文档库 最新最全的文档下载
当前位置:文档库 › 我所认识的弹塑性力学知识交流

我所认识的弹塑性力学知识交流

我所认识的弹塑性力学知识交流
我所认识的弹塑性力学知识交流

我所认识的弹塑性力学

弹塑性力学作为固体力学的一门分支学科已有很长的发展历史,其理论与方法的体系基本完善,并在建筑工程、机械工程、水利工程、航空航天工程等诸多技术领域得到了成功的应用。

一绪论

1、弹塑性力学的概念和研究对象

弹塑性力学是研究物体在载荷(包括外力、温度变化或外界约束变动等)作用下产生的应力、变形和承载能力,包括弹性力学和塑性力学,分别用来研究弹性变形和塑性变形的力学问题。弹性变形指卸载后可以恢复和消失的变形,塑性变形时指卸载后不能恢复而残留下的变形。弹塑性力学的研究对象可以是各种固体,特别是各种结构,包括建筑结构、车身骨架、飞机机身、船舶结构等,也研究量的弯曲、住的扭转等问题。其基本任务在于针对实际问题构建力学模型和微分方程并设法求解它们,以获得结构在载荷作用下产生的变形,应力分布及结构强度等。

2、弹塑性简化模型及基本假定

在弹性理论中,实际固体的简化模型为理想弹性体,它的特征是:一定温度下,应力应变之间存在一一对应关系,而与加载过程以及时间无关。在塑性理论中,常用的简化模型为:理想塑性模型和强化模型。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型;强化模型包括线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型。弹塑性力学有五个最基本的力学假定,分别为:连续性假定、均匀性

假定、各向同性假定、小变形假定和无初应力假定。

3、研究方法及其与初等力学理论的联系和区别

一般来说,弹塑性力学的求解方法有:经典方法、数值方法、试验方法和实验与数值分析相结合的方法。经典方法是采用数学分析方法求解,一般采用近似解法,例如,基于能量原理的Ritz法和伽辽金法;数值法常用的有差分法、有限元法及边界条件法;实验法是采用机电方法、光学方法、声学方法等来测定应力应变分布规律,如光弹性法和云纹法。

弹塑性力学与初等理论力学既有联系又有区别,如下表所示:表1、弹塑性力学与初等力学理论的联系和区别

二基本理论框架

1、基本方程

弹塑性力学和材料力学所求解的问题都是超静定问题,因此在分析问题研究问题是基本思路都是要进过三个方面的分析,这三个方面分别为:(1)静力平衡条件分析(2)几何变形协调条件分析(3)物理条件分析从而获得三类基本方程,联立求解,再满足具体问题的边界条件,即可使静不定问题得到解决,这三方面的方程为:

(1)平衡(或运动方程)内部应力与外部体力之间的关系

(2)几何方程(应变与位移之间的关系)

(3)本构方程(应力与应变之间的关系) (A )在弹性变形阶段

(B )在弹塑性变形阶段屈服函数()0ij f σ≥,则有

a 、增量理论(流动理论)

b 、全量理论(变形理论) a 、增量理论

(i )Prandtl —Reuss 理论1

2

ν≤() 塑性增量本构关系

1

2G 12e

p

ij ij ij ij ij

e

ii ii ii

de de de ds d s d d d E

λνεεσ=+=+-== 理想弹塑性材料

2

31

2G 212d ij ij ij

s ii

ii

dw de ds s d d E

σνεσ=+-=

(ii )Levy —Mises 理论1

2

ν=()

理想刚塑性材料

32i

ij ij s

d d s εεσ=

b 、全量理论(形变理论)

依留申理论(强化材料)

1

2

ν≤() 312,,()

2i ii ii ij ij i i i

e s E εν

εσσφεσ-=== 总之,当物体发生变形时,不论弹性变形还是塑性变形问题,共有3个平衡微分方程,6个几何方程和6个本构方程,共计15个独立方程(统称为泛定方程)而问题共有ij ij i u σε、、15个基本未知函数,因此在给定边界条件时,问题是可以求解的,弹塑性静力学的这种那个问题在数学上成为求解边值问题。

任何一个固体力学参量在具体受力物体内一般都是体内各点(x 、y 、z )的函数,他们满足的方程泛定方程相同。然而由于物体几何尺寸的不同,载荷大小与分布的不同,必然导致物体内各点应力、应变和位移的大小和变化规律是千变万化的,也就是说,单靠这些泛定方程是不足以解决具体问题的。从力学观点上来说,所有满足泛定方程的应力、应变和位移也应该同时满足(表面)与外界作用的条件,即应力边界条件和位移边界条件。 (4)边界条件

(A )应力边界条件

123123123_

(yz

x xy xz yx y zx xy z ij j i l l l x l l l y

l l l z

l x s σστττστττσσ-

-

-

++=++=++==或在上)

