文档库 最新最全的文档下载
当前位置:文档库 › 330kVGIS密度继电器试验报告

330kVGIS密度继电器试验报告

330kVGIS密度继电器试验报告
330kVGIS密度继电器试验报告

330kV断路器密度继电器试验报告

一、330kV 定边出线断路器气室。

二、330kV 2#主变高压侧断路器气室。

环境温度: 22 ℃湿度: 61% 试验时间:2015.10.23

使用仪器:KXJD-2A SF6密度继电器校验仪编号:

三、330kV 3#主变高压侧断路器气室。

四、结论:合格

试验人员:

审核人员:

《电力系统继电保护》 实验报告要点

网络高等教育《电力系统继电保护》实验报告 学习中心:山西临汾奥鹏学习中心 层次:专升本 专业:电气工程及其自动化 年级:2013年春季 学号:131326309943 学生姓名:李建明

实验一电磁型电流继电器和电压继电器实验 一、实验目的 1. 熟悉DL型电流继电器和DY型电压继电器的实际结构、工作原理、基本特性; 2. 学习动作电流、动作电压参数的整定方法; 3. 总结实验的体会和心得。 二、实验电路 1.过流继电器实验接线图 2.低压继电器实验接线图

三、预习题 1.过流继电器线圈采用并联接法时,电流动作值可由转动刻度盘上的指针所对应的电流值读出;低压继电器线圈采用串联接法时,电压动作值可由转动刻度盘上的指针所对应的电压值读出。(串联,并联) 2. 动作电流(压),返回电流(压)和返回系数的定义是什么? 动作电流:由于产生动作电位的结果而流动的微弱电流。 返回电流:电流低于那个值时电流继电器就不再吸合了。 返回系数:对于继电保护定值整定的保护,例如按最大负荷电流整定的过电流保护和最低运行电压整定的低电压保护,在受到故障量的作用时,当故障消失后保护不能返回到正常位置将发生误动。因此,整定公式中引入返回系数,返回系数用Kf表示。对于按故障量值和按自起动量值整定的保护,则可不考虑返回系数。 四、实验内容 1.电流继电器的动作电流和返回电流测试 表一过流继电器实验结果记录表 2.低压继电器的动作电压和返回电压测试 表二低压继电器实验结果记录表

五、实验仪器设备 六、问题与思考 1.电流继电器的返回系数为什么恒小于1? 电流继电器是过流动作,小于整定值后返回;为了避免电流在整定值附近时导致继电器频繁启动返回,一般要设一个返回值,例如0.97,电流小于0.97才返回。因此返回值要小于1 。 2.返回系数在设计继电保护装置中有何重要用途? 确保保护选择性的重要指标,让不该动作的继电器及时返回,使正常运行的部分系统不被切除。在出现故障后,可以保护继电器。

继保实验报告

实验一 电磁型电压电流继电器特性实验 1.实验目的 1)了解继电器基本分类方法及其结构。 2)熟悉几种常用继电器,如电流继电器、电压继电器、时间继电器、中间继电器、信号继电器等的构成原理。 3)学会调整、测量电磁型继电器的动作值、返回值和计算返回系数。 4)测量继电器的基本特性。 2.实验内容 1)电流继电器特性实验 电流继电器动作、返回电流值测试实验。 实验电路原理图如图1所示: 图1 电流继电器动作电流值测试实验原理图 实验步骤如下: (1)按图接线,将电流继电器的动作值整定为1A ,使调压器输出指示为0V ,滑线电阻的滑动触头放在中间位置。 (2)查线路无误后,先合上三相电源开关(对应指示灯亮),再合上单相电源开关和直流电源开关。 (3)慢慢调节调压器使电流表读数缓慢升高,记下继电器刚动作(动作信号灯XD1亮)时的最小电流值,即为动作值。 (4)继电器动作后,再调节调压器使电流值平滑下降,记下继电器返回时(指示灯XD1灭)的最大电流值,即为返回值。 (5)重复步骤(2)至(4),测三组数据。 (6)实验完成后,使调压器输出为0V ,断开所有电源开关。 -

(7)分别计算动作值和返回值的平均值即为电流继电器的动作电流值和返回电流值。(8)计算整定值的误差、变差及返回系数。 误差=[动作最小值-整定值 ]/整定值 变差=[动作最大值-动作最小值]/动作平均值 100% 返回系数=返回平均值/动作平均值 表1 电流继电器动作值、返回值测试实验数据记录表 2)电流继电器动作时间测试实验 电流继电器动作时间测试实验原理图如图2所示: 图2 电流继电器动作时间测试实验电路原理图 实验步骤如下: (1)按图接线,将电流继电器的常开触点接在多功能表的“输出2”和“公共线”,将开关BK的一条支路接在多功能表的“输入1”和“公共线”,使调压器输出为0V,将电流继电器动作值整定为1.2A,滑线电阻的滑动触头置于其中间位置。 (2)检查线路无误后,先合上三相电源开关,再合上单相电源开关。

继电保护试验报告标准格式审批稿

继电保护试验报告标准 格式 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

CSL101B线路保护全部定期检验调试报告 1.绝缘试验 以开路电压为1000V的摇表按下表对各回路进行绝缘试验,绝缘电阻应不小于10兆欧。试验结果填入表1。 2.直流稳压电源检查 经检查,本装置电源的自启动性能良好,失电告警继电器工作正常()。 各级输出电压值测试结果见表2。 3.经检查,本装置时钟工作正常,掉电后时钟能保持运行,并走时准确()。 4.经检查,本装置CPU及MMI所使用的软件版本号正确(),记录见附表1。

5.经检查,本装置主网1、主网2及本装置所附带的打印卡、打印电缆线全部完好,打印功能正常()。 6.开入量检查 保护压板开入量检查全部正确(),记录于表3。 信号开入量检查全部正确(),记录于表4。

