文档库 最新最全的文档下载
当前位置:文档库 › 空冷器配管设计规定最新版

空冷器配管设计规定最新版

空冷器配管设计规定最新版
空冷器配管设计规定最新版

中国石化集团兰州设计院标准

SLDI 333C06-2001

空冷器配管设计规定

2001-01-08 发布 2001-01-15 实施

中国石化集团兰州设计院

目录

第一章总则

第二章空冷器的布置

第三章空冷器的管道布置

第一章总则

第1.0.1条本规定适用于石油化工装置内引风式空冷器(见图1.0.1-1,图1.0.1-2)和鼓风式空冷器(见图1.0.1-3)的管道布置。

第1.0.2条空冷器的管道布置,除应执行本规定外,还应符合空冷器制造厂的安装技术要求。

图1.0.1-1 引风式空冷器管道布置

图1.0.1-2 引风式空冷器

图1.0.1-3 鼓风式空冷器

第二章空冷器的布置

第2.0.1条空冷器宜布置在装置的上风侧,见图2.0.1。

第2.0.2条两组空冷器应靠紧布置,不应留出间距,见图2.0.2。

第2.0.3条多组空冷器应靠近布置,若分开布置,间距应大于20米。见图2.0.3。

图2.0.3 多组空冷器的布置

第2.0.4条引风式空冷器与鼓风式空冷器布置在一起时,引风式空冷器应布置在鼓风式空冷器的常年最小频率风向的下风侧,见图2.0.4。

图2.0.4 引风式空冷器与鼓风式空冷器的相邻布置

第2.0.5条同类空冷器的管束应布置在同一高度。引风式空冷器与鼓风式空冷器布置在一起时,其管束高度不得一致,鼓风式空冷器的管束应布置得高些,见图2.0.5。

图2.0.5 引风式空冷器与鼓风式空冷器的联合布置

第2.0.6条空冷器与加热炉之间的距离不应小于15米。

第2.0.7条倾斜安装的斜顶式空冷器的通风面不应对着夏季的主导风向。

第2.0.8条安装在管廊上方的空冷器,其支腿的间距应和管廊柱的间距一致。

第2.0.9条输送操作温度高于340℃的液体物料泵或输送操作温度高于物料自燃点的泵不应安装在空冷器框架下方。

第2.0.10条输送的易燃物料泄漏时会形成蒸气团的泵不应安装在空冷器框架的下方。

第2.0.11条放热设备不宜放在空冷器框架的下方。

第2.0.12条顶部平台的设置应便于管束的检修以及百页窗角度的调节,见图1.0.1-3,图2.0.11。

第2.0.13条风机、电动机检修平台可按图1.0.1-3的方式设置,也可用管廊顶层作为该检修平台,见图2.0.12。如果按图1.0.1-3的方式设置检修平台时,管道应能在平台与管廊之间进、出管廊,见图1.0.1-1。

图2.0.12 鼓风式空冷器管道布置

第三章空冷器的管道布置

第3.0.1条空冷器的配管应考虑流体的均匀分配,当物料为气液两相流流体时,空冷器入口管道必须对称布置,当一个管箱的管口少于或等于六个时,从管箱中间进料,每侧只供三个管口,出口也同样设计。当管口多于六个时,每六个管口共用一个集合管,支管应伸入集合管内50毫米,见图3.0.1。如果采用上述配管方式,通常应将完整的空冷器入、出口管道布置图提供给工艺系统专业,以便确认该管道的布置是否满足工艺要求。

a. 管箱上有四个以下管口时

b. 管箱上有四~六个管口时

c. 管箱上有六个以上管口时详图A

图3.0.1 空冷器物料入口、出口管道布置

第3.0.2条当管道仪表流程图上已经表明空冷器入口和出口两相流体流量由阀门调节时,管道可以不按对称布置,但应将完整的空冷器入口和出口管道布置图提供给工艺系统专业,以便确认该管道的布置是否满足工艺要求。

第3.0.3条与空冷器管口相接的管道必须经过应力解析,并在布置上应有足够的柔性。其支架必须按应力解析的结果予以特殊考虑,并应将所有分配管施加于空冷器管口的荷载提供给有关专业,以便在最终设计中管道附加于空冷器管口的荷载在空冷器制造厂确定的许用荷载范围内。