(B )位移边界条件

_

_

_

,,(u u u v v w w s ===在上)

根据具体问题边界条件类型的不同,常把编制问题分为第一、第二、第三类边值问题。 2、应力理论

应力是指受力物体内某点某截面上内力的分布集度。分为正应力和剪应力,如应力矢量n p 产生的正应力和剪应力分别

.,.n n n n p n p s στ===v v

在直角坐标系中还可表示为

n x y z p p i p j p k =++v v v 。我们用应力张量(对称二阶张量)ij σ来描述一点

的应力状态,通过关系式i ij j p l σ=得到过这一点任意微分截面上

222

12312231

2232n x y z xy yz zx n p pn l l l l l l l l l σσσστττσ===+++++=

通过应力分量的坐标变换公式'''''

()T

ij ij i i j j l l σσσβσβ==矩阵形式来求得同一点在坐标旋转后得到的应力分量,并证明了应力分量的确是一

个对称二阶张量。通过应力状态的特征方程32

1

230I I I σσσ---=若已知一点的应力分量

ij

σ,可以求得这一点的三个主应力

123σσσ、、。再主应力空间里,得到应力张量的第一、第二、第三

不变量11232

1223313123I =++,I (),I σσσσσσσσσσσσ=-++=。外力作用下,

物体的变形通常分为体积改变和形状变化,并认为体积的改变是由各向相等的应力引起的,因此,通常应力分解为球应力张量和偏应力张量,即ij m ij ij s σσδ=+在球行应力状态下,微分单元体只产生体积变化,不发生形状变化,而偏斜应力张量反映了一个实际的应力状态偏离均匀应力状态的程度,所以,应力张量的分解,更有利于研究固体材料的塑性变形行为。在主应力空间中,推导了八面体应力和应力强度分

别表示为818813

,3i I στσ====最重要的是建立了物体

内任意点的应力分量和体力分量之间的关系式平衡微分方程

,0ij j i F σ+=和物体边界上任意点的应力分量和面力分量之间的关系式

静力边界条件i ij j F l σ=。

3、 应变理论

变理论中引入了物体内一点的位移场,同时引入并解释了应力张量的概念,它是一个对称二阶张量,来完整的表述一点的应变状态,建立了应变分量与位移分量的关系式,几何方程

,,1

()(,)2

ij i j j i u u i j x y z ε=+=、、。证明了应变分量服从坐标变换规律

''''ij i j i i j j l l εε=。同应力理论相似,通过应变特征方程,已知一点的

应变状态可以求得该点的主应变并在主应变空间表示出了三个应变不变量。将应变张量分解为应变球张量和应变片张量,即

,ij ij m ij ij e e εεεδ=+=+应变偏张量也是一个是对称的二阶张量,同样存

在三个不变量''''1231123'

222

2222222'1223313123J J ,J 0

11[()()()]()

64

1

[()()()],J 6

x y z X y y z z x xy yz zx J e e e e e e J e e e εεεεεεγγγεεεεεε=++=++==-+-+-+++=-+-+-=、、其中 ;引入了体积变量(物体变形后单位体积的变化)'

1x y z I εεεΘ=++=

三 弹塑性力学的基本解法

在求解弹塑性边值问题时,有三种不同的解题方法,即位移法(用位移作为基本未知量来求解边值问题)、应力法(用应力作为基本未知量)、混合法,这三种方法统称为直接法,但在实际问题中,为克服数学上的困难和复杂性经常应用的是逆解法和半逆解法。

四 总结

运用上述弹塑性力学的基本理论,我们在学习过程中研究了简单弹塑性力学问题中的平面问题,柱体扭转问题,薄板小挠度弯曲问题,温度应力场问题等,以上即是我对弹塑性力学的认识,通过本课

程的学习,使我更加深入地掌握了弹塑性力学的相关知识,相信在以后的学习和实践中一定会得到充分的应用。

华南理工大学土木工程专业本科教学计划

华南理工大学土木工程专业本科教学计划 工程力学创新班(本硕、本博连读) Engineering Mechanics 专业代码:080102(本科)、0801(硕士)、080102(博士) 学制:4年(本科)、3+1+2年(硕士)、3+1+4年(博士) 培养目标: 本专业培养的是热爱祖国,德智体全面发展,以力学专业知识和分析方法从事高水平科技研究的优秀人才。 目标1:(扎实的基础知识)培养学生具有扎实的力学基础知识,为高层次的力学基础研究和工程应用研究选拔一批优秀人才。 目标2:(解决问题能力)培养学生解决与力学有关的工程技术问题的理论分析能力和实验技能。 目标3:(团队合作与领导能力)培养学生在团队中的沟通和合作能力,特别是在重大科研与工程项目中的协调能力。 目标4:(工程系统认知能力)鼓励学生从实际工程中提取与力学相关的科学技术问题,并且应用所学知识解决问题,服务工程实践。 目标5:(专业的社会影响评价能力)培养学生综合应用理论分析、实验研究、数值仿真的能力,合理解决工程实际问题。 目标6:(全球意识能力)培养学生能够适应全球化的发展需求,具备国际竞争的能力。 目标7:(终身学习能力)培养学生具备终身学习能力,持久地应用力学理论知识、计算方法和实验技术等解决工程科学问题。 专业特色: 采用本硕博一体化的人才培养模式,缩短学制,保证必要的力学基础知识和专业技能的培养;加强数学、力学基础知识,培养实验和计算能力,结合土木、机械和航空航天等工程背景,进行宽口径大类培养;实行导师制,引导学生参与学科前沿研究,加强国际化交流,重视工程实践,培养高水平复合型人才。 培养要求: 课程目标体系构成,每门课的设置都有相对应的培养目的,即学生所获得相应的知识、能力和素质。 知识架构: A1 文学、历史、哲学、艺术的基本知识;

