文档库 最新最全的文档下载
当前位置:文档库 › 物理-经典力学和量子力学中地谐振子

物理-经典力学和量子力学中地谐振子

物理-经典力学和量子力学中地谐振子
物理-经典力学和量子力学中地谐振子

目录

摘要(关键词) (1)

Abstract(Key words) (1)

前言 (1)

1.经典力学中的谐振子 (1)

1.1简谐振子 (1)

1.2受驱谐振子 (2)

1.3阻尼谐振子 (3)

1.4受驱阻尼谐振子 (3)

1.5数学描述 (3)

1.6经典谐振子的计算 (4)

2.量子力学中的谐振子 (5)

2.1一维谐振子 (5)

2.1.1哈密顿算符和能量本征态 (5)

2.1.2 阶梯算符方法 (6)

2.1.3自然长度和自然能量 (8)

2.2三维谐振子 (8)

2.3谐振子的相干态 (9)

2.3.1降算符的本征态 (9)

2.3.2相干态的性质 (10)

3.经典谐振子和量子谐振子的比较 (10)

3.1能级 (10)

3.1.1能级取值点 (10)

3.1.2零点能 (10)

3.2波函数 (11)

参考文献 (13)

致谢 (13)

经典力学和量子力学中的谐振子

摘要:谐振子在经典力学和量子力学中都是比较重要的问题,原因在于简谐振动广泛存在于自然界中,而许多体系都可以看成谐振子。本文着重介绍了经典力学中谐振子的的几种类别及其相关物理量的求解和量子力学中一维谐振子、三维谐振子以及相干态的相关知识,最后对经典和量子两个范畴内的谐振子进行了比较。 关键字:谐振子;经典力学;量子力学;相干态 Abstract :Harmonic oscillator is important in both classical and quantum mechanics. The reason is that simple harmonic oscillation widely exists in nature, and many systems can be viewed as harmonic oscillator system. In this paper, we mainly introduce the solution of the several categories and their relating physics terms of oscillator in classical mechanics and the relevant property of one-dimensional harmonic oscillator, the three dimensional harmonic oscillator, and its coherent state in quantum mechanics, finally compare harmonic oscillator in classical mechanics with that in quantum mechanics. Key words :Harmonic oscillator ;Classical mechanics ;Quantum mechanics ;Coherent states

前言

何为谐振?在运动学就是简谐振动,该振动是物体在一个位置附近往复偏离该振动中心位置(即平衡位置)进行运动,在这个振动形式下,物体受力的大小总是和他偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。何为谐振子?把振动物体看作不考虑体积的微粒或者质点的时候,这个振动物体就叫谐振子。

1.经典力学中的谐振子

经典力学中,一个谐振子就是一个系统,当其从平衡位置发生位移,就会受到一个正比于位移x 的恢复力F ,并遵守胡克定律:

kx F -=

其中k 是一个大于零的常数,由系统决定。

如果F 是系统所受到的唯一的力,则系统被称作简谐振子。而其进行的往复运动称作简谐运动——正中央为平衡点的正弦或余弦的振动,且振幅与频率都是常数。

若同时存在一个正比于速度的摩擦力,则会存在阻尼现象,那么这种谐振子称为阻尼振子。在这种情况下,其振动频率小于无阻尼情况的振子,且振幅随着时间减小。

或者,若同时存在一个与时间相依的外力,该谐振子称为受驱振子。

1.1简谐振子

简谐振子没有驱动力,也没有摩擦,所以合力单纯为:

kx F -= (1.1.1) 利用牛顿第二定律,有: kx ma F -== (1.1.2)

而且加速度a

等于x 的二次微分导数,得: kx dt x

d m -=22 (1.1.3)

02

0=+x ω (1.1.4)

2

20=?+?=+dx x x x d x x dx x d ωω

?

ω?ω+=+=t A

x

t A

00arccos arcsin

(1.1.8)

并有一般解为:

)cos(0?ω+=t A x (1.1.9) 其中振幅以及相位可过初始条件来决定。 另外也可以将一般解写成: )(sin ?ω+=

t A x (1.1.10)

00 (1.1.11) 其中A 与B 为透过初始条件决定的常数,以替代前面形式的A 与?。 其振动频率则为: ω0

=f (1.1.12) 动能为:以及势能为:

)(cos 22022

2?ω+==t kA kx U (1.1.14) 所以系统总能为定值: 2

2

1kA E =

(1.1.15) 1.2受驱谐振子

0交流LC (电感L-电容C )电路以及理想化的弹簧系统(没有内部力学阻力或外部的空气

阻力)。

,与初始条件相关;另一个为稳态解(非齐次常微分方程的特殊解),与初始条件无关,

)

?

ω-t(1.4.2)

(1.4.3)

多数谐振子,基本上满足以下的微分方程:

)

cos(

2

2

2

t

A

x

dt

dx

m

b

dt

x

d

ω

ω=

+

+(1.5.1)

其中t 是时间,b 是阻尼常数,0ω是本征角频率,而)cos(0t A ω代表驱动系统的某种事物,其振幅为0A ,角频率为ω,x 是进行振荡的被测量量,可以是位置、电流或其他任何可能的物理量。角频率与频率f 有关,关系式为 π

ω

2=

f (1.5.2) 经典振子描述中的重要术语有: 振幅:偏离平衡点的最大的位移量。

周期:系统完成一个振荡循环所需的时间,为频率的倒数。

频率:单位时间内系统执行的循环总数量(通常以1赫兹 = 1/秒为量度)。 角频率:ω = 2πf

相位:系统完成了循环的多少(开始时,系统的相位为零;完成了循环的一半时,系统的相位为π)。

初始条件:t = 0时系统的状态。

1.6经典谐振子的计算

一质量为m 的质点沿ox 轴运动,它所受到的回复力()x F

可从势函数的微商得到。势函数为:

()22

1

kx x U = (1.6.1)

力()x F

的表达式为:

()i kx dx

dv

x F -=-= (1.6.2)

i 是沿ox 轴的单位矢量。运动方程可以写成:

kx dt x

d m -=22 (1.6.3)

令 m

k =2

0ω (1.6.4)

(1.6.3)式可变为: 02

022=+x dt

x d ω (1.6.5)

方程(1.6.5)的解具有下列形式:)sin(00o t x x ?ω+= (1.6.6) 它表示一个正弦运动,其振幅为0x ,相位为0?,角频率为0ω,相应的频率是:

πω20=

f m

k

π21=

(1.6.7) f 只与质点的质量m 和恢复力常数k 有关,而振幅0x 和相位o ?都与运动初始条件有关。

振子的总能量E 是:P E E E +=0 (1.6.8) 动能e E 和势能P E 的表达式为:

)(cos 2

)(20022

2

02?ωω+==t x m dt dx m E e (1.6.9)

)(sin 2

2100220

2

02?ωω+==t x m kx E P (1.6.10)

显然总能量在运动中是不变的,即

2

2

02

02

12kx x m E E E p e ==+=ω (1.6.11) 且由(1.6.9)(1.6.10)式知:当000=+?ωt 时,势能有最小值0,而此时动能具

有最大值202021x m ω;而当200π?ω=+t 时,势能具有最大值2

0202

1x m ω,而此时动能值

最小为0。

进一步,对于经典振子:)sin(00o t x x ?ω+= (1.6.12)

经典振子的速度v 为;)cos(0000?ωω+==t x dt

dx

v (1.6.13) 利用αα2sin 1cos -=,且已知:0

00)sin(x x

t =+?ω (1.6.14)

)00200(sin 1?ωω+-=t x v

001x x

x -

=ω (1.6.15) 其中0x 为振幅,平衡点为原点。当0=x 时,由(1.6.15)式知此时经典振子的速度v 有最大值00ωx v =,即经典振子在0=x 处逗留时间最短,出现的几率最小。

2.量子力学中的谐振子

2.1一维谐振子

2.1.1哈密顿算符与能量本征态

和经典力学中的一样,一维谐振子的总能量也为:

2221

22

p E m x m ω=

+ (2.1) 二一维谐振子的哈密顿量为:

2221

p H m x ω=

+

(2.2) d

dx

。(2.2)为了要找到能阶以相对应的能量本征态,我们必须了解所谓的“定态薛定谔方程” 214()exp()()2

n n m m x x H x ωωψπ=?-? (2.4) 其中0,1,2...n =。

函数n H 为厄米多项式 :2

2

()(1)m n

x x n n d H x e e dx

-=- 所以,我们得到的谐振子的能级为:

1

()2

n E n ω=+, 1,2,3,n =??? (2.5)

由(2.5)式。我们可以得知以下几点: 首先,能量是量子化的,只有离散的值——即 ω乘以1/2, 3/2, 5/2……。这是

许多量子力学系统的特征。

再者,其基态能量(当 n = 0 时的能量)不为零,即

01

2

E ω=

这是粒子波动性的必然结果,这一结果表明静止的波是不存在的。在基态中,根据量子力学,我们知道一振子执行所谓的“零振动” 且其平均动能为正值。最后,谐振子的能阶值是等距的,与波尔模型和盒中粒子问题不同。

引入厄米多项式,我们最后得到谐振子对应于能量本征值n E 的能量本征函数为:

22211

2

2

()()()a x n n n n n N e

H N e

H ax ξψξξ--== (2.6)

我们会注意到基态的概率密度集中在原点。这表示粒子多数时间处在势阱的底部,合乎对于一几乎不带能量状态的预期。当能量增加时,概率密度变成集中在“经典转向点”,其中状态能量等同于势能。这样的结果与经典谐振子相一致;经典的描述下,粒子多数时间处在(或更有机会被发现在)转向点,因为在此处粒子速度最慢。因此满足对应原理。 2.1.2阶梯算符方法

上述的幂级数解法虽然直观,但是却显得相当复杂。阶梯算符方法允许我们不用解

微分方程,就能直接求得能量本征值。首先,我们定义算符?a

与其伴随算符?

?a :

?))

i

a

x P m i P m ω

ω

=+- (2.7)

??并不相同。

??

??)?(2

x a

a m a ω=

+-算符遵守下面的等式,称之为正则对易关系:]i

. (2.9)

利用上面关系,我们可以证明如下等式:

??

??(12)??,1

H a

a a a ω=+??=?? (2.10)

于是引入一个厄米算符

[]2

?

222???????()(),22

11?2

m p i N a a x x

p m H ωωω≡=++=- (2.11)

即:

1??()2

H

N ω=+ (2.12) ?H

既然与?N 有简单的线性关系,它们必可同时对角化。记?N 的一个本征值为n 的本征

态为n :

?N

n n n

= (2.13)

1?()2

H n n ω=+n 态的能量本征值为:

1

()n E n ω=+ (2.15)

0()

d x m dx

ψω

0tan x Cons t dx m ω

=-+ (2.17) 经过归一化,这个方程的解为:

212

4

0()(

)m x m x e

ωω

ψπ

-= (2.18)

2.1.3自然长度与自然能量

过无量纲化来实现。如果我们以ω为单位来测量能量,以及m ω

为单位来测量

22

2

1122

d H

u du =-+ (2.19) 且能量本征态与本征值变成:

142exp((

)n n x u H u ψ-=

- (2.20)

n E n =+2.2三维谐振子

三位谐振子的能量本征值方程为:

22222221()02m E m x y z ψωψ???+

-++=????