第3.0.4条空冷器入、出口总管应顺物料流向由高向低倾斜布置,并在总管端部的适当位置设冷凝液捕集管。见图2.0.11、图3.0.4。

第3.0.5条当空冷器的管程为偶数时,物料入、出管口位于同一侧。此时,顶部管口的配管应使顶部平台上人行通道上的净空不得低于2.2米。见图1.0.1-1。

图3.0.4 鼓风式空冷器管道布置

第3.0.6条如果管架支承在空冷器框架的钢结构上时,应向有关专业提供上述支承点所承受的荷载及力的方向。

第 3.0.7条如果空冷器入口总管上装有防爆膜,则该防爆膜的支架不应支承在空冷器框架上,见图3.0.4。

第3.0.8条管道布置时要留出电缆汇线槽的位置。电缆汇线槽宜从风机检修平台下面管廊中部引入,

以避免进、出管廊的管道与其碰撞,见图3.0.8。

第3.0.9条空冷器周围的管道布置不应影响空冷器的检修及管束的吊装。

空冷器配管设计导则

空冷器配管设计导则 AIR COOLERS PIPING ARRANGMENT NOTES: 1.在空气冷却器(AIR FAN COOLER)中,被冷却流体在管路中应往下流。塔 槽顶部与空气冷却之进口端间,管路不可有POCKET; 2.在空气冷却器之流体为二相流时,入口需为对称配管; 3.空气冷却器之进口NOZZLE多于6小时,须先分二股进入,以使入口分配 均匀,四个以下的NOZZLE可同时由一侧进入; 4.进口端管线和其相接设备间的管线,在挠性允许范围内,愈短愈好; 5.进口管线常为高温,热膨胀量较大,且空气冷却之NOZZLE极为脆弱,故 特别考虑管线之挠性、应力、支撑问题; 6.空气冷却器在配置时,须考虑马达,风扇之维护,吊装空间; 7.空气冷却器之操作平台,在CROSS WALKWAY和CENTER WALKWAY之 宽度为760MM。两翼侧端之宽度MIN.为1,200MM,当空器冷却器之长度超过15M时,须另做一个CROSS WALKWAY; 8.在进出口端之维护平台其宽度为760MM,并须有爬梯和CROSS WALKWAY 相连接; 9.爬梯起点在地面,当操作平台高于3M,或爬梯起点于平台上,平台与平台 之高度超过2.4M时,皆须加GAGE以确保安全; 10.当须装置THERMOWELL CONNECTION和PRESSURE GATE时,尽可能 接近NOZZLE; 11.在空气冷却器进口端须加装一对FL’G以利于拆卸维护空气冷却器时之吊 装; 12.气体在MAIN HEADER中将会产生CONDENSATE,而使管路堵塞,故必须 将MAIN HEADER置于较AIR COOLER之INLET NOZZLE为高之地方,切不可妨碍维护、吊装空间; 13.为了减少压力降,从MANIFOLD至AIR COOLER NOZZLE.之管路可配置 呈直线,并且越短越好,如此才可推动AIR COOLER, 利用AIR COOLER 之CAP来吸收膨胀量; 14.栏杆和AIR COOLER之空间须保持150-200之距离,以利于维护操作; 15.在DOUBLE PASS之AIR COOLER中,OUTLET和INLET在同一侧时,则 须再详细考虑膨胀量之大小和方向,而决定是否可为直线配管(NOZZLE到HEADER), 或作LOOP来降低NOZZLE之受力; 16.利用HEADER BOX间之GAP还无法达到完全吸收其膨胀量时,可同时使 用COOL SPRING之方法来补助; 17.利用HEADER BOX之GAP来吸收管线热膨胀量时,GAP之大小必须依API 661CODE之规定,且须详细核对场上制造图及计算膨胀量。

空冷器样本

空冷式换热器 1.空冷器型号的说明 为方便用户,我公司空冷器型号均参照GB/T15386-97《空冷式换热器》编制。 1.1管束 1.1.1管束型号的表示方法: □□□□□□□/□□□□ 翅片管基管材料(见1.1.2) 法兰密封面形式(见表1) 管程数(用罗马数字表示) 翅片管形式(见表3) 翅化比(见表2) 管箱型式(见表1) 设计压力 管束换热面积 管排数 管束公称直径:长×宽m 管束型式(见表1) 1.1.2管束型式与代号见表 表1 管束型式与代号 翅片管基管材料:当选用碳钢时可缺省,当选用武汉市润之达石化设备有限公司S、Cl-腐蚀稀土合金材料09Cr2AlMoRE时标注D,12Cr2AlMoV时标注R,选用其的抗H 2 它材料也应标注。 标注示例: a.鼓风式水平管束:长9m、宽2m;6排管;基管换热面积140m2;设计压力4Mpa;可卸盖板式管箱;双金属轧制翅片管,翅化比23.4;Ⅵ管程;接管法兰密封面凹凸面;材料09Cr2AlMoRE,管束型号为:GP9×2-6-140-4.0K1-23.4/DR-VIMFMD。 b.引风式水平管束:长9m、宽3m;6排管;基管换热面积193m2;设计压力2.5Mpa;丝堵式管箱;L型翅片管,翅化比23.4;Ⅱ管程;接管法兰密封面环连接面;材料为碳钢的管束型号为:YP9×3-6-193-2.5S-23.4/L-ⅡRJ。

表2 翅化比及迎风面积比(参照JB/T4740-1997)

1.2构架 1.2.1构架型号表示方法: □□□□ 风箱型式(见表3) 风机直径×102mm/台数 构架公称尺寸长×宽m(对斜顶式构架为长×宽×斜边长) 开(闭)型 构架型式(见表3) 标注示例: a.鼓风式空冷器水平构架长9m、宽4m;风机直径3000mm,2台,方箱型风箱;闭式构架型号为:GJP9×4B-30/2F。 1.2.2型式与代号 表3 1.3风机 1.3.1风机型号表示方法: □□□□□□□ 电动机功率KW 风机传动方式(见表4) 叶片数(见表4) 叶片型式(见表4) 叶轮直径×102mm 风量调节方式(见表4) 通风方式(见表4) 标注示例: a.鼓风式,停机手动调角风机;直径2400mm、B型玻璃钢叶片;叶片数4个;悬挂式电动机轴朝上V带传动、电动机功率18.5KW的风机型号:G-TF24B4-Vs18.5 b.引风式,自动调角风机;直径3000mm、R型玻璃钢叶片;叶片数6个;悬挂式电动机轴朝上V带传动、电动机功率15KW的风机型号:Y-2FJ30R6-Vs15

空冷器

一、空冷器基础知识 1.什么是空冷器? 答:空气冷却器是以环境空气作为冷却介质,横掠翅片管外,使管内高温工艺流体得到冷却或冷凝的设备,简称“空冷器”,也称“空气冷却式换热器”。空冷器也叫做翅片风机,常用它代替水冷式壳-管式换热器冷却介质,水资源短缺地区尤为突出。 2.空冷器主要由哪几部分设备或部件构成? 答: 空冷器主要由管束、风机、构架及百叶窗所组成。 3.空冷器如何分类? 答:以空冷器冷却方式分类,可分为:干式空冷器,湿式空冷器,干-湿联合空冷器,两侧喷淋联合空冷器;以空冷器管束布置型式分类,可分为:水平式空冷器,斜顶式空冷器,立式空冷器,圆环式空冷器;以空冷器通风方式分类,可分为:自然通风式空冷器、鼓风式空冷器、引风式空冷器。 4.空冷器翅片管有那些型式? 答:空冷器翅片管有L型翅片管,LL型翅片管,G型(镶嵌式)翅片管,KL 滚花型翅片管,DR型双金属轧制翅片管,TC型椭圆管套矩形片翅片管,T60型板翅片翅片管等结构形式。 5.空冷器管箱有哪些型式? 答:空冷器管箱有丝堵型管箱,可卸盖板管箱,集合管式管箱,可卸帽盖板管箱,全焊接圆帽管箱,整体锻造管箱等结构形式。 6.空冷器的风机有哪些基本型式? 答: 引风式风机的优点有:1.气流分布均匀,2.噪音较小,3.管束下部空间可以利用,缺点有:1.风机安装在管束的上部,受管束高温的影响,不利于维护风机。2.经管束后进入风机的空气温度较高,故引风式比鼓风式消耗功率约大10%。3.管束需从下部检修,操作不方便。 8.鼓风式风机有哪些优缺点? 答: 鼓风式风机的优点有:1.易于产生湍流,对传热有利。2.操作费用较低。3.可以从上部检修管束,操作方便。缺点有:1.气流分布不均匀。2. 管束上部敞开容易受日光和雨水的影响。 二、设计