7.开出传动试验 a. 保护开出传动试验 对CPU1、CPU2、CPU3进行开出传动试验,注意观察灯光信号应指示正确,并在装置端子上用万用表检查相应接点的通断(),试验结果记录于表5 。 b. 重合闸开出传动试验 对CPU4进行开出传动试验(),结果记录于表6。 c. 经检查,起动元件三取二闭锁功能正确()。

8.模数变换系统调试 零漂调整打印结果记录于附表4,要求允许范围为±()。 电流、电压刻度调整打印结果记录于附表5,要求误差小于±2%()。 经检查,电流、电压回路极性完全正确()。 9.模拟短路试验 各保护动作值检验 a.经检查,高频距离保护在倍定值时可靠动作,在倍定值时可靠不动 作(); b.经检查,高频零序保护在倍定值时可靠不动作,在倍定值时可靠动 作(); c.经检查,相间、接地距离I段保护在倍定值时可靠动作,在倍定值时 可靠不动作();

(完整word版)继电保护三段电流保护实验实验报告

北京交通大学Beijing Jiaotong University 继电保护三段电流保护实验实验报告 姓名: **** 学号: *******(1005班) 指导老师:倪** 课程老师:和*** 实验日期: 2013.5.29(8--10)

目录 一、实验预习 (1) 二、实验目的 (1) 三、实验电路 (1) 四、实验注意问题 (2) 五、保护动作参数的整定 (2) 六、模拟故障观察保护的动作情况 (2) 七、思考题 (3)

一、实验前预习: 三段电流保护包括: Ⅰ段:无时限电流速断保护 Ⅱ段:限时电流速断保护 Ⅲ段:定时限过电流保护 三段保护都是反应于电流增大而动作的保护,它们之间的区别主要在于按照不同的原则来整定动作电流。 三段式保护整定计算内容及顺序:1 动作电流:选取可靠系数,计算短路电流和继电器动作电流;2 动作时间的整定;3灵敏度校验。 对继电保护的评价,主要是从选择性、速动性、灵敏性和可靠性四个方面评价。 二、实验目的 1、熟悉三段电流保护的接线; 2、掌握三段电流保护的整定计算原则和保护的性能 三、实验电路 实验电路如下图: 其中继电器的接线法有: (1)三相三继电器的完全星形接线(2)两相两继电器的不完全星形接线

另外还有两种继电器的接法如下: (3)两相三继电器接线法(4)两相继电器接线法 对三相继电保护的评价: 由I段、II段或III段而组成的阶段式电流保护,其最主要的优点就是简单、可靠,并且在一般情况下能满足快速切除故障的要求,因此在电网中特别是在35kV及以下的单侧电源辐射形电网中得到广泛的应用。其缺点是受电网的接线及电力系统运行方式变化的影响,使其灵敏性和保护范围不能满足要求。 四、实验注意问题 1、交流电流回路用允许大于5A的导线; 2、接好线后请老师检查。 五、保护动作参数的整定 1、要求整定参数如下: 保护I段动作电流为4.8A,动作时间为0秒; 保护III段动作电流为1.4A,动作时间为2秒。 2、按上述要求进行电流继电器和时间继电器的整定。 时间继电器的整定:将时间继电器整定把手调整到要求的刻度位置。 电流继电器的整定:按图接线。先合交流电源开关,但直流电源先不投入,按下模拟断路器手合按钮,调节单相调压器改变电流,分别整定电流I、III段的动作电流,要求电流继电器的动作电流与整定值的误差不超过5%。将实际整定结果填入表13-1。 表 六、模拟故障观察保护的动作情况 1、电流I段 通入5A电流(模拟I段区内故障):先合交流电源开关,但直流电源先不投入,按下模拟断路器手合按钮,调节调压器使电流为5A,再按下模拟断路器手分按钮,投入直流电源,按下模拟断路器手合按钮(模拟手合I段区内故障),观察各继电器的动作。

继电器控制实验报告

继电器控制实验报告 篇一:继电保护实验报告 实验一电磁型电流继电器和电压继电器实验 一.实验目的 1.熟悉DL型电流继电器和DY 型电压继电器的实际结构,工作原理、基本特性。 2.掌握动作电流、动作电压参数的整定。 二.实验原理 线圈导通时,衔铁克服游丝的反作用力矩而动作,使动合触点闭合。转动刻度盘上的指针,可改变游丝的力矩,从而改变继电器的动作值。改变线圈的串联并联,可获得不同的额定值。 三.实验设备 四.实验内容 1. 整定点的动作值、返回值及返回系数测试(1)电流继电器的动作电流和返回电流测试: 返回系数是返回与动作电流的比值,用Kf表示:Kf? IfjIdj 1 (2)低压继电器的动作电压和返回电压测试: 返回系数Kf为 Kf? UfjUdj

五.思考题 1、电流继电器的返回系数为什么恒小于1? 电流继电器的返回系数是返回与动作电流的比值,电流继电器动作电流大于返回电流,所以电流继电器的返回系数为什么恒小于1。 2、返回系数在设计继电保护装置中有何重要用途? 对于继电保护定值整定的保护,例如按最大负荷电流整定的过电流保护和最低运行电压整定的低电压保护,在受到故障量的作用时,当故障消失后保护不能返回到正常位置将发生误动。因此,整定公式中引入返回系数,可使故障消失后继电器可靠返回。 2 实验二电磁型时间继电器实验 一.实验目的 熟悉DS-20C系列时间继电器的实际结构,工作原理,基本特性,掌握时限的整定和试验调整方法, 二.原理说明 当电压加在时间继电器线圈两端时,铁芯被吸入,瞬时动合触点闭合,瞬时动断触点断开,同时延时机构开始起动。在延时机构拉力弹簧作用下,经过整定时间后,滑动触点闭合。再经过一定时间后,终止触点闭合。从电压加到线圈的瞬间起,到延时动合触点闭合止的这一段时间,可借移动静

