文档库 最新最全的文档下载
当前位置:文档库 › 遗传算法笔记——4

遗传算法笔记——4

遗传算法笔记——4
遗传算法笔记——4

第四章遗传算法的高级实现技术

4.1 倒位算子

4.1.1 倒位操作

所渭倒位操作(Iwerse〔)Per班ion)是指颠倒个体编码串中随机指定的二个基因座之间的基因排列顺序,从而形成一个新的染色体。倒位操作的具体过程是:

[1]在个体编码串中随机指定二个基因座之后的铰胃为倒位点;

(2)以倒位概率入颠倒这二个例位点之间的基因排列顺序。

4.2 二倍体与显性操作算于

4.2.1 二倍体结构的生物基础

一是二倍体的记亿能力,它使得生物能够记忆以前所经历过的环境及变化,使得生物的遗传进化过程能够快速地适应环境的变化。这个特点在遗传算法中的应用意义就在于.使用二倍体结构的遗传算法能够解决动态环境下的复杂系统优化问题.而常规的遗传算法却不能很好地应川于动态环境,它难于跟踪环境的动态变化过程。

二是显性操作的鲁棒性.它使得即使随机选择了适应度不高的个体,而在显性操作的作用下,能够用其另一同派染色体对其进行校正,从而避免这个有害选择所带来的不利之处。这个持点应用于遗传算法中.能有利于提高遗传算法的运算效率,维护好的搜索群体。

4.2.2 二倍体结构在遗传算法中的实现方案

这样,使用双倍体的遗传算法可描述如下;

1.初始化.并设置进化代数计数器初值。

2.随机产生具有二倍体结构的初始群体P(t)。

3.对初姑群体P(t)进行显性操作。

4.评价韧姑群钵P(t)中各个个体的适应度。

5.交叉操作:由每两个随机配对的2个体进行交又操作时,共可产生四个单倍休个体

6.变异操作:在对群体中的各个个体进行变异操作时*需要考虑隐性基因的作用。

7.对群体P”(t)进行显性操作。

8.评价群体P”(t)中各个个体的适应度。

9.个体选择、复制操作:。

10.终止条件判断。若不满足终上条件,则:转到第5步,继续进行进化操作过程;苦

满足终止条件,则:输出当前最优个体,算法结束。

应用实践表明,对于静态优化问题,与使用单倍体的遗传韵法相比,使用双倍体的遗传算法并不能改善多少求解性能。但对于动态系统的优化问题,使用单倍体的遗传算法很难达到优化要求,因为它跟踪不了动态环境的变化过程,此时,使用双倍体的遗传算法却能表现出较好的应用效果。

4.3 变氏度染色体遗传算法

4.3.1 变长度染色体遗传算法的编码与解码

对变长度染色体进行解码处理时,在正常指定情况下,将变长度染色体遗传算法中的个体基因型转换为常规遗传算法中的个体基因型时不会有什么问题,而在过剩指定或缺省指定时,就会产生描述过剩或描述不足的问题,此时可按下述规则来进行解码处理:

(1)描述过剩时的解码方法。此时,常规遗传算法中的一个基内座可能在变长度染

色体个同时有几个对应的::元组,规定取最左边的二元组来进行解码。

2)捞述不足时的解码方法。此时,常规遗传算法中有些基因座上的基因值未被在变

长度染色体中明确地指定,这时可规定它们取某—顶先设定的标难值(或缺省值)。

4.3.2 切断算子与拼接算子

变长度染色体遗传算法除F使用常规遗传算法中的选择其子和变异算子之外,

不再使用通用的交叉舅子,而代之以使用下述的切断算子和拼接算子,以它们作为产生新个体的主要遗传算子。

1.切断算子

切断算子以某一预先指定的概率,在变长度染色体中随机选择一个基因座,在该处将个体的基因型切断,使之成为二个个体的基因型。

2.拼接算子

拼接算子以某一顶先指定的概率,将2个个体的基因型连接在一起,使它们合并为一个个体的基因型。

4.3.3 变长度染色体遗传算法的算法结构

变长度染色体遗传算法的算法结构可描述如下

1.初始化。随机产生M个染色体.长度全部为k的个体,以它们作为变长度遗

传算法的初始个体集合P(o),其中k为根据问题的不同而设定的一个参数,并

且k<l。

2.适应度评价。对变长度的染色体进行解码处理后,评价或计算各个个体的适应

度。

3.基本处理阶段。对群体P(t)施加选择算子,以保留适应度较高的个体*

4.并列处理阶段。对群体P(t)施加变异算子、切断算于和拼接算于,以生成新的

个体。

5.重复策②一④步,直到满足终止条件为止。

4.4 小生境遗传算法

4.1 小生境与遗传算法

在用遗传算法求解多峰值函数的优化计算问题时,经常是只能找到个别的几个最优解,甚全往什得到的是局部最优解,而有时希望优化算法能够找出问题的所有最忧解,包括局部最优解和全局最优解。基本遗传算法对此无能为力。既然作为遗传算法模拟对象的生物都有其特定的生存环境,那么借鉴此概念,我们也可以让遗传算法户的个体在一个特定的生存环境中进化,即在遗传算法中可以引进小生境的概念,从而解决这类问题,以找出更多的最优解。4.4.2 遗传算法中小生境的实现方法