中石化配管设计规定(2001)

设计标准 SEPD 0001-2001 实施日期 2001年12月28日中国石化工程建设公司 配管设计规定 第 1 页共 22 页 目次 1 总则 1.1 目的 1.2 范围 2 管道布置 2.1 管道布置一般要求 2.2 管道净空高度和埋设深度 2.3 管道间距 2.4 管道跨距 2.5 工艺管道布置 2.6 泄放管道布置 2.7 取样管道布置 2.8 公用物料管道布置 3 阀门布置 3.1 阀门布置一般要求 3.2 止回阀布置 3.3 安全阀布置 3.4 调节阀布置 3.5 减压阀布置 3.6 疏水阀布置 4 管件和管道附件布置 4.1 管件布置 4.2 阻火器布置 4.3 过滤器布置 4.4 补偿器布置

5 管道上仪表布置 5.1 流量测量仪表布置 5.2 压力测量仪表布置 5.3 温度测量仪表布置 5.4 物位测量仪表布置 6 管道支吊架布置 6.1 管道支吊架设计一般要求 6.2 管道支吊架布置 1 总则 1.1 目的 为提高石油化工装置工程设计中管道的设计质量,特编制本标准。 1.2 范围 1.2.1 本标准规定了管道、阀门、管件和管道附件、管道上仪表以及管道支吊架等布置要求。 1.2.2 本标准适用于新建、扩建、改建的石油化工装置基础设计阶段进行配管研究的管道布置设计,以及详细设计阶段的管道布置设计。 2 管道布置 2.1 管道布置一般要求 2.1.1 管道布置设计的基本要求: a) 应符合管道及仪表流程图的要求; b) 应符合有关的标准; c) 管道布置应统筹规划做到安全可靠、经济合理、整齐美观,并满足施工、操作、维修等方面的要求; d) 对于需要分期施工的工程,其管道的布置设计应统一规划,力求做到施工、生产、维修互不影响; e) 在确定进出装置管道的方位与敷设方式时,应做到内外协调;

空冷器计算过程

空冷器计算过程 空冷器 空冷器换热效果好,结构简单,节约水资源,没有水污染等问题,比水冷更经济,故选用空冷器。 1.计算依据 (1)进出空冷器的流量和组成: 组分 (2)设计温度40℃ (3)进空冷器温度420℃,出空冷器温度80℃ (4)进出口压力0.06MPa(表压) (5)换热量Q=2.37×106KJ/h 2.设计计算(参考资料《化工装置的工艺设计》) 查《化工装置的工艺设计》表9-31得轻有机物的传热系数为10英热单位/英尺2.h. 换算为国际单位制:K=10×0.86×4.18=204.25KJ/m2.h.℃ 假设空气温升15.3℃ 按逆流:△t1=420-55.3=364.7℃ △t2=80-40=40℃ △tm1=146.91℃ 取温差校正系数Φ=0.8 △tm=△tm1.Φ=146.91×0.8=117.53℃ 则所需普通光管的表面积: A0=Q/K.△tm(4—1) =2.37×106/(204.25×117.53 =98.73m2 由(T2-T1)/K=1.86查《化工装置的工艺设计》图9-120得: 最佳管排数为n=6 又由n=6查表9-33得 迎面风速FV=165米/分 表面积/迎风面积=A0/F2=7.60 则:F2=A0/7.60=98.73/7.60=12.99m2 由F1= Q/(t2-t1)FV17.3 (4—2) 式中Q—换热量,Kcal/h

(t2-t1)—空气温升 FV—迎面风速,米/分 代入数据F1=2.37×106/(15.3×165×17.3=12.98m2 取ξ=0.01 F2-F1=12.99-12.98=0.01≤ξ 即空气出口温度假设合理 以光管外表面为基准的空冷器的换热面积为98.73m2 参考鸿化厂选φ377×12的换热管 管长L=98.73×4/π×0.3532=1010米 管内流速u=143.07×22.4×4/π×0.3532=2762.5m/h=9.2m/s u=9.2m/s符合换热管内流速范围15—30米/秒,故换热管选择合理空冷器规格及型号:φ377×1010 F=98.73m2 评价,未作翅片面积核算。。。

配管设计规定

配管设计规定 目录 1 总则……………………………………………………………………………………………… 1.1 适用范围……………………………………………………………………………………… 1.2 相关文件……………………………………………………………………………………… 1.3单位制………………………………………………………………………………………… 1.4符号和缩写词………………………………………………………………………………… 2 设计基础……………………………………………………………………………………… 2.1 管道设计基本点……………………………………………………………………………… 2.2 设计压力和设计温度………………………………………………………………………… 2.3 管道材料……………………………………………………………………………………… 2.4 腐蚀裕量……………………………………………………………………………………… 2.5 管道的公称尺寸……………………………………………………………………………… 3 管道系统的构成………………………………………………………………………………… 3.1 管道器材……………………………………………………………………………………… 3.1.1 管子………………………………………………………………………………………… 3.1.2 弯头、弯管和虾米弯………………………………………………………………………… 3.1.3 异径管……………………………………………………………………………………… 3.1.4 支管连接…………………………………………………………………………………… 3.1.5 法兰………………………………………………………………………………………… 3.1.6 阀门………………………………………………………………………………………… 3.1.7 端部密封…………………………………………………………………………………… 3.1.8 盲板………………………………………………………………………………………… 3.1.9 过滤器……………………………………………………………………………………… 3.2 管道的连接…………………………………………………………………………………… 3.3 管道材料等级变化…………………………………………………………………………… 3.4 管道的隔热…………………………………………………………………………………… 3.5 管道的涂漆…………………………………………………………………………………… 4 管道系统的配管设计…………………………………………………………………………… 4.1 概述…………………………………………………………………………………………… 4.1.1 管道走向…………………………………………………………………………………… 4.1.2 管道布置…………………………………………………………………………………… 4.1.3 管道坡度…………………………………………………………………………………… 4.1.4 管道柔性…………………………………………………………………………………… 4.1.5 管道的间距………………………………………………………………………………… 4.1.6 阀门的安装………………………………………………………………………………… 4.1.7 调节阀……………………………………………………………………………………… 4.1.8 止回阀……………………………………………………………………………………… 4.1.9 疏水阀……………………………………………………………………………………… 4.1.10 过滤器…………………………………………………………………………………… 4.1.11 补偿器…………………………………………………………………………………… 4.1.12 仪表……………………………………………………………………………………… 4.1.13 放空和放净……………………………………………………………………………… 4.1.14 管道支架…………………………………………………………………………………

