信号进行采样等也都会应用到随机过程的知识,因此这门课程的学习是非常重要的。 一、认识泊松过程与复合泊松过程的区别 泊松过程是一类很重要的随机过程,随机质点流描述的随机现象十分广泛,下面我就通过运用泊松过程的知识解答一道书本中的实际应用题目: 设移民到某地区定居的户数是一泊松过程,平均每周有两户定居,即λ=2。若每户的人口数是随机变量,一户4人的概率是1/6,一户3人的概率是1/3,一户两人的概率是1/3,一户一人的概率是1/6,且每户的人口数是相互独立的,①5周内移民到该地区定居的人口数是否为泊松过程?②求上述随机过程的数学期望与方差。 分析:这道题目中的问题就是复合泊松过程的实际应用,这类过程具有泊松过程的一部分性质,不同的地方就在于随机质点流的到达不必再满足每次只能到一个的标准,这就将随机过程的研究与实际相融合,生活中的大部分过程其实是不可能满足每次到达一个这样的苛刻要求的,比如调查到达商场购物的人数等问题时,实际去商场购物时人们大多都是与好朋友结伴出行而不可能存在每个人都是独自来购物的现象,所以引入复合泊松过程是十分有必要的。 解:设[0,t)时间内到该地定居的户数为N(t),则{N(t),t>=0}是一泊松过程,X(n)为第n 户移民到该地定居的家庭人口数,{X(0)=0,X(n),n=1,2,3···}是独立同分布随机变量列,Y(t)为[0,t)时间内定居到该地的人数。 则Y(t)=∑=) (0 )n (X t N n t>=0 为一复合泊松过程, )()(υ?n X =4γi e *1/6+3γi e *1/3+2γi e *1/3+γi e *1/6 )()t (υ?Y =)1)((t )1(-γ?λX e 由特征函数的唯一性可知,Y(t)不是泊松过程。 E[X(n)]=4*1/6+3*1/3+2*1/3+1*1/6=5/2 E[)(n X 2 ]=16*1/6+9*1/3+4*1/3+1*1/6=43/6 则E[Y(t)]=λt*E[X(1)]=t*5; D[Y(t)]=λt*E[)(1X 2 ]=t*43/3; 则五周内定居到该地的人数数学期望为:5*5=25 方差为:5*43/3=215/3

随机过程-方兆本-第三版-课后习题答案

习题4 以下如果没有指明变量t 的取值范围,一般视为R t ∈,平稳过程指宽平稳过程。 1. 设Ut t X sin )(=,这里U 为)2,0(π上的均匀分布. (a ) 若Λ,2,1=t ,证明},2,1),({Λ=t t X 是宽平稳但不是严平稳, (b ) 设),0[∞∈t ,证明}0),({≥t t X 既不是严平稳也不是宽平稳过程. 证明:(a )验证宽平稳的性质 Λ,2,1,0)cos (2121)sin()sin()(2020==-=? ==?t Ut t dU Ut Ut E t EX π π ππ ))cos()(cos(2 1 )sin (sin ))(),((U s t U s t E Us Ut E s X t X COV ---=?= t U s t s t U s t s t ππ π21}])[cos(1])[cos(1{212020? +++--= s t ≠=,0 2 1 Ut Esin ))(),((2= =t X t X COV (b) ,)),2cos(1(21 )(有关与t t t t EX ππ-= .)2sin(81 21DX(t)有关,不平稳,与t t t ππ-= 2. 设},2,1,{Λ=n X n 是平稳序列,定义Λ Λ,2,1},,2,1,{) (==i n X i n 为 Λ,,)1(1)1()2(1)1(---=-=n n n n n n X X X X X X ,证明:这些序列仍是平稳的. 证明:已知,)(),(,,2 t X X COV DX m EX t t n n n γσ===+ 2 121)1(1)1()1(2)(,0σγσ≡+=-==-=--n n n n n n X X D DX EX EX EX ) 1()1()(2),(),() ,(),(),(),(111111) 1()1(++--=+--=--=--+-+-++--+++t t t X X COV X X COV X X COV X X COV X X X X COV X X COV n t n n t n n t n n t n n n t n t n n t n γγγ显然,) 1(n X 为平稳过程. 同理可证,Λ,,) 3()2(n n X X 亦为平稳过程. 3.设 1 )n n k k k Z a n u σ==-∑这里k σ和k a 为正常数,k=1,....n; 1,...n u u 是(0,2π)

随机过程知识点汇总

随机过程知识点汇总

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 ) (k k x X P p == 分 布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞ -=x dt t f x F )()( 2.n 维随机变量) ,,,(2 1 n X X X X Λ= 其联合分布函数) ,,,,(),,,()(2211 2 1 n n n x X x X x X P x x x F x F ≤≤≤==ΛΛ 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随 机变量X ?∞ ∞-=dx x xf EX )( 方差:2 22 )() (EX EX EX X E DX -=-= 反映随机变量取值的 离散程度 协方差(两个随机变量Y X ,): EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,): DY DX B XY XY ?= ρ 若 0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ

4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞ -=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ =EX λ =DX 均匀分布 略 正态分布),(2 σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2 σ=DX 指数分布 ?? ?<≥=-0, 00,)(x x e x f x λλ λ 1 = EX 2 1 λ = DX 6.N维正态随机变量) ,,,(2 1 n X X X X Λ=的联合概率密度 ),(~B a N X )} ()(2 1 ex p{| |)2(1),,,(12 12 21a x B a x B x x x f T n n ---= -πΛ ) ,,,(21n a a a a Λ=,),,,(2 1 n x x x x Λ=,n n ij b B ?=)(正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设) , (P Ω是概率空间,T 是给定的参数集,若对每 个T t ∈,都有一个随机变量X 与之对应,则称随机变量