电力系统继电保护实验报告

实验一电流继电器特性实验 一、实验目的 1、了解继电器的結构及工作原理。 2、掌握继电器的调试方法。 二、构造原理及用途 继电器由电磁铁、线圈、Z型舌片、弹簧、动触点、静触点、整定把手、刻度盘、轴承、限制螺杆等组成。 继电器动作的原理:当继电器线圈中的电流增加到一定值时,该电流产生的电磁力矩能够克服弹簧反作用力矩和摩擦力矩,使Z型舌片沿顺时针方向转动,动静接点接通,继电器动作。当线圈的电流中断或减小到一定值时,弹簧的反作用力矩使继电器返回。 利用连接片可将继电器的线圈串联或并联,再加上改变调整把手的位置可使其动作值的调整范围变更四倍。 继电器的内部接线图如下:图一为动合触点,图二为动断触点,图三为一动合一动断触点。 电流继电器用于发电机、变压器、线路及电动机等的过负荷和短路保护装置。 三、实验内容 1. 外部检查 2. 内部及机械部分的检查

3. 绝缘检查 4. 刻度值检查 5. 接点工作可靠性检查 四、实验步骤 1、外部检查 检查外壳与底座间的接合应牢固、紧密;外罩应完好,继电器端子接线应牢固可靠。 1. 内部和机械部分的检查 a. 检查转轴纵向和横向的活动范围,该范围不得大于0.15~0.2mm,检查舌片与极间的间隙,舌片动作时不应与磁极相碰,且上下间隙应尽量相同,舌片上下端部弯曲的程度亦相同,舌片的起始和终止位置应合适,舌片活动范围约为7度左右。 b. 检查刻度盘把手固定可靠性,当把手放在某一刻度值时,应不能自由活动。 c. 检查继电器的螺旋弹簧:弹簧的平面应与转轴严格垂直,弹簧由起始位置转至刻度最大位置时,其层间不应彼此接触且应保持相同的间隙。 d. 检查接点:动接点桥与静接点桥接触时所交的角度应为55~65度,且应在距静接点首端约1/3处开始接触,并在其中心线上以不大的摩擦阻力滑行,其终点距接点末端应小于1/3。接点间的距离不得小于2mm,两静接点片的倾斜应一致,并与动接点同时接触,动接点容许在其本身的转轴上旋转10~15度,并沿轴向移动0.2~0.3mm,继电器的静接点片装有一限制振动的防振片,防振片与静接点片刚能接触或两者之间有一不大于0.1~0.2mm的间隙。 2、电气特性的检验及调整 (1)实验接线图如下:

电磁型电压继电器实验报告

一、实验目的 熟悉DY型电压继电器的实际结构、工作原理、基本特性;掌握动作电流值及其相关参数的整定方法。 二、预习与思考 1、动作电流(压)、返回电流(压)和返回系数的定义是什么 过电流继电器中,动作电流是使继电器动作的最小电流I dj;返回电流是使继电器返回的最大电流I fj;返回系数则定义为:I fj与I dj之比。 2、实验结果如返回系数不符合要求,你能正确地进行调整吗 3、返回系数在设计继电保护装置中有何重要用途 因继电特性,使得输入值在整定值附近小幅变化时,继电器输出则保持恒定,可有效地避免输出值来回跳变。 三、原理说明 DY—20c系列电压继电器用于反映发电机、变压器及输电线路的电压升高(过电压保护)或电压降低(低电压起动)的继电保护装置中。 上述继电器是瞬时动作的电磁式继电器,当电磁铁线圈中通过的电流达到或超过整定值时,衔铁克服反作用力矩而动作,且保持在动作状态。 过电压继电器:当电压升高至整定值(或大于整定值)时,继电器立即动作,其常开触点闭合,常闭触点断开。 低电压继电器:当电压降低至整定电压时,继电器立即动作,常开触点断开,常闭触点闭合。继电器的铭牌刻度值是按电流继电器两线圈串联,若继电器两线圈分别作并联和串联时,则整定值为指示值的2倍。 转动刻度盘上指针,以改变游丝的作用力矩,从而改变继电器动作值。 四、实验设备

表1—1实验设备表 五、实验步骤和要求 实验参数电压值可用单相自耦调压器、变流器、变阻器等设备进行调节。实验中每位学生要注意培养自己的实践操作能力,调节中要注意使参数平滑变化。 1. 过电压继电器的动作电压和返回电压测试 a、选择ZB15型继电器组件中的DY—28c/160型过电压继电器,确定动作值为倍的额定电压,即实验参数取150V并进行初步整定。 b、根据整定值要求确定继电器线圈的接线方式 c、接线。检查无误后,调节自耦调压器,分别读取能使继电器动作的最小电压U dj及使继电器返回的最高电压U fj,记入表1-3并计算返回系数K f。返回系数的含义与电流继电器的相同。返回系数不应小于,当大于时,也应进行调整。 2.低电压继电器的动作电压和返回电压测试 a、选择ZB15继电器组件中的DY—28c/160型低电压继电器,确定动作值为倍的额定电压,即实验参数取70V并进行初步整定。 b、根据整定值要求确定继电器线圈的接线方式 c、接线,调节自耦调压器,增大输出电压,先对继电器加100伏电压,然后逐步降低电压,至继电器舌片开始跌落时的电压称为动作电压U dj,再升高电压至舌片开始被吸上时的电压称为返回电压U fj,将所取得的数值记入表1-3并计算返回系数。返回系数K f为: U fj K f =----- U dj

继电保护实验报告-实验四

《电力系统继电保护实验》实验报告 实验名称实验四输电线路距离保护阻抗特 性测定实验 学号 日期2018-5-18 地点动力楼306 教师陈歆技蒋莉 电气工程学院 东南大学