石化空冷器

空气冷却器技术及设备 空气冷却器是以环境空气作为冷却介质,对管内高温流体进行冷却或冷凝的设备,它具有不需要水源,适用于高温、高压的工艺条件,使用寿命长,运转费用低等优点。随着水资源和能源的匮乏以及环保意识的增强,节水、节能、无污染的空气冷却器将会得到更广泛的应用。 一、空冷器的应用 与水作为冷却介质的传统工业冷却系统相比,空冷的优缺点如表1和表2所示。由表可见,在缺水地区(如沙漠地带)或水冷结垢和腐蚀严重的地区,适合采用空冷器。一般在下述条件下采用空冷比较有利。 (1) 热流体出口温度与空气进口温度之差>15℃。 (2) 热流体出口温度>60℃,其允许波动范围>5℃。 (3) 空气的设计气温<38℃。 (4) 有效对数平均温度差≥40℃。 (5) 管内热流体的给热系数<2300 W/(m2 *℃)。 (6) 热流体的凝固点<0℃。 (7) 管侧热流体的允许压降>10kPa,设计压力>100kPa。

二、空冷器的型式 空冷器由管束、风机、构架三个基本部分和百叶窗、风筒、喷淋装置、梯子、平台等辅助部分组成,每个管束有若干排三角形排列的管子,该管子一般是翅片管,也可以是光管。介质的流向通常是逆流,热流体从管束顶端流入,底部流出,空气由下向上流动,冷却热的工艺介质。另外还有风机、百叶窗、构架和风箱等部件,风机驱动空气流过管束,百叶窗通过调节进入空冷器的空气量来改善空冷器的调节和适应性能,构架是支撑管束、风机,百叶窗以及其它附属件的钢结构,风箱用于导流空气。空冷器按管束布置方式可分为水平式和斜顶式;按通风方式可分为鼓风式和引风式;按冷却方式可分为干式、湿式和干湿联合式。 2.1 管束 表3管束的型式与代号

空冷冷凝器设计

空冷冷凝器设计 摘要:冷凝器是各工业部门中重要的换热设备之一。换热器作为热量传递中的过程设备,在化工、冶金、石油、动力、食品、国防等工业领域中应用极为广泛。换热器性能的好坏,直接影响着能源利用和转换的效率。近年来,节能工作开始被全球所重视,而换热器特别是高效换热器又是节能措施中关键的设备。因此,无论是从上述各工业的发展,还是从能源的有效利用,换热器的合理设计、制造、选型和运行都有非常重要的意义。 本设计是关于管翅式空冷器的设计。主要内容是进行了冷凝器的工艺计算,结构设计和强度校核。设计内容首先是传热计算,主要是根据设计条件计算换热面积。其次是结构设计以确定各部件的尺寸。最后还包括是强度计算与校核,主要包括管箱结构与校核和支架的校核。 关于设计管翅式冷凝器的各个环节,在后面设计书中做详细的说明。 关键词:冷凝器;传热;结构;强度;管翅式换热器;

Design of Air-cooled Condenser Abstract:Condense is one of the most important heat exchanging equipments in industrial field. As a heat transfer in the processing equipment, exchanger is widely applied in chemical industry, metallurgy, oil, power, food, defense industry. In recent years, the problem of energy-saving is beginning to be regarded all over the world. And heat exchanger, particularly efficient heat exchanger,It is the key to energy-saving equipment. Therefore, whether from the foregoing the development of industry, or from efficient energy use, the reasonable heat exchanger design, manufacturing, selection and running all have very important significance. The manual is about the Finned tube condenser,which included process calculation , the structural design and intensity . The first part of this manual is the heat transfer’s calculation. Mainly, it is according to the given design conditions to estimate the heat exchanger area. Next is the structure design to determine the size of the components. Finally also including the strength calculation and checking, mainly including the Tube Box’s structure and the support checking. About the design of the Finned tube condenser,The detailed content is in the back of the design instructions. Key words: Condenser ; Heat transfer; Structure; Strength Finned tube exchanger

塔配管设计规定

设计标准 SEPD 0101-2001 实施日期2001年11月25日中国石化工程建设公司 塔配管设计规定 第 1 页共7 页 目 次 1 总则 1.1 范围 1.2 引用标准 2 塔配管 2.1 管口方位 2.2 主要管道布置 2.3 平台、梯子 2.4 管道支架 1 总则 1.1 范围 1.1.1 本标准规定了塔配管的管口方位、塔上主要管道的布置、塔平台及梯子和塔管道支架等设计要求。 1.1.2 本标准适用于石油化工装置中各种塔的配管设计。 1.2 引用标准 使用本标准时,应使用下列标准最新版本。 GB 50160 《石油化工企业设计防火规范》 SEPD 0204 《安全阀配管设计规定》 SEWS 0709 《装置消防竖管》

一般布置在平台的尽头,并尽量利用上、下平台的直梯观测和检修。 2.1.6 塔的液位计和液位调节器管口,不宜布置在进料或重沸器返回管口正对面60°范围之内。 2.1.7 塔顶气相管口一般设在塔顶中间,直径小的也可以塔侧面接出,其方位应与其