弹塑性力学读书笔记

弹塑性力学在岩体变形加固中的应用 姓名: xx 学号:导师: xx 弹塑性力学这门课程是《弹性力学》的延伸,经典弹塑性力学的基本要求是应力只能在屈服面以内或屈服面之上,材料在屈服面以外的力学行为是没有定义的,这意味着经典弹塑性理论只能处理稳定结构。结构需要加固力维持稳定,说明结构部分区域应力已超出屈服面。一般说来对于给定的外荷载,结构的工作区域可能是弹性区、稳定弹塑性区和非稳定弹塑性区。弹性区和稳定弹塑性区可由经典弹塑性力学处理,变形加固理论处理的是非稳定弹塑性区。本文首次提出变形加固理论的基础是非平衡态弹塑性力学,它是经典弹塑性力学的增量延拓,其理论核心是最小塑性余能密度原理,在结构上反映为最小塑性余能原理。 1 变形加固理论的提出 工程结构弹塑性有限元计算表现为一系列逼近真解的迭代过程。考察某一 典型的迭代步,设某一高斯点在该迭代步的初始应力为c 0 且有f( c 0) <,当前应力为c 1。应力场c 0,c 1 都应满足平衡条件,即该应力场在结构内处处满足平衡微分方程,在边界上满足力的边界条件,在有限元分析中表示为 2/ BT c 0dV= 2/ BT c

1dV=F 式中: F为外荷载向量,e表示对结构所有单元求和。 经典弹塑性理论要求结构各点应力必须在屈服面之上或以内,即各点都要满足屈服条件,这意味着结构在外荷载作用下是稳定的。而本文讨论加固问题首先意味着结构在外荷载作用下是不稳定的,需要引入加固力以维持稳定。所以有必要对经典弹塑性理论进行延拓以容纳加固特点。受弹塑性迭代总是使范数不断减少的启发,本文提出一个最小塑性余能原理: 对于给定的外荷载,在所有和其平衡的应力场中,结构真实应力场的塑性 余能范数最小。以此而论,弹塑性有限元计算的迭代过程就是△E的一个最小化过程。 3经典弹塑性本构关系 本文讨论关联的理想弹塑性材料,且不考虑弹塑性耦合。经典弹塑性力学的本构关系为率形式。 4非平衡态弹塑性本构关系 非平衡态弹塑性力学处理应力状态处于屈服面以外的材料行为,其本构关系基本上就是上述经典弹塑性本构关系的增量化。只有增量化才能出现应力位于屈服面以外的情形,这和弹塑性数值方法的处理方法是一致的。不过弹塑性数值方法是作为弹塑性理论的近似方法,而在本文,这些增量关系作为非平衡态弹塑性力学的本构关系,是作为事先给定的基本定义和出发点。 第一和第二最小塑性余能密度原理可统称为最小塑性余能密度原理,如上所述,其实质为增量型正交流动法则。增量型正交流动法则为正交流动法则的一阶近似。正是在这个意义上,非平衡态弹塑性力学可以看作是经典弹塑性力学在非稳定弹塑性区的一阶近似。最小塑性余能密度原理式可以认为是极值问题式的增量对