1.实验目的: (1)熟悉和掌握智能变电站综合自动化系统输电线路距离保护装置定值配置方法、模拟电网故障设置及继电保护测试仪的操作方法。 (2)通过输电线路的短路故障实验,记录和观察故障电压、电流数值,理解输电线路故障动作过程及接地距离与相间距离阻抗特性的测试原理。 (3)通过输电线路故障电压、电流数值分析及保护装置动作行为的分析,学会阻抗特性曲线的绘制方法,理解和掌握短路类型、故障点阻抗及保护定值对输电线路距离保护阻抗特性的影响。 2.实验内容: 1)相间、接地距离I段保护阻抗特性曲线的测定 该实验项目分别搜索和测试相间、接地距离I段保护动作边界,绘制PSL 603U 保护装置相间、接地距离I段实际阻抗特性曲线图,根据保护定值及保护算法计算并绘制PSL 603U装置相间、接地距离I段保护的理论阻抗特性曲线,比较两者的误差,并校验阻抗特性的正确性。 2)相间、接地距离Ⅱ段保护阻抗特性曲线的测定 该实验项目分别搜索和测试相间、接地距离Ⅱ段保护动作边界,绘制PSL 603U保护装置相间、接地距离Ⅱ段保护实际阻抗特性曲线,根据保护定值及保护算法计算并绘制PSL 603U装置相间、接地距离Ⅱ段保护的理论阻抗特性曲线,比较两者的误差,并校验阻抗特性的正确性。 3)相间、接地距离Ⅲ段保护阻抗特性曲线的测定 该实验项目分别搜索和测试相间、接地距离Ⅲ段保护动作边界,绘制PSL 603U保护装置相间、接地距离Ⅲ段保护实际阻抗特性曲线,根据保护定值及保护算法计算并绘制PSL 603U装置相间、接地距离Ⅲ段保护的理论阻抗特性曲线,比较两者的误差,并校验阻抗特性的正确性。 3.实验原理(实验的理论基础): 本实验以智能变电站综合自动化实验系统所装设的PSL 603U线路保护装置为基础,变电站的线路一次主接线图如图-1所示。图中Zk为所装设的PSL 603U 线路保护装置,其电压与电流输入量与实验一一样,均来自220KV母线与断路器2201之间所装设的电压互感器EPT与电流互感器ECT的测量量,即基于IEC 61850标准的SMV信号量。 F1 实验线路距离保护模拟一次主接线图 根据电力系统继电保护相关原理,及PSL 603U线路保护装置说明书所述工作原理,可知PSL 603U线路距离保护主要有三段式相间距离继电器、接地距离继电器及辅助阻抗元件组成,相间、接地距离继电器主要有偏移阻抗元件、全阻

第一部分 继电器特性实验

第一部分继电器特性实验 实验一电磁型电流继电器特性实验 一、实验目的 熟悉DL型电流继电器的实际结构、工作原理、基本特性;掌握其动作电流、返回电流及返回系数的整定计算方法。绘制电磁型电流继电器特性实验的原理接线图。 二、预习与思考 1、电流继电器的返回系数为什么恒小于1? 2、动作电流、返回电流和返回系数的定义是什么? 3、如果继电器返回系数不符合要求,如何正确地进行调整? 三、原理说明 DL—20c系列电流继电器用于反映发电机、变压器及输电线路短路和过负荷的继电保护装置中。 DL—20c继电器是瞬时动作的电磁式继电器,当电磁铁线圈中通过的电流达到或超过整定值时,衔铁克服反作用力矩而动作,且保持在动作状态:常开触点闭合,常闭触点断开。 继电器的铭牌刻度值是按电流继电器两线圈串联时指示值等于整定值标注的;继电器两线圈并联使用时,整定值为指示值的2倍。 转动刻度盘上指针,可以改变游丝的作用力矩,从而改变继电器动作值。 四、实验设备 五、实验内容及步骤 开始实验前请认真学习本实验指导书最前面3页,正确使用实验台。 1、电流继电器动作电流和返回电流的测试 a、选择ZB07电流继电器组件中的DL—24C/2型电流继电器,确定动作值并进行初步整定。 本实验整定值为0.7A及1.6A。用长柄一字螺丝刀打开继电器透明塑料外壳,用手拨动指针,使指针指在其中一组实验值。 b、根据整定值确定继电器线圈的接线方式(串联或并联);查表1-1。 c、按图1—1接线,请老师检查。确定自耦调压器旋钮指示输出零位,AB段线路阻抗在B 母线,两只船形开关“距离保护电源开关”“差动保护电源开关”均在关断状态,R1电阻在最大值。起动控制屏,“实验内容”旋钮打到“电流”档,手动合1QF,监视“系统电压”电压表,慢慢增大调压器输出电压,调节变阻器,增大输出电流,使继电器动作。读取能使继电器动作的最小电流值,即使常开触点由断开变成闭合的最小电流,记入表1-1(如果动作值整定值相差较大,按本节后面第(4)点所述方法进行调整。该工作应在老师指导下完成);动作电流用I op表示。继电器动作后,反向调节自耦调压器及变阻器,减小输出电流,使触点开始返回至原来位置时的最大电流称为返回电流,用I re表示,读取此值并记入表1—1,并计算返回系数;继电器的返回系数是返回电流与动作电流的比值,用K re表示

华北电力大学 继电保护综合实验报告 完整版

华北电力大学 继电保护与自动化综合 实验报告 院系班级 姓名学号 同组人姓名 日期年月日 教师肖仕武成绩

Ⅰ. 微机线路保护简单故障实验 一、实验目的 通过微机线路保护简单故障实验,掌握微机保护的接线、动作特性和动作报文。 二、实验项目 1、三相短路实验 投入距离保护,记录保护装置的动作报文。 2、单相接地短路实验 投入距离保护、零序电流保护,记录保护装置的动作报文。 三、实验方法 1 表1- 1 2、三相短路实验 1) 实验接线 图1- 1 表1- 2