它附塔管道的布置综合考虑。 2.1.8 塔底出料管口应引出塔裙外,其方位应根据塔底泵或与其相连接的设备布置而定。 2.2 管道布置 2.2.1 对于大直径管道、高温管道、合金钢管道应优先考虑布置在合适的位置。 2.2.2 必须考虑垂直敷设管道与塔体的相对热伸长量,并应尽量利用管道的自然补偿予以吸收。 2.2.3 沿塔垂直敷设的管道与塔外壁的水平距离,宜按支架系列,靠近塔外壁布置,不加短管只用弯头,与管口相接的垂直管道可除外。管道穿越平台时,不应碰平台内、外圈角钢和平台梁。 2.2.4 塔顶管道一般有顶部出口管道、放空管道和安全阀管道。 2.2.4.1 塔顶气相出口管道应按步步低的要求布置,不应出现袋形,塔顶馏出线一般管径较大,应尽量沿塔壁敷设且不穿或少穿平台。 2.2.4.2 塔顶放空管道应符合GB 50160的规定,并在顶部管道最高处的水平管段上接出,排出口应远离操作面。安全线排放管道除执行放空管道的规定外,还应符合SEPD 0204的规定。 2.2.4.3 当设热旁路控制塔顶压力时,热旁路调节阀应布置在回流罐上部管道,应保温,并不得出现袋形。 2.2.5 侧面进、出塔管道上的阀门,宜直接与管口相接,或水平靠近管口安装。接管公称直径DN不小于150 mm的阀门,应加设支架,以支承阀门的重量。由于安装条件限制,且管内介质不易冻凝的管道上的阀门,也可安装在立管上。 2.2.5.1 一根管道在同一角度与两个或两个以上的管口连接时,应按图2.2.5.1 a) 的方法连接。只有当管道不会由于设备本体和管道之间的不同膨胀状况而受到过大的应力时,也可采用图2.2.5.1 b) 的连接方法,但一般不推荐这种方法。

最新R410A系统铜管要求

R410a系统冷媒配管 2.1 铜管及配件应有铜管厂家出具的合格证及复验报告。 2.2铜管除去表面缺陷后的实际壁厚应按照以下规定壁厚进行选取 注: 1.对于R410A空调的配管口径为Φ19.05,配管类型可自行决定。 2.冷媒管应使用磷脱氧铜材。 3.O材为软铜管(退火盘管),1/2H为硬铜管(直管)。 4.R410A的最大使用压力为4.30MPa,冷媒管应该确保在最大使用压力下的安全性。 2.3铜管存放 保存中的铜管是否已用端盖或胶带封口——此举可防止水分、垃圾、灰尘等异物进入配管 2.4.1铜管焊接操作及焊点检查 2.4.1.1硬钎焊的种类: ①磷铜钎焊钎焊温度735—840℃,不要焊接溶剂(铜对铜);②银钎焊钎焊温度700—845℃,耐酸性好。 2.4.1.2 作业注意事项: ①钎焊部位的清洁 ·磨光——去除连接部的金属原料。(去除氧化膜)(无纺布,研磨布,砂纸) ·脱脂——如有油污的话,用丙酮或酒精溶剂进行去油处理。 ②确认管与接头的间隙是否合适,铜管与接头间隙为0.05~0.21mm。 ③用惰性气体保护钎焊(氮气置换):钎焊时将氮气充入冷媒管保持0.5bar的压力(钎焊后应继续吹氮气直到铜管冷却方可。)充氮焊接不良则会产生氧化膜,造成系统堵塞,损坏压缩机。 ④钎焊:·加热:当表面呈红褐色的时候最佳,这时如果将钎焊接触一下间隙,就会被吸收进去。 ·必须由母材(铜管)的温度来熔化焊材,而不是由火焰直接熔化。 ·焊缝形成作业:铜管表面从暗红色向混暗红色变化。焊缝越大钎焊接头强度越大。 ⑤完工后检查以下内容:·焊缝部有无气孔和砂眼;有无明显的“钎料下垂”。

2.4.2. 冷媒配管设计范围 2.4.3 管道穿越墙孔位置及保护 2.4. 3.1 穿越墙孔时,必须在管道外设保护套管 2.4. 3.2 垂直布设的管道,穿越楼板的孔中的保护套管,应与楼板底平、楼板面高出2CM以上。2. 4.3.3 管道和保护套管之间的空隙用不燃的柔性材料封堵。 2.4. 3.4 铜管焊缝不得置于穿墙孔中。 2.4.4 弯管施工 2.4.4.1 手动弯管器加工(适合φ6.35-φ22.22);电动(液压)弯管器加工((适合φ6.35-φ41.28)。 2.4.4.2手动弯管的弯曲半径:大于100mm。 2.4.4.3防止局部弯曲过度(双手大拇指作支点,其余八个手指用力/支点移动,慢慢弯曲)。 2.4.5 扩口或翻边管子的外表 2.4.5.1 铜管的切割应尽量使用割管器切割,注意防止铜屑落入管内。 2.4.5.2 扩口后不得有歪斜、变形、裂口等缺陷。 2.4.5.3 胀管加工:同管径的铜管连接,应采用其一铜管一端胀管,另一铜管插入焊接作业。

第一分册华能空冷导则(印刷版)

中国华能集团公司火电工程设计导则第二部分 空冷系统 (第一分册) 中国华能集团公司 二OO七年五月

前言 为节约水资源、扩大装机容量、为电力工业可持续发展创造条件,进入21世纪以来,我国北方缺水地区建设了一大批空冷电站,由于我国还没有一部完整的空冷系统设计技术标准,大多数仍沿用国外纷杂的标准,形不成统一的体系,对华能集团电站空冷系统技术的发展带来诸多不便和不规范。近几年投产的空冷机组,暴露出一些问题,也取得了一些经验,为尽快规范华能集团空冷电站的建设,特编制《火力发电厂空冷系统设计导则》。 希望各单位向编者提供所积累的有关使用本导则的经验,指出可能产生的误解,指出缺点并提出改进建议。对所有这些信息经评估后可能最终用于本导则的补充或修订。 本导则由中国华能集团公司提出并归口。 中国华能集团公司审查人员:薛惠民、王自宽、王新宇、王利平、傅栓全、刘正强、吴建伟、杜广炯、徐明渊、王毓樟、刘蔚麟、张全海、王文忠、朱宝田、陈建功、刘欣、阎欣军、赵春莲。 本导则起草单位:山西省电力勘测设计院 本导则主要起草人员: 顾国新、张新海、李润森、刘月生、那小桃、姜保才、贾军刚、李勤民、马莉、李荣玲。