研究生入党积极分子思想汇报2019

研究生入党积极分子思想汇报2019 x年下学期开学,本人已经进入了研究生二年级,开学一个月以来本人在思想、学习、生活等方面都有了一些新的变化。 思想上,本人继续坚持马列主义、*思想,以此作为人生的指导 思想,深刻领会*理论和新时期“xxxx重要思想”,对21世纪建设和 谐社会的思想有了全面完整的理解。日常生活中本人用这些先进思想 严格要求自己,思想上与党中央高度保持一致,听党话,跟党走,关 心国家大事,注重周围事,对国家取得的每一个成就都感到发自内心的、无比的高兴,衷心希望祖国欣欣向荣、日益强大。平时本人注意 自己的一言一行、一举一动,以一个*员应有的素质来要求自己,不但 要做一个21世纪合格的研究生,而且要积极向党组织靠拢,向党组织 看齐。与同学相处严于律己、宽以待人、关心他人、乐于助人、积极 参加各项健康有益的活动、和睦相处,同学取得了成功会感到由衷的 高兴,同学遇到了困难会热情的伸出援助之手;与老师交往中本人尊敬 师长、礼貌有加、不卑不亢,积极主动和老师联系,虚心请教疑难问题;与陌生人接触本人礼貌待人、热心帮忙、有礼有度,争取给别人留 下好印象。生活上本人勤俭节约,不铺张浪费,穿着整洁朴素,不给 父母增加经济负担,自己通过做家教或去相关培训机构授课等兼职形 势解决生活问题。 学习上,本人继续严格要求自己,刻苦钻研,有所付出有所收获。本人已经步入研二,在过去一年学习的基础上,本人已经积累了初步 的基础知识和必要的研究方法,形成了初步的研究水平,在广泛搜集 相关资料已及切实体会的基础上,本人利用暑假和开学初这段时间尝 试着写了一篇论文:《新形势下高等教育自学考试的困境和出路》, 在这篇论文里面本人详细分析了高等教育自学考试的历史贡献、现阶 段出现危机的原因、优势所在、解决危机获得发展的有效办法,论文 已经过导师指导,准备在近期发表出去。本学期学校开设了四门选修课,本人坚持不迟到、不早退、不旷课,专心听课,积极参与课堂讨论,认真完成各科作业;另外,本人还选修了导师开的一门课:学校公

弹塑性力学总结汇编

弹塑性力学总结 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。通过一学期的弹塑性力学的学习,对其内容总结如下: 一、弹性力学 1、弹性力学的基本假定 求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。

在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。 (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。 (3)假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。 (4)假设物体是各向同性的。也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。 (5)假设物体的变形是微小的。即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。这样,在考虑物体变形以后的平衡状态时,可以用变

弹塑性力学读书报告

应用弹塑性力学读书报告 刘艳 10076139019 河北工程大学土木工程学院建筑与土木工程专业 摘要:弹塑性力学是研究可变形固体受到外力作用或温度变化的影响而产生的应力、应变和位移及其分布变化规律。它由弹性理论和塑性理论组成。弹性理论研究弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变性固体在塑性阶段的力学问题。弹塑性力学就是研究经过抽象化的可变性固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。 关键字:弹塑性力学弹性阶段塑性阶段假设求解方法弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性变形阶段是指当外力小于某一限值(通常称为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,而固体只产生弹性变形的阶段称为弹性阶段。塑性变形阶段是外力一旦超过弹性极限荷载,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,从而这一阶段就称为塑性阶段。弹塑性力学也是连续介质力学的基础和一部分,它包括:弹塑性静力学和弹塑性动力学。

塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。工程上常把脆性和韧性也作为一种概念来讲,它们之间的区别在于固体破坏时的变形大小。若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 在塑性理论中,由于实际固体材料在塑性阶段的应力----应变关系过于复杂,若采用它进行理论研究和计算都非常复杂,因此,同样需要进行简化处理。常用的简化模型可分为两类:即理想塑性模型和强化模型。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型。 在单向应力状态下,强化模型的特征如图0.2所示。强化模型又分为:线性强化弹塑性模型、线性强化刚塑性模型、幂次强化模型。

弹性力学基本概念和考点汇总

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

弹塑性力学学习体会

弹塑性力学读书报告 本学期我们选修了樊老师的弹塑性力学,学生毕备受启发对工科来说,弹塑性力学的任务和材料力学、结构力学的任务一样,是分析 各种结构物体和其构件在弹塑性阶段的应力和应变,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。 但是在研究方法上也有不同,材料力学为简化计算,对构件的应力分布和变形状态作出某些假设,因此得到的解答是粗略和近似的; 而弹塑性力学的研究通常不引入上述假设,从而所得结果比较精确, 并可验证材料力学结果的精确性。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑 性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、 解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。通过一学期的弹塑性力学的学习,对其内容总结如下: 第一章绪论 首先是弹塑性力学的研究对象和任务。 1、弹塑性力学:固体力学的的一个分支学科,是研究可变形固体受 到外载荷、温度变化及边界约束变动等作用时,弹性变形及应力状态的科学。 2、弹塑性力学任务:研究一般非杆系的结构的响应问题,并对基于 实验的材料力学、结构力学的理论给出检验。

这里老师讲到过一个重点问题就是响应的理解,主要就是结构在外因的作用下产生的应力场(强度问题)、应变场(刚度问题),整体大变形(稳定性问题)。 3、弹性力学的基本假定 求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及 边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。求解问题的方法是通过研究物体内部各点的应力与外力所 满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。 在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使 得方程的求解成为可能。 (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物 体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如: 应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去 以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料 服从虎克定律,应力与应变成正比。