表1- 3 三相短路故障,距离保护记录 4) 保护动作结果分析 R=5.0Ω,X=1.0Ω时,距离保护I段动作,故障距离L=20.00 R=5.0Ω,X=3.3Ω时,距离保护II段动作,故障距离L=74.00 R=5.0Ω,X=6.0Ω时,距离保护III段动作,故障距离L=136.00 3、单相接地短路实验 1) 实验接线 见三相短路试验中的图1-1 2) 实验中短路故障参数设置 见三相短路试验中的表1-2 表1- 4 A相接地故障,保护记录 4) 报文及保护动作结果分析 R=5.0Ω,X=1.0Ω时,距离保护I段动作,故障距离L=20.00 R=5.0Ω,X=3.3Ω时,距离保护II段动作,故障距离L=77.50 R=5.0Ω,X=6.0Ω时,距离保护III段动作,故障距离L=142.00 四、思考题 1、微机线路保护装置161B包括哪些功能?每个功能的工作原理是什么?与每个功能相关的整定值有哪些? 功能:距离保护,零序保护,高频保护,重合闸 1)距离保护是反应保护安装处到故障点的距离,并根据这一距离远近而确定动作时限的一种动作 距离保护三段1段:Z1set=(0.8~0.85)Z l,瞬时动作 2段:Z1set=K(Z l+Z l1),t=0.05

继电保护试验报告标准格式

C S L101B线路保护全部定期检验调试报告 1.绝缘试验 以开路电压为1000V的摇表按下表对各回路进行绝缘试验,绝缘电阻应不小于10兆欧。试验结果填入表1。 2.直流稳压电源检查 2.1 经检查,本装置电源的自启动性能良好,失电告警继电器工作正常()。 2.2各级输出电压值测试结果见表2。 4.经检查,本装置CPU及MMI所使用的软件版本号正确(),记录见附表1。 5.经检查,本装置主网1、主网2及本装置所附带的打印卡、打印电缆线全部完好,打印功能正常()。 6.开入量检查 6.1 保护压板开入量检查全部正确(),记录于表3。

7.开出传动试验 a. 保护开出传动试验 对CPU1、CPU2、CPU3进行开出传动试验,注意观察灯光信号应指示正确,并在装置端子上用万用表检查相应接点的通断(),试验结果记录于表5 。

b. 重合闸开出传动试验 对CPU4进行开出传动试验(),结果记录于表6。 c. 经检查,起动元件三取二闭锁功能正确()。

8.1 零漂调整打印结果记录于附表4,要求允许范围为±0.1()。 8.2 电流、电压刻度调整打印结果记录于附表5,要求误差小于±2%()。 8.3 经检查,电流、电压回路极性完全正确()。 9.模拟短路试验 9.1 各保护动作值检验 a.经检查,高频距离保护在0.95倍定值时可靠动作,在1.05倍定值时 可靠不动作(); b.经检查,高频零序保护在0.95倍定值时可靠不动作,在1.05倍定值 时可靠动作(); c.经检查,相间、接地距离I段保护在0.95倍定值时可靠动作,在1.05 倍定值时可靠不动作(); d.经检查,相间、接地距离II段、III段保护在0.95倍定值时可靠动 作,在1.05倍定值时可靠不动作(); e.经检查,零序I段保护在0.95倍定值时可靠不动作,在1.05倍定值 时可靠动作(); f. 经检查,零序II段、III段、IV段保护在0.95倍定值时可靠不动 作,在1.05倍定值时可靠动作(); g. 经检查,保护装置在单相接地短路和两相短路时可靠不动作,在三相

电气设备试验报告的格式

电气设备试验报告的格式 (2016版) XXXXXX公司编制

目录 1 规范性引用文件 (1) 2 术语和定义 (1) 3 基本规定 (2) 表1.1 同步发电机试验报告 (4) 表1.2 中频发电机试验报告 (13) 表2.1 高压交流电动机试验报告 (17) 表2.2 100KW及以上低压交流电动机试验报告 (24) 表2.3 100KW以下低压交流电动机试验报告 (30) 表3.1 直流发电机试验报告 (31) 表3.2 直流电动机试验报告 (37) 表4.1 1600kVA以上三相油浸式电力变压器试验报告 (43) 表4.2 1600kVA以上单相油浸式电力变压器试验报告 (55) 表4.3 1600kVA以上三相三圈有载调压油浸式电力变压器试验报告 (66) 表4.4 1600kVA以上单相油浸式自耦电力变压器试验报告 (84)

表4.5 1600kVA及以下油浸式电力变压器试验报告 (96) 表4.6 干式电力变压器试验报告 (106) 表4.7 油浸式电抗器试验报告 (115) 表4.8 干式电抗器试验报告 (125) 表4.9 消弧线圈试验报告 (129) 表5.1 油浸式电压互感器试验报告 (135) 表5.2 电容式电压互感器试验报告 (146) 表5.3 干式固体结构电压互感器试验报告 (157) 表5.4 油浸式电流互感器试验报告 (166) 表5.5 干式固体结构电流互感器试验报告 (183) 表5.6 套管式电流互感器试验报告 (194) 绝缘电流互感器试验报告 (206) 表5.7 SF 6 表6.1 SF 断路器试验报告 (221) 6 封闭式组合电器试验报告 (238) 表6.2 SF 6 气体含水量测试报告 (241) 表6.3 GIS密封性及SF 6

电力系统继电保护实验报告

电力系统继电保护实验报告 一、常规继电器特性实验 (一)电磁型电压、电流继电器的特性实验 1.实验目的 1)了解继电器基本分类方法及其结构。 2)熟悉几种常用继电器,如电流继电器、电压继电器、时间继电器、中间继电器、信号继电器等的构成原理。 3)学会调整、测量电磁型继电器的动作值、返回值和计算返回系数。 4)测量继电器的基本特性。 5)学习和设计多种继电器配合实验。 2.继电器的类型与原理 继电器是电力系统常规继电保护的主要元件,它的种类繁多,原理与作用各异。 3.实验内容 1)电流继电器特性实验 电流继电器动作、返回电流值测试实验。 实验电路原理图如图2-2所示: 虚线框为台体内部接线 220 R 动作信号灯 a