目次 前言 1 范围 2 引用标准 3 术语及定义 4 总则 5 空冷系统及设备 6 空冷机组机炉电匹配 7 汽轮机设备及系统 8 空冷电厂总体布置 9 空冷机组凝结水精处理系统及设备 10 电气设备及系统 11 空冷系统热工自动化 12 直接空冷土建结构 13 间接空冷土建结构 14 空冷系统防冻措施 15 直接空冷装置噪声防治 16 空冷装置有关防火规定 17 空冷设备招标文件编制及设备采购原则 18 性能考核

泵配管设计规定

设计标准 EM - PDW0111-2003 HFEC 北京华福工程有限公司 泵配管设计规定 第 1 页 共 9 页 1 总则 1.1 本规定适用于石油化工装置中泵的配管设计。公用设施和辅助设施中泵的配管设计也可参照执行。 1.2 当泵制造厂对其配管有特殊要求时,应满足制造厂要求。 2 一般规定 2.1 当泵布置在管廊下时,进出管廊的管道管底距地面净距除应满足泵的检修外,不宜小于 3.5m 。 2.2 输送腐蚀性介质的管道,不应布置在泵和电机的上方。 2.3 泵的配管要有足够的柔性,泵口承受的反力必须在允许范围内。输送高温或低温介质时,泵的配管要经应力分析,在热应力允许范围内配管形状应尽量简单。 2.4 泵的水平吸入管道要避免由于热膨胀而形成“袋形”。 2.5 泵的吸入管道应满足泵所需净正吸入压头(NPSH ),管道尽可能短和少拐弯。从设备至泵的吸入管道较长时,应由工艺系统专业进行管道阻力降核算。 2.6 当泵入口管道和泵管口直径不同,而PID 又无特殊要求时,泵入口阀门的公称直径应不小于表2.6的规定。 2.7 当泵出口管道的直径比泵管口大时,泵出口阀门的直径至少比泵管口大一级。 2.8 配管时要考虑泵的拆卸,公称直径小于或等于40mm 的承插焊管道,在适当的位置需设置拆卸法兰。 2.9 表2.6 泵入口阀门的公称直径mm 管道公称直径DN 泵管口公称直径 DN 15 20 25 40 50 80 100 150 200 250 300 15 15 20 20 25 40 20 20 25 25 40 25 25 40 40 50 32 40 40 50 80 40 40 50 50 80 50 50 80 80 100 65 80 80 100 150

安全阀配管设计规定

- - . 目次 1 总则 1.1 范围 1.2 引用标准 2 配管设计 2.1 一般要求 2.2 安全阀入口管道设计 2.3 安全阀出口管道设计 1 总则 1.1 范围 1.1.1 本标准规定了安全阀安装的一般要求,以及安全阀入口和出口管道的配管设计要求。 1.1.2 本规定适用于石油化工装置内设备和管道上安全阀的配管设计。 1.2 引用标准 使用本标准时,应使用下列标准最新版本。 GB50160 《石油化工企业设计防火规范》 GB50316 《工业金属管道设计规范》 SH3012 《石油化工管道布置设计通则》 2 配管设计 2.1 一般要求 2.1.1 安全阀及其进出口管道的布置,应符合GB50316、SH3012中有关安全阀的布置要求。 2.1.2 设备和管道上的安全阀必须垂直向上安装,若以其它方式安装将会影响正常工作。 - - 考试资料

2.1.3 安全阀尽可能直接安装在被保护设备的管口上或靠近该设备出口的管道上,以便流动状态下介质易进入安全阀。 2.1.4 有些情况下被保护设备的压力源存在压力波动现象(如压缩机出口管上的阀门),其波峰值接近安全阀的设定压力值,安全阀必须安装在远离压力源且压力较平稳的地方。 2.1.5 安全阀应安装在减压阀、孔板与流量计喷嘴、弯头等产生涡流区元件的下游足够远的地方,以避免湍流影响。 2.1.6 安全阀应安装在易于调节、检查和维修的场所,阀门周围必须有足够的操作空间,并能从操作平台进行检修。 2.1.7安全阀不应安装在长的水平管道的末端,以避免杂质的积累和液体堵塞影响安全阀的工作。 2.1.8 大直径安全阀布置时考虑拆开后吊装的可能,必要时要设吊柱或其他吊装设施。 2.1.9 排放至密闭系统的安全阀,其排放介质是液体或可凝气体时,安全阀的安装位 上其他部件的安装和操作。 2.1.14 在往复式压缩机出口管道上设有脉动阻尼器或孔板并在其下游设置安全阀

配管设计工艺规范要求

配管件工艺规范 (发布日期:2005-08-30)a)范围 本规范适用于空调器配管件设计加工工艺。 b)相关标准 Q/TK02.001-2001a 房间空气调节器 c)内容 3.1 配管弯制工艺要求 3.1.1弯曲半径 现有的铜管加工设备弯曲半径: 表2

表3 注:芜湖工厂自动弯管φ16铜管最小弯曲半径R30,φ19铜管最小弯曲半径R35。 在设计过程中如果需要其它弯曲半径, 则可以用技术通知的形式请部装分厂增加模具或者发外加工该零、部件。 3.1.2配管连接的定位与焊接间隙 3.1.2.1配管的连接应考虑通过扩口,缩口或打定位点来保证配管连接的一致性。配管的焊接间隙为0.15-0.25mm。 表4