(2.22) 其中

22221

(,,)()2

V x y z m x y z ω=++

(2.23)

为谐振子的势。引进无量纲参数ξ、η、ζ,并定义

,,,ax ay az a ξ

ηζ===≡

(2.24)

则能量本征值方程简化为:

222222

222()0ψψψλξηζψξηζ

?????+++-++=????? (2.25) 设(,,)()()()X Y Z ψξηζξηζ=,分离变量得到的整个体系的能量本征函数为:

22221

()2

(,,)()()()

()()()x y z a x y z n n n n x y z X ax Y ay Z az N H ax H ay H az e

ψ-++== (2.26) 其中,x y z n n n n N N N N =。谐振子的能量本征值为:

121

()2

3

()2

x y z x y z E n n n λω

λλλω

ω

==++=+++ (2.27) 由此可见,三位谐振子的基态能量03

2

E ω=

。 2.3谐振子的相干态

相干态是量子力学中量子谐振子能够达到的一种特殊的量子状态。量子谐振子的动力学性能和经典力学中的谐振子很相似。1926年埃尔温·薛定谔在解满足对应原理的薛定谔方程时找到的第一个量子力学解就是相干态。 2.3.1降算符的本征态

做一维运动的粒子,坐标与动量的差方平均值满足下列不确定关系:

222

1()()4

x p ???≥

, (2.28)

上式表明粒子的坐标和动量不能同时取确定值,且两者的差方平均值之积不小于

2

14

。也就是说,它表明只有在某个态上这种误差取最小值214,即最小不确定态,它

是不确定程度的最小的状态,就是相干态。相干态也可以理解为最接近经典状态的量子状态。

对于线谐振子而言,在粒子数表象中,基态0下的不确定关系为:

2

2

2

1()()4

x p ???=

(2.29) 而0是降算符?_A

的本征态,相应的本征值为0,即 ?

_00A = (2.30) 于是,可以推测?_A

的本征态为最小不确定态。 设降算符?_A

满足本征方程: ?_A

z z z = (2.31) 降算符不是厄米算符,一般情况下,它的本征值z 是复数。在粒子数表象中,将其本征

矢z 向?H

的本征矢展开: 0

n

n z c

n

==

∑ (2.32)

为了求出展开系数,将上式代入(2.31)左端,得到:

??__1n n n n n A z c A n c c n ∞

∞∞

+=====-=∑∑∑ (2.33)

将其与(2.31)式右端比较,得到:

n n n n c

n c n ∞

+===∑∑ (2.34)

继而得到展开系数的递推关系:

1n zc c += (2.35)

将上式代入(2.32)式,得到:

00

n z c n ∞

== (2.36)

再利用归一化条件1z z =定出0c ,最后得到降算符的本征态为:

20

1exp()2n z z n ∞==- (2.37) 2.3.2相干态的性质 a.相干态满足

2

1?exp()exp()02

z z zA +

=-

b.相干态不是粒子数算符???n

A A +-=的本征态,但有确定的粒子数。

c.在相干态中,

n

出现的频率为

exp()!

n

n Wn n n =- d.不同的相干态一般并不正交,且满足

221exp[()]2

βαβααβ*

=-++

其中α与β为降算符?_A

的两个不同的本征值。 e.全部(无限多)相干态构成完备系,即

21

1d z z z π

=?

3.经典谐振子与量子谐振子的比较

经典谐振子与量子谐振子有着本质的区别,下面将逐一进行比较:

3.1能级

3.1.1能量取值点

由(1.6.9)(1.6.10)式可知经典谐振子的能量取值是连续的,而由(2.5)式可知量子谐振子的取值不是连续的,是分立的,即是量子化的,其中n 为量子数。而且量子谐振子的能级是等间距的,间距是ω 。能量取分立值是由于微观粒子具有波粒二象性这一量子特征。 3.1.2零点能

由(1.6.9)式可知当0)cos(0=+?wt 时,经典谐振子的最低动能为零,而由(2.5)

式可知,量子谐振子在基态的能量不为零。即当n=0时,ω 2

1

0=E ,0E 被称为零点能。

它与无限势阱总粒子的基态能量(2

2

222ma

n E n π = n=1,2,3…….)不为零是很相似的,这是一种量子效应,也是由于微观粒子具有波粒二象性。

同样,也可用不确定度关系进行定性说明。 利用坐标和动量的不确定关系,可得:

4

)()(22

2 ≥???p x

谐振子的能量不确定度关系:

2

222222)

(2

1)(8)(212)(x x x p E ?+?≥?+?=?μωμμωμ 使E ?极小的2)(x ?的值可由极值条件,得到:

0)

(821)()(4

22

2=?-=??x x d E d μμω 可求得,μω2)(2

=?x ,因此谐振子的零点能为:

2

44ωωω =+=?E

可见谐振子的基态是谐振子问题的最小不确定态,这是由其量子本性所决定的。

3.2波函数

经典力学中,谐振子表现为质点沿一条直线的振动,它没有轨道的概念,没有波函数。而量子力学的谐振子就用波函数来描述。在量子力学中波函数)(x ?本身无意义,但波函数的绝对值平方2

)(x ?与粒子在空间某点出现的几率成正比。

首先我们以基态进行讨论。 对于量子谐振子的基态: 2

4

102

2)(x e x α

π

α?-=

, ω 2

1

0=

E 其相应的几率密度为:

2

22

00)()(x

e x x W α

π

α?-=

=

容易得知其在x=0处0W 有最大值:

π

α

, 即在原点找到粒子的概率最大,由于能量ω 2

1

0=

E ,可知此时的经典回转点为0x m x ==

ω

。根据经典力学,能量为E 的谐振子所能达到离平衡位置最远的距离是A x m E

A x ±===,22

ω称为谐振子的经典回转点。

a 、由于经典谐振子在x=0处势能最小,并由(1.6.9)(1.6.10)式可知,此时的动能必定最大(机械能守恒),即谐振子的速度最大,见(1.6.11)式,振子在x=0处逗留时间最短,因此经典谐振子在x=0处的几率最小。而按量子力学计算,由上述关系