精选资料,欢迎下载 图2-2 电流继电器动作电流值测试实验原理图 实验步骤如下: (1)按图接线,将电流继电器的动作值整定为1.2A ,使调压器输出指示为0V ,滑线电阻的滑动触头放在中间位置。 (2)查线路无误后,先合上三相电源开关(对应指示灯亮),再合上单相电源开关和直流电源开关。 (3)慢慢调节调压器使电流表读数缓慢升高,记下继电器刚动作(动作信号灯XD1亮)时的最小电流值,即为动作值。 (4)继电器动作后,再调节调压器使电流值平滑下降,记下继电器返回时(指示灯XD1灭)的最大电流值,即为返回值。 (5)重复步骤(2)至(4),测三组数据。 (6)实验完成后,使调压器输出为0V ,断开所有电源开关。 (7)分别计算动作值和返回值的平均值即为电流继电器的动作电流值和返回电流值。 (8)计算整定值的误差、变差及返回系数。 误差=[ 动作最小值-整定值 ]/整定值 变差=[ 动作最大值-动作最小值 ]/动作平均值 ? 100% 返回系数=返回平均值/动作平均值 表2-1 电流继电器动作值、返回值测试实验数据记录表 2)电流继电器动作时间测试实验 电流继电器动作时间测试实验原理图如图2-3所示: 实验步骤如下: (1)按图接线,将电流继电器的常开触点接在多功能表的“输出2”和“公共端”,将开关BK 的一条支路接在多功能表的“输入1”和“公共端”,使调压器输出为0V ,将电流继电器动作值整定为1.2A ,滑线电阻的滑动触头置于其中间位置。 (2)检查线路无误后,先合上三相电源开关,再合上单相电源开关。 (3)打开多功能表电源开关,使用其时间测量功能(对应“时间”指示灯亮),工作方式选择开关置“连续” ~~

继电器实验

车站信号自动控制实验报告 学院:电子信息工程学院 专业班级:信号1402 学生姓名:潘佳琪王嘉兴 学号:14212152 14212130 任课教师:岳强

目录 设计并搭建一个继电器自闭电路 (3) 要求 (3) 电路图 (3) 分析 (3) 实验器材 (4) 实验过程 (4) 实验总结 (4) 设计并搭建一个继电器时序逻辑电路,并利用每个继电器的一组节点带一个发光二极管实现循环跑马灯效果。 (5) 要求 (5) 电路图 (5) 分析 (6) 实验器材 (6) 实验过程 (6) 实验总结 (7)

设计并搭建一个继电器自闭电路 要求 采用3个继电器AJ、BJ和CJ,实现利用继电器AJ的两组线圈,其中一组线圈采用条件BJ↑使继电器AJ吸起,另一组线圈利用自身前接点AJ↑实现自闭并保持,同时增加条件(BJ↓&CJ↑)作为自闭电路的切断条件。 电路图 分析 当BJ吸起时,第一条支路导通,AJ吸起。AJ吸起时,CJ常态是落下的,第二条支路也导通,AJ保持吸起状态,此时,即使BJ落下也不致使AJ落下,实现自闭功能。当BJ落下且CJ吸起时,两条通路都被切断,满足要求。

实验器材 继电器3个,24V直流电源一个,导线若干(带鳄鱼夹) 实验过程 根据电路图连接实物,经过检查无误后接通开关,观察现象,可见A继电器吸起,将B继电器断开后A仍然吸起,使C继电器通电,A继电器落下。 实验总结 在实验过程中由于对继电器的实物不是很了解,我们在连接电路时没有考虑到C继电器需要负载的问题,没有连接A继电器的3,4 线圈,导致短路,我们立即断开了开关,在老师的指导下找出了问题并进行了改正。最终实现了自闭电路的连接。

继电保护实验报告

电力系统继电保护 实验报告 姓 名 学 号 指导教师 专业班级 学 院 信息工程学院 实验二:方向阻抗继电器特性实验 一、实验目的 1. 熟悉整流型LZ-21型方向阻抗继电器的原理接线图,了解其动作特性; 2. 测量方向阻抗继电器的静态()?f Z pu =特性,求取最大灵敏角; 3. 测量方向阻抗继电器的静态()r pu I f Z =特性,求取最小精工电流; 4. 研究方向阻抗继电器记忆回路和引入第三相电压的作用。 二、实验内容 1.整流型阻抗继电器的阻抗整定值的整定和调整 前述可知,当方向阻抗继电器处在临界动作状态时,推证的整定阻抗表达式如式4-3所示,显然,阻抗继电器的整定与LZ-21中的电抗变压器DKB 的模拟阻抗Z I 、电压变换器YB 的变比n YB 、电压互感器变比n PT 和电流互感器n CT 有关。 例如,若要求整定阻抗为Zset =15Ω,当n PT =100,n CT =20,Z I =2Ω(即DKB 原

方匝数为20匝时),则10 15 = yb n ,即YB n 1=0.67。也就是说电压变换器YB 副方线 圈匝数是原方匝数的67%,这时插头应插入60、5、2三个位置,如图4-10所示。 (1,检查电抗变压器DKB 原方匝数应为16(2)计算电压变换器YB 的变比6 .15 =yb n ,YB 副方线圈对应的匝数为原方匝数的32%。 (3)在参考图4-10阻抗继电器面板上选择20匝、10匝,2匝插孔插入螺钉。 表4-3 DKB 最小整定阻抗范围与原方线圈对应接线

(4)改变DKB原方匝数为20匝(Z I=2Ω)重复步骤(1)、(2),在阻抗继电器面板上选择40匝、0匝,0匝插孔插入螺钉。 (5)上述步骤完成后,保持整定值不变,继续做下一个实验。 2.方向阻抗继电器的静态特性Z pu=f(?)测试实验 实验步骤如下: (1)熟悉LZ-21方向阻抗继电器和ZNB-Ⅱ智能电秒表的操作接线及实验原理。认真阅读LZ-21方向阻抗继电器原理接线图4-2和实验原理接线图(图4-11)(2)按实验原理图接线,具体接线方法可参阅LG-11功率方向继电器实验中所介绍的内容。 (3)逆时针方向将所有调压器调到0V,将移相器调到0°,将滑线电阻的滑动触头移至其中间位置,将继电器灵敏角度整定为72°,整定阻抗设置为5Ω。 ( ( ( 为1A (7)调节单相调压器的输出电压,保持方向阻抗继电器的电流回路通过的电流为I m=2.0A; (8)按照LG-11功率方向继电器角度特性实验中步骤(7)至(12)介绍的方法,测量给定电压分别为表4-4中所确定数值下使继电器动作的两个角度?1、?2,并将实验测得数据记录于表4-4中相应位置。 (9)实验完成后,将所有调压器输出调至0V,断开所有电源开关。