清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学 第七章塑性力学的基本方程与解法 一、非弹性本构关系的实验基础 拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。由D到H是一接近水平的线段,称为塑性流动段。对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。在图中b点之后,试件产生颈缩现象,最后试件被拉断。如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。 图7.1 低碳钢单向拉伸应力应变曲线 有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。 记为 0.2 图7.2 高强度合金钢单向拉伸应力应变曲线

第七章 塑性力学的基本方程与解法 如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。 图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。同样,当时的应力不仅和当时的应变有关,而且也和整个变形的历史有关。这就增加了问题的复杂性。材料的特性不能简单的用应力应变关系来描述,而要用比较复杂的本构关系,即应力和整个变形历史的关系来描述。 此外,在实际工程问题中经常遇到的材料非线性问题往往不是单向应力状态,即不是一维问题。要对三维问题单靠实验来确定应力张量和应变张量之间的关系几乎是不可能的。因此,在建立非线性本构关系时,除去不能脱离实验基础之外,还必须有基本理论的指导。 二、刚塑性与弹塑性本构模型 z 简化模型 对于低碳钢一类材料,如果承载后产生的变形状态一直达到塑性流动段,为了简化起见,略去应力应变曲线中的上、下屈服极限等细节,可得到由线弹性段和塑性流动水平线段组成的简化模型,称为理想弹塑性模型(图7.5a ): s s s s E E σεεεσεσεε=≤??==>?当当 (1) 在金属成型等问题中,由于塑性流动引起的塑性应变较大,而弹性应变因相比较小而将其忽略,则又可进一步简化为只有水平线段的刚塑性模型(图7.5b ):

弹塑性力学简答题

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

弹塑性力学总结读书报告

弹塑性力学读书报告 弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。弹塑性力学也是连续介质力学的基础和一部分。弹塑性力学包括:弹塑性静力学和弹塑性动力学。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。 1 基本思想及理论 1.1科学的假设思想 人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。 1.1.1连续性假定 假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 1.1.2线弹性假定(弹性力学)

塑性力学基本理论

弹性力学 对于均匀、各向同性材料,可以证明只有两个独立弹性常数,3各常数之间存在关系:2(1) E G μ= +。 广义胡克定律的体积式:体积应变:x y z θεεε=++;体积应力: x y z σσσΘ=++,则:12E ν θ-= Θ。 各向同性体的体积改变定律:3(12) m E K σθθν= =-.其中体积模量: 3(12) E K ν= - 弹性力学解的唯一性定理:弹性体在给定体力、面力和约束条件的情况下而 处于平衡时,体内各点的应力分量、应变分量的解是唯一的。 塑性力学 从物理上看,塑性变形过程属于不可逆过程,并且必然伴随机械能的耗散。研究塑性力学问题主要采用宏观的方法,即联系介质力学的方法,它不去探究材料塑性变形的内在机理,而是从材料的宏观塑性行为中抽象出力学模型,并建立相应的数学物理方程来予以描述,应力平衡方程和应变位移间的几何关系是与材料性质无关的,因此对弹性力学与塑性力学都一样,弹性力学与塑性力学的差别主要表现在应力与应变的物理关系的不同。屈服条件以及塑性的本构关系是塑性力学物理方程的具体内容,具有: (1)应力与应变关系(本构关系)呈非线性,其非线性性质与具体材料有关; (2)应力与应变之间没有一一对应的关系,它与加载历史有关; (3)变形体中存在弹性区和塑性区,分析问题时需要找出其分界限。在弹性区, 加载与卸载均服从广义胡克定律;在塑性区,加载过程要使用塑性阶段的应力应变关系,而卸载过程中,则使用广义胡克定律。 这些特点带来了研究、处理问题方法上的不同,塑性力学首先要解决的问题是在实验资料的基础上确立塑性本构关系,进而与平衡和几何关系一起去建立塑

弹塑性力学讲义全套

弹塑性力学 弹塑性力学 绪论:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹塑性力学是固体力学的一个重要分支,是研究弹性和塑形物体变形规律的一门学科。它推理严谨,计算结果准确,是分析和解决许多工程技术问题的基础和依据。在弹塑性力学中,我们可以看到很多学习材料力学、结构力学等学科所熟知的参数和变量,一些解题的思路也很类似,但是我们不能等同的将弹塑性力学看成材料力学或者是结构力学来学习。材料力学和结构力学的研究对象及问题,往往也是弹塑性力学所研究的对象及问题。但是,在材料力学和结构力学中主要采用简化的初等理论可以描述的数学模型;在弹塑性力学中,则将采用较精确的数学模型。有些工程问题(例如非圆形断面柱体的扭转、孔边应力集中、深梁应力分析等问题)用材料力学和结构力学的方法求解,而在弹塑性力学中是可以解决的;有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的理论,而弹塑性力学则可以给出用初等理论所得结果可靠性与精确度的评价。在弹塑性力学分析中,常采用如下简化假设:连续性假设、均匀各向同性、小变形假设、无初应力假设等假设。 弹塑性力学基本方程的建立需要从几何学、运动学和物理学三方面来研究。在运动学方面,主要是建立物体的平衡条件,不仅物体整体要保持平衡,而且物体内的任何局部都要处于平衡状态。反映这一规律的数学方程有两类,即运动微分方程和载荷的边界条件。以上两类方程都与材料的力学性质无关,属于普适方