知,在x=0处的几率却是最大的(见图1).经典力学中与量子力学中刚好相反。

b 、当经典谐振子的能量为ω 21时,经典回转点α1±,经典振子只能处于α

1

≤x 的

区域中。应该在1=x α处,势能ωα 2

1

2121)(22==

=k kx x V ,即等于总能量。在这点速度减慢为零,不能再继续往外跑。而按照量子力学计算,粒子在α

1

>x 的区域,仍有不

为零的几率。对于基态,概率为:

1573.02

21

20

2

==

??∞

-∞

ξπ

?ξd e

dx x

对于第一激发态1?,粒子在经典禁区出现的概率为0.1116。

这种明显的量子效应在基态表现的特别突出,对于量子谐振子大约有16%的粒子跑到了

α

1

>x 的区域以外,这是与经典不同的地方。当线性谐振子在前几个态时,几率密度与

经典情况毫无相似之处,而随着量子数n 增加,相似性也随着增加。 图2和图3画出了n=0及n=10是线性谐振子的几率密度:

2

图3

图中虚线表示经典线性谐振子的几率密度,实线表示量子谐振子的几率密度。由图3可见当n=10时,量子和经典的情况在平均上已经相当符合,差别只在于2

0)(x α?迅速振荡而已。

在以上的讨论中,我们发现经典谐振子与量子谐振子既有明显的区别又存在某些必然的联系,对其中的思考与研究将会进一步促进人们对量子物理的理解与认识。

参考文献:

[1] 倪光炯,陈苏卿.高等量子力学.复旦大学出版社,2004.1第二版 [2] 喀兴林,高等量子力学.高等教育出版社,2001.8第二版 [3] 曾谨言.量子力学.科学出版社,2000.7第三版 [4] 张永德.高等量子力学.科学出版社,2010.8第二版

[5] 井孝功,张井波.高等量子力学导论.哈尔滨工业大学出版社,2004.6第一版 [6] 张林芝. 量子力学. 东北师范大学出版社, 1986第一版 [7] 曾谨言. 量子力学教程. 科学出版社, 2003 [8] [法]萨尔蒙. 量子力学. 科学出版社, 1981

[9] 宋鹤山. 量子力学. 大连理工大学出版社, 2004. [10] 姚玉洁. 量子力学. 吉林大学出版社, 1988.

文献不够

量子力学思考题及解答

1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ? ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ? ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r ? 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

《大学物理aii》作业 no08 量子力学基出 参考解答

《大学物理AII 》作业No.08量子力学基础 班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求**************************** 1、掌握物质波公式、理解实物粒子的波粒二象性特征。 2、理解概率波及波函数概念。 3、理解不确定关系,会用它进行估算;理解量子力学中的互补原理。 4、会用波函数的标准条件和归一化条件求解一维定态薛定谔方程。 5、理解薛定谔方程在一维无限深势阱、一维势垒中的应用结果、理解量子隧穿效应。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、德布罗意在爱因斯坦光子理论的启发下提出,具有一定能量E 和动量P 的实物粒子也具波动性,这种波称为(物质)波;其联系的波长λ和频率ν与粒子能量E 和动量P 的关系为(νh E =)、(λh p =)。德布罗意的假设,最先由(戴维 孙-革末)实验得到了证实。因此实物粒子与光子一样,都具有(波粒二象性)的特征。 2、玻恩提出一种对物质波物理意义的解释,他认为物质波是一种(概率波),物质波的强度能够用来描述(微观粒子在空间的概率密度分布)。 3、对物体任何性质的测量,都涉及到与物体的相互作用。对宏观世界来说,这种相互作用可以忽略不计,但是对于微观客体来说,这种作用却是不能忽略。因此对微观客体的测量存在一个不确定关系。其中位置与动量不确定关系的表达式为(2 ≥???x p x );能量与时间不确定关系的表达式为(2 ≥???t E )。 4、薛定谔将(德布罗意公式)引入经典的波函数中,得到了一种既含有能量E 、动量P ,又含有时空座标的波函数),,,,,(P E t z y x ψ,这种波函数体现了微观粒子的波粒二象的特征,因此在薛定谔建立的量子力学体系中,就将这种波函数用来描述(微观粒子的运动状态)。

从经典力学到量子力学的思想体系探讨

从经典力学到量子力学的思想体系探讨 一、量子力学的产生与发展 19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象 一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以 h为最小单位,一份一份交换的。这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且与辐射能量和频率无关由振幅确定的基本概念直接相矛盾,无法纳入任何一个经典范畴。当时只有少数科学家认真研究这个问题。 著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。1916年美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。 1913年丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定(按经典理论,原子中 电子绕原子核作圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核,与正电荷中和),提出定态假设:原子中的电子并不像行星一样可在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nh,n称之为量子数。玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差△E=hV确定,即频率法则。这样,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了72号元素铅的发现,在随后的短短十多年内引发了一系列的重大科学进展。这在物理学史 上是空前的。 由于量子论的深刻内涵,以玻尔为代表的哥本哈根学派对此进行了深入的研究,他们对对应原理、矩阵力学、不相容原理、测不准关系、互补原理。量子力学的几率解释等都做出了贡献。 1923年4月美国物理学家康普顿发表了X射线被电子散射所引起的频率变小现象,即 康普顿效应。按经典波动理论,静止物体对波的散射不会改变频率。而按爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,使光量子说得到了实验的证明。 光不仅仅是电磁波,也是一种具有能量动量的粒子。1924年美籍奥地利物理学家泡利 发表了“不相容原理”:原子中不能有两个电子同时处于同一量子态。这一原理解释了原子中电子的壳层结构。这个原理对所有实体物质的基本粒子(通常称之为费米子,如质子、中