概率论与随机过程考点总结

概率论与随机过程考点 总结 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞ ===0 )()(k k k k z p z E z g !) 0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2σ=DX 指数分布 ???<≥=-0,00,)(x x e x f x λλ λ1=EX 21 λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布 X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x) p k f (t)dt 分布函数 k x X 的概率分布用概率密度 f (x) F(x) 分布函数 连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,) 其联合分布函数 1 2 n 1 1 2 离散型 联合分布列 连续型联合概率密度 3.随机变量 的数字特征 数学期望:离散型随机变量 X EX x p k k X EX xf (x)dx 连续型随机变量 2 DX E(X EX) 2 EX (EX) 2 方差: 反映随机变量取值 的离散程度 协方差(两个随机变量 X ,Y ): B E[( X EX)(Y EY)] E(XY) EX EY XY B XY 相关系数(两个随机变量 X,Y ): 0,则称 X ,Y 不相关。 若 XY DX DY 独立 不相关 itX g(t) E(e ) itx e p k 连续 g(t) k e itx f (x)dx 4.特征函数 离散 g(t) 重要性质: g(0) 1, g(t) 1 g( t) g(t) , , g (0) i EX k k k 5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布 P( X 1) p,P( X 0) q EX p DX pq P(X k) C p q n k k k EX np DX n p q n k 泊松分布 P( X k) e k! EX DX 均匀分布略 ( x a)2 1 2 N(a, ) f (x) 2 2 2 EX a 正态分布 e DX 2

随机过程教学大纲

《随机过程》教学大纲 课程编码:1511104303 课程名称:随机过程 学时/学分:48/3 先修课程:《数学分析》、《概率论与数理统计》 适用专业:数学与应用数学 开课教研室:信息与计算科学教研室 一、课程性质与任务 1.课程性质:随机过程是概率论与数理统计的后继课程,是数学与应用数学专业的专业选修课。随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征,着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系,具有较强的理论性。该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用。随机过程论在理论与应用两方面都发展迅速,学习、了解这门学科对概率统计及数学其他分支如信息与计算科学、自然学科、工程技术乃至经济管理等方面的学者及科技工作者都是重要而且有益的。本课程开设在第6学期。 2.课程任务:通过本课程的学习,学生应能较好地理解随机数学的基本思想,掌握几个常用过程,如泊松过程、马尔可夫链、生灭过程、更新过程、鞅的基本概念,基本理论及分析方法。提高学生的数学素质,加强学生运用随机过程的思想方法开展科研工作和解决实际问题的能力。 二、课程教学基本要求 《随机过程》要求在熟练掌握概率论的基础上深刻理解随机过程的基本思想,理解随机过程是概率论的动态部分的含义;掌握随机过程的分类方法及常见的随机过程(如Poisson 过程、更新过程、Markov链和鞅等)的各种性质、推广形式及简单应用。 本课程的成绩考核形式:末考成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。成绩评定采用百分制,60分为及格。 三、课程教学内容 第一章 准备知识 1.教学基本要求 复习随机变量、分布函数、分布律和概率密度函数的概念,条件分布,函数的分布求法,常见的离散型与连续型分布,及多维随机变量的知识;复习随机变量的数学期望、方差、矩、协方差与协方差阵、相关系数的定义及计算;掌握条件数学期望的求法,全期望

随机过程知识点总结

第一章: 考试范围1.3,1.4 1、计算指数分布的矩母函数. 2、计算标准正态分布)1,0(~N X 的矩母函数. 3、计算标准正态分布)1,0(~N X 的特征函数. 第二章: 1. 随机过程的均值函数、协方差函数与自相关函数 2. 宽平稳过程、均值遍历性的定义及定理 3. 独立增量过程、平稳增量过程,独立增量是平稳增量的充要条件 1、设随机过程()Z t X Yt =+,t -∞<<∞.若已知二维随机变量(,)X Y 的协方差矩阵为2122σρρσ?????? ,求()Z t 的协方差函数. 2、设有随机过程{(),}X t t T ∈和常数a ,()()()Y t X t a X t =+-,t T ∈,计算()Y t 的自相关函数(用(,)X R s t 表示). 3、设12()cos sin X t Z t Z t λλ=+,其中212,~(0,)Z Z N σ是独立同分布的随机变量,λ为实数,证明()X t 是宽平稳过程. 4、设有随机过程()sin cos Z t X t Y t =+,其中X 和Y 是相互独立的随机变量,它们都分别以0.5和0.5的概率取值-1和1,证明()Z t 是宽平稳过程. 第三章: 1. 泊松过程的定义(定义3.1.2)及相关概率计算 2. 与泊松过程相联系的若干分布及其概率计算 3. 复合泊松过程和条件泊松过程的定义 1、设{(),0}N t t ≥是参数3λ=的Poisson 过程,计算: (1). {(1)3}P N ≤; (2). {(1)1,(3)3}P N N ==; (3). {(1)2(1)1}P N N ≥≥. 2、某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数. 假设男女顾客来商场的人数分别独立地服从每分钟2人与每分钟3人的泊松过程. (1).试求到某时刻t 时到达商场的总人数的分布;

相关文档
相关文档 最新文档