金属塑性_知识点汇总

金属塑性成形原理复习指南 第一章绪论 1、基本概念 塑性:在外力作用下材料发生永久性变形,并保持其完整性的能力。 塑性变形:作用在物体上的外力取消后,物体的变形不能完全恢复而产生的永久变形成为塑性变形。 塑性成型:材料在一定的外力作用下,利用其塑性而使其成形并获得一定的力学性能的加工方法。 2、塑性成形的特点 1)其组织、性能都能得到改善和提高。 2)材料利用率高。 3)用塑性成形方法得到的工件可以达到较高的精度。 4)塑性成形方法具有很高的生产率。 3、塑性成形的典型工艺 一次成形(轧制、拉拔、挤压) 体积成形 塑性成型 分离成形(落料、冲孔) 板料成形 变形成形(拉深、翻边、张形) 第二章金属塑性成形的物理基础 1、冷塑性成形 晶内:滑移和孪晶(滑移为主)滑移性能(面心>体心>密排六方) 晶间:转动和滑动 滑移的方向:原子密度最大的方向。 塑性变形的特点: ① 各晶粒变形的不同时性; ② 各晶粒变形的相互协调性; ③ 晶粒与晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。 合金使塑性下降。 2、热塑性成形 软化方式可分为以下几种:动态回复,动态再结晶,静态回复,静态再结晶等。 金属热塑性变形机理主要有:晶内滑移,晶内孪生,晶界滑移和扩散蠕变等。 3、金属的塑性 金属塑性表示方法:延伸率、断面收缩率、最大压缩率、扭转角(或扭转数) 塑性指标实验:拉伸试验、镦粗试验、扭转试验、杯突试验。 非金属的影响:P冷脆性 S、O 热脆性 N 蓝脆性 H 氢脆 应力状态的影响:三相应力状态塑性好。 超塑性工艺方法:细晶超塑性、相变超塑性 第三章金属塑性成形的力学基础 第一节应力分析 1、塑性力学基本假设:连续性假设、匀质性假设、各向同性假设、初应力为零、体积力为零、体积不变假设。

弹塑性力学总结

应用弹塑性力学读书报告 姓名: 学号: 专业:结构工程 指导老师:

弹塑性力学读书报告 弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。弹塑性力学也是连续介质力学的基础和一部分。弹塑性力学包括:弹塑性静力学和弹塑性动力学。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。 1 基本思想及理论 1.1科学的假设思想 人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。 1.1.1连续性假定 假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 1.1.2线弹性假定(弹性力学) 假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。

弹塑性力学基本内容

弹塑性力学基本内容 本课程是以物体的应力、应变理论以及在工程中的应用主要对象的一门基础性、实践性很强的应用学科。 教学目标为在强化物体的应力、应变理论基础的同时,关注物体的弹性力学模型的建立、分析和应用,并兼顾塑性理论的建立。在深度和广度上力求体现学科专业发展的前沿,有利于研究生掌握弹性理论专门知识,了解塑性理论的思想和方法,并着重在基础理论和实践应用两方面进行科研能力的培养。其基本要求为:使学生掌握弹性理论的建立、分析、应用,初步掌握塑性力学理论,使其具有从事弹性力学分析的知识和初步能力。 (1)弹塑性力学的研究对象和内容、弹塑性力学的分析方法和体系、弹塑性力学的基本假定 应力矢量、应力张量、Cauchy公式、平衡微分方程、力边界条件、应力分量的坐标变换、主应力、应力张量不变量、最大切应力、Mohr应力圆、偏应力张量及其不变量、八面体上的应力和等效应力、主应力空间与π平面 (2)位移分量和应变分量、两者的关系、物体内无限邻近两点位置的变化、转动分量、转轴时应变分量的变换、应变张量、主应变应变张量不变量、应变协调方程、应力和应变的关系、应力率和应变增量 (3)弹性力学的基本方程及其边值问题、位移解法(以位移表示的平衡微分方程)、应力解法(以应力表示的应变协调方程)、解的唯一性定理、局部性原理、逆解法和半逆解法、几个简单问题的求解 (4)平面应变问题、平面应力问题、应力解法(把平面问题归结为双调和方程的边值问题)、用多项式解平面问题、悬臂梁一端受集中力作用、简支梁受均匀分布荷载作用(5)平面问题的极坐标方程、轴对称应力问题和对应的位移、圆筒受均匀压力作用、曲梁的纯弯曲、具有小圆孔的平板的均匀拉伸 (6)薄板弯曲的基本概念及基本假设、弹性曲面的基本公式、薄板横截面上的内力、边界条件、圆形薄板弯曲问题 (7)塑性力学的基本概念、材料在简单拉压时的实验结果、应力-应变关系的简化模型、轴向拉伸时的塑性失稳、塑性本构关系的主要内容和研究方法 (8)应变张量和应力张量、屈服条件、几个常用的屈服条件、屈服条件的实验验证、加载条件 (9)塑性应变增量、加卸载判别准则、Drucker公设和Ilyushin公设、加载面外凸性和正交流动法则、塑性势理论、简单弹塑性问题