原子物理学试题汇编

部分高校原子物理学试题汇编 试卷A(聊师) 一、选择题 1.分别用1MeV的质子和氘核(所带电荷与质子相同,但质量是质子的两倍)射向金箔,它们与金箔原子核可能达到的最小距离之比为: A.1/4;B.1/2; C.1; D.2. 2.处于激发态的氢原子向低能级跃适时,可能发出的谱总数为: ; ; ; . 3.根据玻尔-索末菲理论,n=4时氢原子最扁椭圆轨道半长轴与半短轴之比为: ;; ; . 电子的总角动量量子数j可能取值为: 2,3/2; 2,5/2; 2,7/2; 2,9/2. 5.碳原子(C,Z=6)的基态谱项为 ;;;. 6.测定原子核电荷数Z的较精确的方法是利用 A.α粒子散射实验; B. x射线标识谱的莫塞莱定律; C.史特恩-盖拉赫实验; D.磁谱仪. 7.要使氢原子核发生热核反应,所需温度的数量级至少应为(K) ;;;. 8.下面哪个粒子最容易穿过厚层物质? A.中子; B.中微子; C.光子; D.α粒子 9.在(1)α粒子散射实验,(2)弗兰克-赫兹实验,(3)史特恩-盖拉实验,(4)反常塞曼效应中,证实电子存在自旋的有: A.(1),(2); B.(3),(4); C.(2),(4); D.(1),(3). 10.论述甲:由于碱金属原子中,价电子与原子实相互作用,使得碱金属原子的能级对角量子数l的简并消除. 论述乙:原子中电子总角动量与原子核磁矩的相互作用,导致原子光谱精细结构. 下面判断正确的是: A.论述甲正确,论述乙错误; B.论述甲错误,论述乙正确; C.论述甲,乙都正确,二者无联系;

D.论述甲,乙都正确,二者有联系. 二、填充题(每空2分,共20分) 1.氢原子赖曼系和普芳德系的第一条谱线波长之比为( ). 2.两次电离的锂原子的基态电离能是三次电离的铍离子的基态电离能的( )倍. 3.被电压100伏加速的电子的德布罗意波长为( )埃. 4.钠D 1线是由跃迁( )产生的. 5.工作电压为50kV 的X 光机发出的X 射线的连续谱最短波长为( )埃. 6.处于4D 3/2态的原子的朗德因子g 等于( ). 7.双原子分子固有振动频率为f ,则其振动能级间隔为( ). 8.Co 原子基态谱项为4F 9/2,测得Co 原子基态中包含8个超精细结构成分,则Co 核自旋I=( ). 9.母核A Z X 衰变为子核Y 的电子俘获过程表示( )。 10.按相互作用分类,τ粒子属于( )类. 三、问答题(共10分) 1.(4分)玻尔氢原子理论的定态假设. 2.(3分)何谓莫塞莱定律? 3.(3分)原子核反应的三阶段描述. 四、计算题(50分) 1.(10分)一个光子电离处于基态的氢原子,被电离的电子重新和质子结合成处于第一激发态的氢原子,同时放出波长为626埃的光子.求原入射光子的能量和自由电子动能. 2.(10分)钠原子3S 和3P 谱项的量子亏损分别为和. 试确定钠原子的电离能和第一激发电势. (R=109735cm -1) 3.(10分)试讨论钠原子漫线系的一条谱线(2D 3/2→2P 1/2)在弱磁场中的塞曼分裂,作出能级分裂跃迁图. 4.(10分)2211Na 的半衰期为年.试求:(1)平均寿命和衰变常数;(2)5mg 22 11Na 减少到1mg 需要多长时间?(ln10=,ln2= 5.(10分)试计算中子与O 17 8核发生(n,2n)反应的反应能和阈能. (M(O 178)=,M(O 168)=,M(O 15 8)=,m n = 试 卷 B (聊 师) 1. α粒子以速率V 0对心碰撞电荷数为Z 的原子核,α粒子所能达到的离核的最小距离等于多少? 2.根据玻尔—索末菲理论,氢原子的主量子数n=3时,电子可能有几种不同形状的轨道,它们相应的轨道角动量,能量是否相等? 3. 单电子原子关于l ,j 的电偶极跃迁定则是什么? 4.基态为4F 3/2的钒原子,通过不均匀横向磁场将分裂为几束?基态钒原子的有效磁矩μJ 等于多少玻尔磁子μB ? 5.试求出磷(P,Z=15).氯(Cl,Z=17)原子基态电子组态和基态谱项. 6.d 电子与s 电子间为LS 耦合,试求出可能合成的总轨道角动量L P 大小. 二、1.假定1H 36Cl 分子的转动常数B=10.7cm -1,试计算最低的两个转动能级的能量

量子力学与能带理论

量子力学与能带理论 孟令进 专业: 应用物理 班级:1411101 学号:1141100117 摘要:曾谨言先生在《量子力学》一书中用量子力学解释了能带的形成,从定态薛定谔方程出发,将原子中原子实假定固定不动,并且在结构上呈现周期性排列,那么电子则可以看成在原子实以及其他电子的周期性的势场中运动,利用定态薛定谔方程可以解出其能级结构,从而得到能带理论。 一、定态薛定谔方程 1.一维定态薛定谔方程 我们首先利用薛定谔方程解决一类简单的问题,一维定态问题,即能量一定的状态。我们设粒子质量为m ,沿着x 方向运动,势场的势能为V(x),那么薛定谔方程可以写为 ),()(2),(222t x x V x m t x t i ψψ?? ????+??-=?? ,因为处于一定的能量E 状态,定态的波函数可以写为 /)(),(iEt e x t x -=ψψ,两式整理可得,)(x ψ满足的能量本征方程)(),()(2222x E t x x V x m ψψ=?? ????+??- ,或称为一维定态薛定谔方程。求解这个方程时,我们需要带入边界条件,连接条件。 2.定态薛定谔方程与方势垒 在经典力学当中,当一个具有能量E 的粒子射向高度为V 的势垒时,如果E>V ,则粒子能够顺利的越过这个势垒,如果E0的粒子从左方入射,那么在前两个区域的波函数可以用一维定态薛定谔方程解除来,结果如下:

量子力学和经典力学联系的实例分析

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 量子力学与经典力学的联系的实例分析 摘要:量子力学与经典力学研究的对象不同,范围不同,二者之间是不是不可逾越的?当然不是,在一定条件下,二者可以过渡.本文首先对量子力学和经典力学的关系进行了分析,其次通过具体的实例来说明量子力学过渡到经典力学的条件,最后分析出从运动学角度,经典力学向量子力学过渡可归结为从泊松括号向对易得过渡.