继电保护实验报告

电气信息学院 继电保护实验报告 实验内容: 实验二:LG_10系列功率方向继电器特性实验三:重合闸继电器特性

实验二 LG_10系列功率方向继电器特性实验 一、实验目的 1. 了解继电器的原理及构造(采用整流式原理,嵌入式结构) 2. 掌握继电器的检验方法(主要部分) 3. 掌握移相器和相位表的使用方法 二、结构原理 继电器的原理接线图如下: 三、实验步骤

1、按图接好实验电路 2、电流潜动和电压潜动的检查,要求电流和电压均无潜动 a、电流潜动:电压回路⑦、⑧端经20Ω电阻端接,电流回路⑤、⑥端子通 入额定电流5A,测量极化继电器线圈上的电压(即⑨、⑩端子上的电压),测得的电压应接近于0V(或不大于0.1v),如电压不为零,可调整电位器 Rp1使电压为零。 b、电压潜动:电流回路⑤、⑥端开路,在电压回路⑦、⑧端子加电压100v, 测量极化继电器线圈上的电压,测得的电压应接近于0v(或不大于0.1v),如电压不为0,可调整电位器Rp2,使电压为0。 反复调整电压及电流潜动,使极化继电器线圈上的电压均接近于0,然后突然加入及切除额定电流5A及额定电压100v,继电器接点不应有短时动作现象。 在电流回路开路情况下突然加入或切除(电压回路)100v,继电器触点同样要求不应有瞬时闭合现象。若发现触点有瞬时接通现象,可更换比较回路的电阻核电容,使制动回路电容放电时间常数不小于工作回路电容放电 时间常数。更换后应重新进行潜动调整。潜动调整结束后,将电位器锁紧。 3、动作区和最大灵敏角检查 在额定电流及额定电压下,用移相器改变电流和电压之间的相角,读出动作边界 的两个角度θ1和θ2(即继电器接点闭合和断开的两个边界交度)如图一 或图二所示,按下式求最大灵敏角: φm=(θ1+θ)/2 式中:θ1、θ2——加在继电器端子上的电流和电压之间的相角,电流 滞后电压时,

继电保护实验报告

继电保护及微机保护实验报告 实验一 DL-31型电流继电器特性实验 一、实验目的: 1、了解常规电流继电器的构造及工作原理。 2、掌握设置电流继电器动作定值的方法。 3、学习微机型继电保护试验测试仪的测试原理和方法,并测试DL-31型电流继电器的动作值、返回值和返回系数。 二、实验方法: (1)、按照实验指导接好连线; (2)、打开测试仪,在PC 机上运行“继电保护特性测试”系统软件; (3)、设置测试仪的控制参数,本实验是动态改变I a 的幅值,以“I a 幅值”为控制量,步长 设置为0.05A ,整定值为3A ,起始值设置为0A 。 (4)、重复手动测试继电器动作值及返回值,记录数据。 三、实验结果 四、思考题 1、电磁型电流继电器的动作电流与电流的整定值有关,也就是舌片的上方的止位螺钉的位置有关系,动作电流也与舌片的Z 字型的舌片的Z 的角度有关。还与铁芯上的线圈的粗细,匝数、游丝的松紧程度有关。 2、返回系数的大小主要是继电器断开的时间长断,返回系数是指返回电流re I 与动作电流OP I 的比值称为返回系数re K ,即: 。 动作值(A ) 返回值(A ) 返回系数 1 3.05 2.70 0.89 2 3.10 2.70 0.87 3 3.00 2.70 0.89 4 3.05 2.70 0.89 平均值(A ) 3.05 2.70 0.885 误差(A ) 0 变差(%) 3.28 返回系数 0.885 整定值(A ) 3 OP re re I I K

实验二 DY-36型电压继电器特性实验 一、实验目的: 1、了解常规电压继电器的构造及工作原理。 2、掌握设置电压继电器动作定值的方法。 3、测试DY-36型电压继电器的动作值、返回值和返回系数 二、 实验方法: (1)、按照实验指导接好连线; (2)、打开测试仪,在PC 机上运行“继电保护特性测试”系统软件; (3)、设置测试仪的控制参数,本实验是动态改变U a 的幅值,以“U a 幅值”为控制量,步长设置为0.5v ,整定值为50v ,起始值设置为40v 。 4)、重复手动测试继电器动作值及返回值,记录数据。 三、实验结果 四、思考题 1、电磁型电压继电器的动作电压与电压的整定值有关,和相关磁路的磁阻有关(具体包括铁芯材料的磁导率、铁芯的尺寸、空气气隙的长度),也和线圈的匝数有关。 2、电压继电器的返回系数是 实验三 LG-11型功率方向继电器特性实验 一、实验目的:1、掌握功率方向继电器的动作特性试验方法 2、测试LG-11型功率方向继电器的最大灵敏角和动作范围; 3、测试LG-11型功率方向继电器的角度特性和伏安特性,考虑出现“电压死区”的原因。 动作值(V ) 返回值(V ) 返回系数 1 47.4 42.2 0.89 2 46.4 42.0 0.91 3 47.8 41.0 0.86 平均值(V ) 47.2 41.73333 0.89 误差(V ) -7.2 变差(%) 2.97 返回系数 0.89 整定值(V ) 50 OP re re U U K