弹塑性力学概述

塑性增量本构的基本理论 姓名:学号: 摘要:本文从理论基础的角度讨论弹塑性增量本构模型的基本理论:首先给出弹塑性本构模型研究的基本假设;然后谈论弹塑性本构模型的三个基本组成部分(屈服面、硬化规律和塑性流动法则)。 关键字:本构关系;塑性;屈服面;硬化规律;塑性流动法则 1 引言 尽管弹塑性理论的研究己有一百多年,但随着电子计算机和各种数值方法的快速发展,对弹塑性本构关系模型的不断深入认识,使得解决复杂应力条件、加载历史和边界条件下的塑性力学问题成为可能。现在复杂应力条件下塑性本构关系的研究,已成为当务之急。弹塑性本构模型大都是在整理和分析试验资料的基础上,综合运用弹性、塑性理论建立起来的。在采用有限元法对工程塑性问题进行数值分析时,关键问题就是选择恰当的弹塑性本构模型,因此,弹塑性材料本构模型的研究就显得十分重要【1】。 本文从理论基础的角度讨论弹塑性增量本构模型的基本理论:首先给出弹塑性本构模型研究的基本假设;然后谈论弹塑性本构模型的三个基本组成部分(屈服面、硬化规律和塑性流动法则)。 2基本假设 建立弹塑性材料的本构方程时,应尽量反映塑性材料的主要特性。由于弹塑性变形的现象十分复杂,因此在研究弹塑性本构关系时必须作一些假设【1】。研究弹塑性本构关系理论的基本假设一般有以下几点 : (1)连续性假设:弹塑性体是一种密实的连续介质并在整个变形过程中保持连续性。 (2)小变形假设:在小变形(变形和物体尺寸相比可以忽略不计)情况下,应变和位移导数间的几何关系是线性的。但对于大变形情况,必须考虑几何关系中的二阶或高阶非线性项。 (3)均匀性假设:物体在不同点处的力学性质处处相同。实际上金属材料都可以看作是均匀的。对于混凝土、玻璃钢等非均质材料,如果不细究其不同组份分界面的局部应力,可以釆用在足够大的材料上测得的等效弹塑性参数来简化成均匀材料。 (4)仅考虑等温过程中的应变率无关材料,即忽略了应变率大小(或粘弹性效应)对变形规律的影响。这时任何与时间呈单调递增关系的参数都可取作为变形过程的时间参数。由此得到的本构关系将会有相当的简化。

弹塑性力学作业(含答案)

2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τ xy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yx y σβτβτβσβ+=?? +=?………………………………(a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()() 1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=?? ? --+-=??L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2 β; 化简(c )式得:c =γctg β-2γ1 ctg 3 β 2—17.己知一点处的应力张量为3 1260610010000Pa ?? ????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且 该点的主应力可由下式求得: (()()3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410 x y Pa σσσ?++?==±????=?=±?=? 则显然:3 312317.08310 4.917100Pa Pa σσσ=?=?=

岩土工程勘察基本知识

第二篇岩土工程勘察 第7章岩土工程勘察基本知识 岩土工程勘察的基本任务 岩土工程是土木工程中涉及岩石、土的利用、处理或改良的科学技术。它是以土力学、岩体力学、工程地质学、基础工程学、弹塑性力学和结构力学等为基础理论,并将其直接应用于解决和处理各项土木工程中土或岩石的调查研究、利用、整治或改造的一门技术科学,是土木工程的一个分支。 根据我国近二十年来推行岩土工程体制的实践总结,岩土工程包括岩土工程勘察、岩土工程设计、岩土工程治理、岩土工程检验和监测、岩土工程监理等,涉及工程建设的全过程。 岩土工程勘察是指根据建设工程的要求,查明、分析、评价建设场地的地质、环境特征和岩土工程条件,编制勘察文件的活动。

岩土工程勘察的基本程序岩土工程勘察的基本程序(即主要工作环节)可分为 ①编制勘察纲要、 ②工程地质测绘和调查、 ③勘探和取样、 ④岩土测试、 ⑤岩土工程分析评价和成果报告的编制等。