3.1.2.2配管的定位点标注尺寸如下: 表5 3.2 装配工艺的要求 1)对于冷暖机上的四通阀部件,在整机装配时阀冷凝器接管要和冷凝器输入管焊接,为防止焊接时的高温沿阀冷凝器接管传导至四通阀,要求阀冷凝器接管的展开总长度不小于150mm.。 2)冷暖分体机整机装配时,焊接冷凝器输入管时其焊口与四通阀的位置较近时,为避免四通阀被火焰烧到,设计时保证焊口在垂直高度上与四通阀的中心距离不小于50mm。 3) 当管端不加工而采用管件的内径与其他管连接时,如φ9.53×0.6与φ8管之间的连接,必须在管口标注内径尺寸。 4) 外径为φ3.2、长度低于300mm的辅助毛细管,为了便于装配,毛细管材料状态应为软态。 5) 因低压阀接管长短直接影响四通阀的高低、压缩机回气管与压缩机回气口的配合、压缩机排气管压缩机排气口的配合以及阀冷凝器接管与冷凝器输入管的配合,所以设计低压阀接管时,必须标注总高,便于弯管加工时控制总高度。 3.3 铜管规格,壁厚 (1) 配管规格(外径×壁厚) T2Mφ6×0.5 T2Mφ6×0.75 T2Mφ6.35×0.50 T2Mφ6.35×0.75 T2Mφ7×0.6 T2Mφ8×0.5 T2Mφ8×0.60 T2Mφ8×0.75 T2Mφ9.53×0.6 T2Mφ9.53×0.70 T2Mφ12.7×0.75 T2Mφ16×0.75 T2Mφ19×0.75 T2Mφ22×1.0 T2Mφ22×1.2 T2Mφ25×1.2 T2Mφ28×1.0 T2Mφ28.6×1.0 T2Mφ28.6×1.2 T2Mφ30×1.0 T2Mφ32×1.2 (2) 毛细管规格(外径×内径) T2Yφ2.2×0.9 T2Yφ2.5×1.1 T2Yφ2.5×1.3 T2Yφ2.5×1.5 T2Yφ3.2×1.7 T2Yφ3.2×1.9 T2Mφ3.6×2.1 T2Mφ4×3 T2Mφ5×3.5 T2Mφ3.6×2.4 T2Mφ4×2.7 为了保证铜管加工后在弯曲处的壁厚不至于太薄,有足够的强度,压缩机排气管,回气管等振动较大的配管(毛细管除外),弯曲变形较大的配管,一律选用壁厚为0.7∽1.0mm的铜管。其它配管一般选用壁厚为0.6mm的铜管。

空调铜管管径要求

空调铜管管径要求 1 编制目的: a. 介绍各种不同设计压力下冷媒系统配管壁厚选择计算方法和选择方法; b. 防止开发人员在进行管组设计选型时出现错误,造成批量问题。 2 参考资料: 引用文献:JIS B 8607 冷媒用喇叭口(flare )铜管以及焊接管(brazing )弯头 JIS H 3300 铜以及铜合金无接缝管 专家资料配管壁厚设计基准B-010 GB/T1804 制冷铜配管标准 3 适用的范围 这个设计选择标准,是针对一般的冷媒配管用铜管的种类、尺寸以及允许偏差而做的规定。另外,也适用于工厂组装品内部的冷媒配管。 (注) JIS B 8607 冷媒用喇叭口(flare )铜管以及焊接管(brazing )弯头,“工厂组装品内部的冷媒配管也是依照这个”来规定的。 4 配管的类别 配管的类别、根据最高使用压力(设计压力)来区分第1种、第2种以及第3种。 第1种:相当于R22(包括R407C, R404A, R507A)的设计压力(3.45MPa) 第2种:相当于R410A的设计压力件15MPa) 第 3 种:(4.7MPa)用 5 壁厚的计算公式

以日本冷冻保安规则关系为基准来求得的铜管(TP2M)必须厚度的计算公式、如下。 t = [( P >OD) /(2(T a + 0.8P)] + a (伽) t:必须的壁厚(伽) P:最高使用的压力(设计压力)(MPa) OD标准外径(伽) d a:在125C的基本许可应力(N /伽2) * d a = 33 (N /伽2) a :腐蚀厚度(伽)*但是,对铜管的话为0(伽)。 设计选择示例(TP2M :以下以O型(TP2M铜管设计为例 ①R22制冷系统排气管组壁厚选择,假设排气管组外径$ 19.05,其壁厚选择方法 如下: R22制冷系统排气侧最高压力取 3.45MPa,计算如下: 壁厚t = [(P x OD/ (2 d a + 0.8P)] + a (伽) =(3.45 X 19.05 ) / (2X 33+0.8 x 3.45 ) +0 =0.9558mm 取整,t=1.0mm。 注:国标GB/T1804规定$ 19.05的铜管壁厚V级偏差可以是土0.08mm这样如果供货厂家为节省成本,采用壁厚偏差-0.08mm来生产管组,则其壁厚就会选取为0.92mm了,这样由 计算结果可知,该管组在设计压力为 3.45MPa时,就会有裂管的隐患了。这时必须通过适当 增加铜管壁厚来保证该管组不会爆裂,或者在技术要求中明确规定管组壁厚在适当的偏差内,即偏差范围在(-0.4 , +0.08 ) mm内,以免除管组爆裂隐患。 实际上,一般设计的R22制冷系统最高压力不会超过 3.0MPa,以3.0MPa为设计压 力, $ 19.05 作为高压侧铜管时的壁厚,计算如下: 壁厚t = [( PX OD/ (2 d a + 0.8P)] + a (伽) =(3.0x19.05)/(2x33+0.8x3.0)+0 =0.8355mm 取整t=0.9mm,其壁厚偏差可以定在(-0.06 , +0.08 ) mm内,如果t取1.0mm,就按照国标GB/T1804规定不必考虑壁厚偏差了。

空冷器配管设计规定

中国石化集团兰州设计院标准 SLDI 333C06-2001 空冷器配管设计规定 2001-01-08 发布 2001-01-15 实施 中国石化集团兰州设计院

目录 第一章总则 第二章空冷器的布置 第三章空冷器的管道布置

第一章总则 第1.0.1条本规定适用于石油化工装置内引风式空冷器(见图1.0.1-1,图1.0.1-2)和鼓风式空冷器(见图1.0.1-3)的管道布置。 第1.0.2条空冷器的管道布置,除应执行本规定外,还应符合空冷器制造厂的安装技术要求。 图1.0.1-1 引风式空冷器管道布置 图1.0.1-2 引风式空冷器