继电保护实验报告

第一章电力自动化及继电保护实验装置交流及直流电源操作说明 一、实验中开启及关闭交流或直流电源都在控制屏上操作。 1、开启三相交流电源的步骤为: 1)开启电源前,要检查控制屏下面“直流操作电源”的“可调电压输出”开关(右下角)及“固定电压输出”开关(左下角)都须在“关”断的位置。控制屏左侧面上安装的自耦调压器必须调在零位,即必须将调节手柄沿逆时针方向旋转到底。 2)检查无误后开启“电源总开关”,“停止”按钮指示灯亮,表示实验装置的进线已接通电源,但还不能输出电压。此时在电源输出端进行实验电路接线操作是安全的。 3)按下“启动”按钮,“启动”按钮指示灯亮,只要调节自耦调压器的手柄,在输出口u、v、w处可得到0~450v的线电压输出,并可由控制屏上方的三只交流电压表指示。当屏上的“电压指示切换”开关拨向“三相电网输入电压”时,三只电压表指示三相电网进线的线电压值;当“指示切换”开关拨向“三相调压输出电压”时,三表指示三相调压输出之值。 4)实验中如果需要改接线路,必须按下“停止”按钮以切断交流电源,保证实验操作的安全。实验完毕,须将自耦调压器调回到零位,将“直流操作电源”的两个电源开关置于“关”断位置,最后,需关断“电源总开关”。 2、开启单相交流电源的步骤为: 1)开启电源前,检查控制屏下面“单相自耦调压器”电源开关须在“关”位置,调压器必须调至零位。 2)打开“电源总开关”,按下“启动”按钮,并将“单相自耦调压器”开关拨到“开”位置,通过手动调节,在输出口a、x两端,可获得所需的单相交流电压。 3)实验中如果需要改接线路,必须将开关拨到“关”位置,保证操作安全。实验完毕,将调压器旋钮调回到零位,并把“直流操作电源”的开关拨回“关”位置,最后,还需关断“电源总开关”。 3、开启直流操作电源的步骤为: 1)在交流电源启动后,接通“固定直流电压输出”开关,可获得220v、1.5a不可调的直流电压输出。接通“可调直流电压输出”开关,可获得40~220v、3a可调节的直流电压输出。固定电压及可调电压值可由控制屏下方中间的直流电压表指示。当将该表下方的“电压指示切换”开关拨向“可调电压”时,指示可调电源电压的输出值,当将它拨向“固定电压”时,指示输出固定的电源电压值。 2)“可调直流电源”是采用脉宽调制型开关稳压电源,输入端接有滤波用的大电容,为了不使过大的充电电流损坏电源电路,采用了限流延时保护电路。所以本电源在开机时,约需有3~4秒钟的延时后,进入正常的输出。 3)可调直流稳压输出设有过压和过流保护告警指示电路。当输出电压调得过高时(超过240v),会自动切断电路,使输出为零,并告警指示。只有将电压调低(约240v以下),并按“过压复位”按钮后,能自动恢复正常输出。当负载电流过大(即负载电阻过小),超过3a 时,也会自动切断电路,并告警指示,此时若要恢复输出,只要调小负载电流(即调大负载电阻)即可。有时候在开机时出现过流告警,这说明在开机时负载电流太大,需要降低负载电流。若在空载下开机,发生过流告警,这是由于气温或湿度明显变化,造成光电耦合器til117漏电使过流保护起控点改变所致,一般经过空载开机(即开启交流电源后,再开启“可调直流电源”开关)预热几十分钟,即可停止告警,恢复正常。 第二章、电力自动化及继电保护实验的基本要求和安全操作规程 一、实验的基本要求 电力自动化及继电保护实验的目的在于培养学生掌握基本的实验方法与操作技能。培养学生学会根据实验目的,实验内容及实验设备拟定实验线路,选择所需仪表,确定实验步骤,测取所需数据,进行电路工作状态的分析研究,得出必要结论,从而完成实验报告。在整个实验过程中,必须集中精力,及时认真做好实验。现按实验过程提出下列基本要求。 1、实

微机继电保护实验报告

本科实验报告 课程名称:微机继电保护 实验项目:电力系统继电保护仿真实验 实验地点:电力系统仿真实验室 专业班级:电气1200 学号:0000000000 学生姓名:000000 指导教师:000000 2015年12 月 2 日

一、实验背景 微机继电保护指的是以数字式计算机(包括微型机)为基础而构成的继电保护。众所周知,传统的继电器是由硬件实现的,直接将模拟信号引入保护装置,实现幅值、相位、比率的判断,从而实现保护功能。而微机保护则是由硬件和软件共同实现,将模拟信号转换为数字信号,经过某种运算求出电流、电压的幅值、相位、比值等,并与整定值进行比较,以决定是否发出跳闸命令。 继电保护的种类很多,按保护对象分有元件保护、线路保护等;按保护原理分有差动保护、距离保护和电压、电流保护等。然而,不管哪一类保护的算法,其核心问题归根结底不外乎是算出可表征被保护对象运行特点的物理量,如电压、电流等的有效值和相位以及视在阻抗等,或者算出它们的序分量、或基波分量、或某次谐波分量的大小和相位等。有了这些基本电气量的计算值,就可以很容易地构成各种不同原理的保护。基本上可以说,只要找出任何能够区分正常与短路的特征量,微机保护就可以予以实现。 由此,微机保护算法就成为了电力系统微机保护研究的重点,微机保护不同功能的实现,主要依靠其软件算法来完成。微机保护的其中一个基本问题便是寻找适当的算法,对采集的电气量进行运算,得到跳闸信号,实现微机保护的功能。微机保护算法众多,但各种算法间存在着差异,对微机保护算法的综合性能进行分析,确定特定场合下如何合理的进行选择,并在此基础上对其进行补偿与改进,对进一步提高微机保护的选择性、速动性、灵敏性和可靠性,满足电网安全稳定运行的要求具有现实指导意义。 目前已提出的算法有很多种,本次实验将着重讨论基本电气量的算法,主要介绍突变量电流算法、半周期积分算法、傅里叶级数算法。

相关文档
相关文档 最新文档