岩土工程勘察的分级 一个岩土工程勘察项目可根据其工程的重要性、场地的复杂程度和地基的复杂程度等三方面因素进行岩土工程勘察等级的划分。 岩土工程勘察等级反映该勘察项目的重要性和复杂性,因而是勘察工程管理、确定勘察工作量和技术要求的重要依据。 根据国家标准《岩土工程勘察规范》(GB50021—2001),岩土工程勘察等级的划分步骤是先将工程重要性等级、场地等级和地基等级各分为三级,然后根据三者的不同组合确定岩土工程勘察等级。 岩土工程勘察等级分为三级,具体分级方法和步骤如下。 1)工程重要性等级划分 根据工程的规模和特征以及由于岩土工程问题造成工程破坏或影响正常使用的后果,可分为三个工程重要性等级: ①一级工程:重要工程,后果很严重; ②二级工程:一般工程,后果严重; ③三级工程:次要工程,后果不严重。 对于工程重要性,由于涉及各个行业,涉及房屋建筑、地下洞室、线路、电厂及其他工业建筑、废弃物处理工程等,很难做出具体划分标准,上述划分标准仅是比较原则的规定。以住宅和一般公用建筑为例,30层以上的可定为一级,7~30层的可定为二级,6层及6层以下的可定为三级。应注意这一工程重要性划分标准与国家标准《建筑地基基础设

弹塑性力学读书报告

弹塑性力学读书报告 刘刚玉1020120036 同济大学交通运输工程学院道路与铁道工程 摘要:弹塑性力学研究可变形固体收到外力作用或温度变化的影响而产生的应力、应变和位移及其分布变化规律,本报告介绍基本的研究思想和方法,并选取有限元计算中的实例讨论岩土材料的本构模型选择对结果的影响。 关键字:弹塑性力学本构关系 1基本思想及理论 1.1科学的假设思想 人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。 1.1.1连续性假定 整个物体的体积都被组成物体的介质充满,不留下任何空隙。使得σ、ε、u 等量表示成坐标的连续函数。 1.1.2线弹性假定(弹性力学) 假定物体完全服从虎克(Hooke)定律,应力与应变间成线性比例关系。 1.1.3均匀性假定 假定整个物体是由同一种材料组成的,各部分材料性质相同。这样弹性常数(E、μ)等不随位置坐标而变化,取微元体分析的结果就可应用于整个物体。 1.1.4各向同性假定(弹性力学) 假定物体内一点的弹性性质在所有各个方向都相同,弹性常数(E、μ)不随坐标方向

弹塑性力学复习提纲和考试习题

《弹塑性力学》复习提纲 1. 弹性力学和材料力学在求解的问题以及求解方法方面的主要区别是什么? 研究对象的不同:材料力学,基本上只研究杆状构件,也就是长度远远大于高度和宽度的构件。非杆状结构则在弹性力学里研究 研究方法的不同:材料力学大都引用一些关于构件的形变状态或应力分布的假定,得到的解答往往是近似的,弹性力学研究杆状结构一般不必引用那些假定,得到的结果比较精确。并可用来校核材料力学得出的近似解。 2. 弹性力学有哪些基本假设? (1)连续性,(2)完全弹性,(3)均匀性,(4)各向同性,(5)假定位移和形变是微小的 3. 弹性力学有哪几组基本方程?试写出这些方程。 (1)平面问题的平衡微分方程: 平面问题的几何方程: 平面应力问题的物理方程: (在平面应力问题中的物理方程中将E换为,换为就得到平面应变问题的物理方程) (2)空间问题的平衡微分方程;

空间问题的几何方程; 空间问题的物理方程: 4. 按照应力求解和按照位移求解,其求解过程有哪些差别? (1)位移法是以位移分量为基本未知函数,从方程和边界条件中消去应力 分量和形变分量,导出只含位移分量的方程和相应的边界条件,解出位移分量,然后再求形变分量和应力分量。要使得位移分量在区域里满足微分方程,并在边界上满足位移边界条件或应力边界条件。 (2)应力法是以应力分量为基本未知函数,从方程和边界条件中消去位移 分量和形变分量,导出只含应力分量的方程和边界条件,解出应力分量,然后再求出形变分量和位移分量。满足区域里的平衡微分方程,区域里的相容方程,在边界上的应力边界条件,其中假设只求解全部为应力边界条件的问题。 5. 掌握以下概念:应力边界条件和位移边界条件;圣文南原理;平面应力与平 面应变;逆解法与半逆解法。 位移边界条件:若在部分边界上给定了约束位移分量和,则对于此边界上的每一点,位移函数u和v和应满足条件=,=(在 上) 应力边界条件:若在部分边界上给定了面力分量(s)和(s),则可以由边界 上任一点微分体的平衡条件,导出应力与面力之间的关系式。 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 平面应力问题:设所研究的物体为等厚度的薄板,在z方向不受力,外力沿z

相关文档