关键词:量子力学;经典力学;过渡 从高中到大学低年级,我们所涉及的物理学内容均为经典物理学范畴,经典物理学理论在宏观低速范围内已是相当完善,正如十九世纪末一些物理学家所描述的那样,做机械运动的物体,当运动速度小于真空中的光速时准确地遵从牛顿力学规律;分子热运动的规律有完备的热力学和统计力学理论;电磁运动有麦克斯韦方程加以描述;光的现象有光的波动理论,整个物理世界的重要规律都已发现,以后的工作只要重复前人的实验,提高实验精度,在测量数据后面多添加几个有效数字而已.正因如此为何在学完经典物理学以后还要继续学习近代物理学,如何引入近代物理学就显得格外重要. 毫无疑问近代物理学的产生是物理学上号称在物理学晴朗的天空上“两朵小小的乌云”造成的[1],正是这引发了物理学的一场大革命.这“两朵小小的乌云”即黑体辐射实验和迈克尔逊-莫雷实验.1900年为了解释黑体辐射实验,普朗克能量子的假设,导致了量子理论思想的萌芽,接着光电效应、康普顿效应以及原子结构等一系列问题上,经典物理都碰到了无法克服的困难,通过引入量子化思想,这些问题都迎刃而解,这就导致了描述微观世界的理论-量子力学的建立. 在经典物理十分成熟、完备的情况下引入静近代物理学,毫无疑问必须强调以下问题:(1)经典物理学的适用范围是宏观低速运动;(2)19世纪末20世纪初,物理学已经研究到微观现象和高速运动的新阶段;(3)新的研究范畴必须引入新的理论,这样,近代物理学的出现也就顺理成章了. 尽管强调经典物理学的适用范围是宏观低速运动,但碰到微观高速问题,人们依旧习惯于首先用已知非常熟悉的经典物理来解决物理学家如此,我们也不例外.无疑用经典物理学去解决高速微观问题最终必将以失败而告终.然而在近代物理学课程的研究中有意识地首先让经典物理学去碰壁,去得出结论,但结论是矛盾的和错误的,然后,引出近代物理学的有关理论,问题最后迎刃而解[2]. 经典物理学是在宏观和低速领域物理经验的基础上建立起来的物理概念和理论体系,其基础是牛顿力学和麦克斯韦电磁学.近代物理学则是在微观和高速领域物理实验的基础上建立起来的概念和理论体系,其基础是相对论和量子力学,必须指出,在相对论和量子力学建立以后的当代物理学研究中.虽然大量的是近代物理学问题,但也有不少属于经典物理学问题.因此不能说有了近代物理学就可抛弃经典物理学. 量子力学是物理学研究的经验扩充到微观领域的结果.因此,量子力学的建立必然是以经典力学为基础,它们之间存在必然的联系,量子力学修改了物理学中关于物理世界的描述以及物理规律陈述的基本概念.量子力学关于微观世界的各种规律的研究给

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

原子物理第三章量子力学初步答案

第三章 量子力学初步 3.1 波长为ο A 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得: 动量为:1 24 10 34 10 63.610 1063.6----???=?= = 秒 米千克λ h p 能量为:λ/hc hv E == 焦耳 15 10 834 10 986.110 /10310 63.6---?=???=。 3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少? 解:德布罗意波长与加速电压之间有如下关系: meV h 2/ =λ 对于电子:库仑 公斤,19 31 10 60.110 11.9--?=?=e m 把上述二量及h 的值代入波长的表示式,可得: ο οο λA A A V 1225.010000 25.1225.12== = 对于质子,库仑 公斤,19 27 10 60.110 67.1--?=?=e m ,代入波长的 表示式,得:ο λ A 3 19 27 34 10 862.210000 1060.110 67.1210 626.6----?=??????= 3.3 电子被加速后的速度很大,必须考虑相对论修正。因而原来ο λ A V 25.12=的电子德布罗意波长与加速电压的关系 式应改为: ο λA V V )10 489.01(25.126 -?-= 其中V 是以伏特为单位的电子加速电压。试证明之。 证明:德布罗意波长:p h /=λ

对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:2 22 02 2c p c Km K =+ 而被电压V 加速的电子的动能为:eV K = 2 2 002 2 2 /)(22)(c eV eV m p eV m c eV p += += ∴ 因此有: 2 002112/c m eV eV m h p h + ?= =λ 一般情况下,等式右边根式中2 02/c m eV 一项的值都是很小 的。所以,可以将上式的根式作泰勒展开。只取前两项,得: )10 489.01(2)41(26 02 00V eV m h c m eV eV m h -?-= - = λ 由于上式中ο A V eV m h 25.122/0≈ ,其中V 以伏特为单位,代回原 式得: ο λA V V )10 489.01(25.126 -?-= 由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。 3.4 试证明氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波波长。上述结果不但适用于圆轨道,同样适用于椭圆轨道,试证明之。