图1.0.1-3 鼓风式空冷器 第二章空冷器的布置 第2.0.1条空冷器宜布置在装置的上风侧,见图2.0.1。 第2.0.2条两组空冷器应靠紧布置,不应留出间距,见图2.0.2。 第2.0.3条多组空冷器应靠近布置,若分开布置,间距应大于20米。见图2.0.3。 图2.0.3 多组空冷器的布置

第2.0.4条引风式空冷器与鼓风式空冷器布置在一起时,引风式空冷器应布置在鼓风式空冷器的常年最小频率风向的下风侧,见图2.0.4。 图2.0.4 引风式空冷器与鼓风式空冷器的相邻布置 第2.0.5条同类空冷器的管束应布置在同一高度。引风式空冷器与鼓风式空冷器布置在一起时,其管束高度不得一致,鼓风式空冷器的管束应布置得高些,见图2.0.5。 图2.0.5 引风式空冷器与鼓风式空冷器的联合布置 第2.0.6条空冷器与加热炉之间的距离不应小于15米。 第2.0.7条倾斜安装的斜顶式空冷器的通风面不应对着夏季的主导风向。 第2.0.8条安装在管廊上方的空冷器,其支腿的间距应和管廊柱的间距一致。 第2.0.9条输送操作温度高于340℃的液体物料泵或输送操作温度高于物料自燃点的泵不应安装在空冷器框架下方。 第2.0.10条输送的易燃物料泄漏时会形成蒸气团的泵不应安装在空冷器框架的下方。 第2.0.11条放热设备不宜放在空冷器框架的下方。 第2.0.12条顶部平台的设置应便于管束的检修以及百页窗角度的调节,见图1.0.1-3,图2.0.11。 第2.0.13条风机、电动机检修平台可按图1.0.1-3的方式设置,也可用管廊顶层作为该检修平台,见图2.0.12。如果按图1.0.1-3的方式设置检修平台时,管道应能在平台与管廊之间进、出管廊,见图1.0.1-1。 图2.0.12 鼓风式空冷器管道布置

HTRI空冷器教程

HTRI7 教程01界面熟悉 1.双击快捷图标,打开程序界面: HTRI启动界面

2.创建一个“新的空冷器” 3.设置自己熟悉的一套单位制,比如MKH公制,也可以通过来自定义。

4.接下来就是将界面中的“红框”也就是缺少的参数按你将要设计的工况填写完整,包括如下几部分的数据, 4.1 “Process”工艺条件:包括热流体侧和空气侧; 4.2 “Geometry”机械结构:包括管子、管束、风机等;

5.当输入数据足够所有的红框消失,那么初步的输入就完成了,可以点击"绿灯"图标运行。 02工艺参数输入 1.点击左边目录栏的“Process”标签,右边显示的就是供工艺参数输入的界面:

2.我们从上到下依次来看需要输入的参数:*为必要输入参数 2.1 Fluid name –流体名称,这里没有红框,不是必须输入的,就是自己定义下流体描述比如“Propylene”“Oil”“Wet Air”等,要注意的是程序对中文字符 不支持,那么大家多写写英文就是了~ 2.2 Phase/Airside flow rate units –流体相态/空气侧的流量单位

*2.3 Flow rate –流量不必多解释,热侧为质量流量。 2.4 Altitude of unit(above sea level) –海拔高度 *2.5 Temperature –流体的温度,单位°C (SI,MKH), °F(US),这里要注意的是想输入0度,那么请填 0.001,不然0或0.0的输入都将被程序认为是没有输入(这个原则在HTRI程序的其他地方也适用)。 2.6 Weight fraction vapor –重量气相分率,那么全气相就是1,全液相就是0咯。 2.7 Pressure reference –压力参照点,就是接下来你输入的操作压力值指的是进口压力还是出口压力。 2.8 Pressure–操作压力。 2.9 Allowable pressure drop –允许压降,按照工艺条件来选择,一般热流体侧用kPa比较直观,而空气侧常常使用mmH2O。

SEPD 0401-2001 放空、放净配管设计规定

设计标准 SEPD 0401-2001 实施日期 2001年10月25日中国石化工程建设公司 放空、放净配管设计规定 第 1 页共 6 页 目次 1 总则 2 一般规定 3 放空、放净管的安装 4 管道上放空、放净口的尺寸 5 放空、放净管端部连接型式 1 总则 1.1 范围 本规定适用于石油化工装置的管道和容器设备上的放空、放净配管设计。 本规定不适用于机械设备本体、非金属容器设备及管道、埋地管道上的放空、放净配管设计。 1.2 工程设计有特殊要求和规定时,应按工程规定进行设计。 2 一般规定 2.1 除PID中要求放空、放净外,在管道布置中形成的高、低点,应根据操作和 维修的需要设置高点放空、低点放净。但公称直径小于或等于40mm的管道,可不设高点放空。 2.2 氢气管道上不宜设置高点放空、低点放净。 2.3 对全厂性的工艺、冷凝水和水管道(非埋地管),在历年最冷月份平均温度高于0℃的地区,应少设低点放净;低于或等于0℃地区,应在适当位置设低点放净。 2.4 全厂性管道的低点放净如允许直接排放时,可在主管底部接出短管加法兰盖密封。 2.5 公用物料管道的末端应设置低点放净口,以利于放净和吹扫。 2.6 蒸汽主管(干管)的放净设施应包括分液包、切断阀和疏水阀。 2.7 允许向大气排放的非可燃气体放空管高度应符合下列规定:

2.7.1 容器设备或管道上的放空管口应高出邻近的操作平台面2m以上; 2.7.2紧靠建、构筑物或其内部布置的容器设备或管道的放空管口应高出建、构筑物最高层楼面、操作平台2m以上。 2.8 安全泄压装置的出口介质允许向大气排放时,放空管应按下列要求布置: 2.8.1 放空管口不得朝向邻近设备或有人通过的地区; 2.8.2 放空管口的高度应高出以安全泄压装置为中心、半径为8m范围内的最高操作平台3m. 2.9 对有毒、可燃介质应按工程规定引至指定的收集系统、火炬系统或放空场所。当几根支管合并成一根集合管向总管排放时,集合管的截面积应不小于几根支管截面积之和。排放阀出口管道不得小于阀门出口的直径,并由工艺系统专业根据实际配管核算放空、放净的压力降,使之适应泄放系统的要求。

相关文档
相关文档 最新文档