如何看待_原子物理学_中的玻尔理论与量子力学

第20卷 第2期太原教育学院学报V o l.20N o.2 2002年6月JOURNAL OF TA I YUAN INSTITUTE OF EDUCATI ON Jun.2002如何看待《原子物理学》中的 玻尔理论与量子力学 赵秀琴1, 贺兴建2 (1.太原师范学院,山西太原030031;2.太原市教育学院,山西太原030001) 摘 要:《原子物理学》在物理学的教育和学习中有着特殊的地位,特别是量子论建立初期的知识体系,是物理学获得知识、组织知识和运用知识的典范,通过量子论建立过程的物 理定律、公式后面的思想和方法的教学,使学生在原子物理的学习过程中掌握物理学的思想 和方法。 关键词:原子物理学;玻尔理论;量子力学 中图分类号:O562 文献标识码:A 文章编号:100828601(2002)022******* 《原子物理学》在物理学的教育和学习中有着特殊的地位,特别是量子论建立的初期知识体系,是物理学获得知识、组织知识和运用知识的典范,通过不断地提出经典物理无法解决的问题,提出假设、建立模型来解释并提出新的结论和预言,再用新的实验检验、修改或推翻,让学生掌握这种常规物理学的发展模式和过程。通过量子论的建立过程的物理定律、公式后面的思想和方法的教学,使学生在原子物理的学习过程中掌握物理学(特别是近代物理学)的思想和方法。 一、玻尔理论的创立 19世纪末到20世纪初,物理学的观察和实验已开始深入到物质的微观领域。在解释某些物理现象,如黑体辐射、光电效应、原子光谱、固体比热等时,经典物理概念遇到了困难,出现了危机。为了克服经典概念的局限性,人们被迫在经典概念的基础上引入与经典概念完全不同的量子化概念,从而部分地解决了所面临的困难。最先是由普朗克引入了对连续的经典力学量进行特设量子化假设。玻尔引入了原子定态概念与角动量量子化规则取得了很大的成果,预言了未激发原子的大小,对它的数量级作出了正确的预言。它给出了氢原子辐射的已知全部谱线的公式,它与概括了发射谱线实验事实的经验公式完全一致。同时,它还包括那些在建立理论时尚未知的谱线,它用几个物理量解释了里德伯经验常数。它向我们提供了一个形象化的系统(尽管有点冒险),并且对与发射有关的事件建立了一种物理秩序。玻尔模型把量子理论推广到原子上,一方面给普朗克的原子能量量子化的思想提供了物理根据,另一方面也解决了经典物理学回答不了的电子轨道的稳定性问题。 收稿日期:2001206212 作者简介:赵秀琴(1966-),女,山西太原人,太原师范学院讲师,教育学硕士。

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 物理与电子信息工程学院物理学 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。

南京大学1998--2005考研《量子力学》真题

南京大学1998年硕士研究生考试试题——量子力学 (一) 20分 有半壁无限高势垒的一维阱 ()a x a x x V x V ><<>,2?L 是角动量平方算符,试用一级微扰论计算系统的p 能级(1=l )的分裂,并标出微扰后的零级近似波函数。 (三)20分求在一维无限深势阱中,处于()x n ψ态时的粒子的动量分布几率()2 p n φ 。 (四)20分 试判断下列诸等式的正误,如果等式不能成立,试写出正确的结果: (1) i j x i p j x i p e e e 2 1????????-?+???=? ?式中i ?和j ?分别是x 和y 方向的单位矢量。 (2)()[])(????,?'x f p i p x f p p x x x x = ?式中x i p x ??= ? , (3)系统的哈密顿算符为()r V p H +=μ 2??2 ,设()r n ?是归一化的束缚态波函数,则有: ( )n n n n r V r p ???μ? ??=2 12?2 ? (五)20分碱金属原子处在z 方向的外磁场B 中,微扰哈密顿为B ls H H H ???1+= ,其中S L dr dV r c H ls ???? ??=121 ?22μ ,() Z Z B S L c eB H 22+=μ , 当外磁场很弱时,那些力学量算符是运动积分(守恒量),应取什么样的零级近似波函 数,能使微扰计算比较简单,为什么? 注: ()()()()? θπim m l lm e m l m l l Y P cos !! 412+-+= ()x x P =0 1;()()2/12111x x P -=;()()x x x P 2 /121213-= ()()22 213x x P -=

量子力学的发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。 量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量

量子力学和经典力学的区别与联系(完整版)

量子力学和经典力学的区别与联系 量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系 三、目录 摘要............................................................ ............ ... ... ...... (1) 关键字.................................................................. ...... ... ... ...... (1) 正文..................................................................... ...... ... ... ...... (3) 一、量子力学及经典力学基本内容及理论...... ............ ... ............ ...... ... (3) 经典力学基本内容及理论........................... ...... ......... ...... (3) 量子力学的基本内容及相关理论.................................... ...... (3) 二、量子力学及经典力学在表述上的区别与联系.................. ...... ... ...... (4)

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。 2 经典力学中的一维谐振子 在经典力学中基本方程以牛顿定律为基础,研究质点位移随时间变化的规

量子力学和经典力学的区别与联系

量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系

目录 三、目录 摘要 (1) 关键字 (1) 正文 (3) 一、量子力学及经典力学基本内容及理论……………………………………………… 3 经典力学基本内容及理论 (3) 量子力学的基本内容及相关理论 (3) 二、量子力学及经典力学在表述上的区别与联系 (4) 微观粒子和宏观粒子的运动状态的描述 (4) 量子力学中微观粒子的波粒二象性 (5) 三、结论:量子力学与经典力学的一些区别对比 (5) 参考文献 (6)

天津大学837量子力学考研真题(含答案解析已圈重点)

天津大学837量子力学考研真题(含答案解析) 天津大学837量子力学考研复习都是有依据可循的,考研学子关注事项流程为:考研报录比-大纲-参考书-资料-真题-复习经验-辅导-复试-导师。缺一不可,考研历年真题是考研复习必不可少的重要资料,毫不夸张地说真题是关系考研成败的关键要素。为什么这么说呢?首先考研真题是大家了解考研形式的重要途径,其次考研真题集结了出题老师的精华总结,包含了大量的考试信息和讯号,在做真题的过程中,可以掌握题人的思路以及答题的方式。实际上考研的风险很大程度上来自于专业课。如果你能够把专业课的历年真题研究透的话,就可以大大减少这种不确定性。真题的主要意义在于,它可以让你更直观地接触到考研,让你亲身体验考研的过程,让你在做题过程中慢慢对考研试题形成大致的轮廓,这样一来,考研对你来说就会轻松很多。推荐837量子力学考研真题资料如下: 天津考研网主编的《天津大学717普通物理+837量子力学考研真题复习宝典》其中包含很多高价值资料 一、天津大学717普通物理+837量子力学考研真题 1、天津大学717普通物理00-05年、2015年考研真题2015年为特约考生考场记录完整版; 2、天津大学717普通物理00-05年考研试题参考答案保证极高正确率; 3、天津大学837量子力学97-05、07-09、2012、201 4、2015年考研真题,由历届考生回忆,试题基本齐全,市场最全,全国独家推出; 二、天津大学717普通物理+837量子力学的介绍、参考资料 1.简要介绍天津大学理学院凝聚态物理导师信息及科研偏好。 2.列出初试及复试专业课参考教材,列出常考得知识点、重点、难点及近两三年来命题变化趋势。 三、天津大学717普通物理+837量子力学复习指导 1.制定复习周期内详细的时间安排和复习计划。 2.深入参考教材,疏通脉络。就普通物理学和量子力学两门初试专业课展开针对性地指

量子力学和经典力学的区别与联系

量子力学与经典力学在的区别与联系 摘要 量子力学就是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不就是绝对的,而就是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,她们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解与掌握量子力学的概念与原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果就是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说就是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就就是:在经典物理中,运动状态描述的特点为状态量都就是一些实验可以测量得的,即在理论上这些量就是描述运动状态的工具,实际上它们又就是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都就是不确定的。但就是当微观粒子积累到一定量就是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系 目录 三、目录 摘要 (1) 关键字 (1) 正文 (3) 一、量子力学及经典力学基本内容及理论……………………………………………… 3 1、1 经典力学基本内容及理论 (3) 1、2 量子力学的基本内容及相关理论 (3) 二、量子力学及经典力学在表述上的区别与联系 (4) 2、1 微观粒子与宏观粒子的运动状态的描述 (4) 2、2 量子力学中微观粒子的波粒二象性 (5) 三、结论:量子力学与经典力学的一些区别对比 (5) 参考文献 (6) 量子力学与经典力学在的区别与联系 一、量子力学及经典力学基本内容及理论 1、1经典力学基本内容及理论 经典力学就是在宏观与低速领域物理经验的基础上建立起来的物理概念与理论体

2016-2017北京大学物理学院凝聚态物理专业课考研经验谈pdf

2016-2017北京大学物理学院凝聚态物理专业课考研经验谈 1、量子力学:我自己选择的是Griffiths的《Introduction to Quantum Mechanics》,并买了本课后习题解答,自己边看边练,算是自学一遍。(系里讲《量子力学》的是人见人爱花见花开的杨主任,可惜的是当时没怎么上他的课,结果应验那句“出来混迟早要还的”,最后还得要靠自个儿花时间自学一遍)。这本教材质量不错,曾被亲切称为“猫书”(因为原版封面上有那只著名的“薛定谔的猫”)。然后真正针对考试习题而练习用的是有口皆碑、闻名九州的《量子力学习题与解答》(陈鄂生著),这本我算是一题题都做了下来,并且跟着最后的许多大学的历年真题又回顾了一遍,其中的题目类型全,解答质量高,对于提升应试技巧很有裨益,属于“大宝啊天天见”的一类辅导书。钱伯初的教材对于基本概念的理解很有帮助,课后习题质量也很高,遗憾的是貌似没有配套的习题解答,只有书后附的简略答案。中间一段时间也在做中科大出版社的《量子力学学习指导》,这本书是配套的曾谨言的教材课后习题而增编的,书前附有知识要点,书后有几套练习题,总的说来质量不错,值得拥有~当时开始做题时碰到啥合流超几何方程贝塞尔函数真是头疼,又记不住这些公式,不过从最后出题风格来看一般不会考这类方程难解的题。今年考试就没遇到,而且竟然试卷最后还友情提供了许多公式,如一维谐振子的波函数(虽然有些没有归一化)和一些积分公式,令人感动它提供了这些公式其实都是有用的,甚至还有一些提示作用,比如倒数第二题是散射问题,第二问就要用到其中一个含有正弦函数的积分公式,不用的话算不出来多可惜。需要注意的是,量子力学复习一定要全面,今年考试第二题就考了玻尔索末非量子化条件,应该是属于中文一些教材的绪论或首章介绍经典物理向量子力学过渡那段历史历程的那部分,当时拿到试卷时扫了一眼不禁暗暗冒了冷汗,毕竟复习时有意无意地将首章忽略了,记忆有些模糊。不过好在最终还是写了出来。 2、固体物理:黄昆的《固体物理学》都快被翻裂了。这本书的质量之优秀和里面的低级印刷错误之多是其两大特色。总的来说,这本书值得拥有,值得一看再看,对照着物理学院网站上的“固体物理学基本要求”将知识点一个个过威力倍增。物理系上这门课的是和蔼可亲的翟奶奶,其实翟奶奶讲课很有条理、循序渐进的,公式模型她都自个儿一个个在黑板上推导,十分难得,感动常在(当时固体物理还有期中考试,不过是开卷的,期末考试闭卷,难度就降低了些)回到这本固体物理教材,这本书课后习题的数量很少,但是质量很好,许多课外习题的解题思路都是从中衍生的。配套的《固体物理学全程导学及习题全解》里有详细的解答,还有知识点概要和补充题,对于理解知识点很有帮助,不过令人头疼的是里面也有许多印刷错误,需要火眼金睛辨别。基泰尔的《固体物理导论》也很不错,有时间可以配合看看,顺便做做课后习题。有一本陈长乐主编的《固体物理学习题解答》非常好(虽然它是配套的另外一套教材),对于巩固自己知识加深对习题理解很有好处。固体物理的题型

相关文档
相关文档 最新文档