遗传算法中模拟小生境的方法主要有以下几种。

1基于预选择的小生境实现方法

这种实现方法的基本思想是:仅当新产生的子代个体的适应度越过其父代个体的适应度时、所产生出的子代个体才能替换其父代个体而遗传到下一代群体中,否则父代个体仍保留在下—代群体中。由于子代个体和父代个体之间编码结构的相似性,所以这种实现方法替换掉的只是一些编码结构相似的个体,故它能够有效地维持群体的多样性.并造就小生境的进化环境。

2。基于排挤的小生境实现方法

排挤的思想源与在一个有限的生存空间中,各种不同的生物为了能够延续生存,它们之间必须相互竞争各种有限的生存资源。这种实现方法的基本思想是:设置一排挤因子CF,由群体中随机选取的1/CF个个体组成排挤成员.然后依据新产生的个体与排挤成员的相似性来排挤掉一些与排挤成员相类似的个体。这里,个体之间的相似性可用个体编码串之间的海明距离来度量。随着排挤过程的进行.群体中的个体逐渐被分类,从而形成各个小的生存环境.并维持了群体的多样性。

3.基于共享函数的小生境实现方法

这种实现方法的基本思想是:通过反映个体之间相似程度的共享函数来调整群体中各个个体的适应度,从而在这以后的群体进化过程中.算法能够依据这个调整后的新适应度来进

行选择运算,以维护群体的多样性,创造出小生境的进化环境。

4.4。3 小生境遇传算法在多峰值函数全局最优化中的应用

首先两两比较群体中各个个体之间的距离,着这个距离在预先指定的距离L之内的话,再比较两者之间的适应度大小,并对其中适应度较低的个体施加一个较强的罚函数,极大地降保其适应度,这样,对于在预先指定的某一距离L之内的两个个体,其小较差的个体经处理后其适应度变得更差,它在后面的进化过程d4被淘汰掉的概率就极大。也就是说,在距离L之内将只存在个优良的个体,从而既维护丁群体的多样性,又使得各个个体之间保持一定的距离,并使得个体能够在整个约束空间中分散开来.这样就实现f一种小生境遗传算法。

这个小生境遗传算法可描述如下:

4.5 混合遗传算法

4.5.1 混合遗传算法的思想

遗传算法的应用中也会出现一些不尽人意的问题,这些问题中最主要的是它容易产生早熟现象、局部寻优能力较差等c并且一般来说,对很多问题而言,基本遗传算法的求解效果往往不是解决这个问题的最有效的方法.它比专门针对该问题的知识型启发算法的求解效率要差,虽然这种知识型启发算法并保证不了一定能够找到问题的最优解。另外,遗传算法也无法避免多次搜索同一个可行解,这也是影响遗传算法运行效率的一个因素:另一方面,梯度法、爬山法、模拟退火算法、列表寻优法等—”些优化算法却具有很强的局部搜索能力,而另——些含有问题与相关知识的启发式算法的运行效率也比较高。可以顶汁,在遗传贸法的搜索过程中融合这些优化方法的思想、构成一种混合遗传播法是提高遗传算法运行效率和求解质量的一个有效手段。

4.5.2 混合适传算法的基本构成原则

在构成混合遗传算法时,下面的三条基本原则:

(1)尽量采用原有算法的编码。这样就便于利用原有算法的关知识,也便于实现混合遗传算法。

(2)利用原有算法的优点。这样就可保证由混合遗传算法所求到的解的质量不会低

MATLAB实验报告-遗传算法解最短路径以及函数最小值问题

硕士生考查课程考试试卷 考试科目:MATLAB教程 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:20 年月日午时至时

《MATLAB教程》试题: A、利用MATLAB设计遗传算法程序,寻找下图11个端点的最短路径,其中没有连接的端点表示没有路径。要求设计遗传算法对该问题求解。 a c d e f h i k 1 2 1 6 8 3 1 7 9 4 6 7 2 9 4 2 1 1 B、设计遗传算法求解f(x)极小值,具体表达式如下: 要求必须使用m函数方式设计程序。 C、利用MATLAB编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D、结合自己的研究方向选择合适的问题,利用MATLAB进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: A 一、问题分析(10分) 1 2 3 4 5 6 8 9 10 11 1 2 1 6 8 3 1 7 9 4 6 7 2 9 4 2 1 1 如图如示,将节点编号,依次为 1.2.3.4.5.6.7.8.9.10.11,由图论知识,则可写出其带权邻接矩阵为: 0 2 8 1 500 500 500 500 500 500 500 2 0 6 500 1 500 500 500 500 500 500 8 6 0 7 500 1 500 500 500 500 500 1 500 7 0 500 500 9 500 500 500 500 500 1 500 500 0 3 500 2 500 500 500 500 500 1 500 3 0 4 500 6 500 500 500 500 500 9 500 4 0 500 500 1 500 500 500 500 500 2 500 500 0 7 500 9 500 500 500 500 500 6 500 7 0 1 2 500 500 500 500 500 500 1 500 1 0 4 500 500 500 500 500 500 500 9 2 4 0 注:为避免计算时无穷大数吃掉小数,此处为令inf=500。 问题要求求出任意两点间的最短路径,Floyd算法采用的是在两点间尝试插入顶点,比较距离长短的方法。我思考后认为,用遗传算法很难找到一个可以统一表示最短路径的函数,但是可以对每一对点分别计算,然后加入for循环,可将相互之间的所有情况解出。观察本题可发现,所有节点都是可双向行走,则可只计算i到j的路径与距离,然后将矩阵按主对角线翻折即可得到全部数据。二、实验原理与数学模型(20分) 实现原理为遗传算法原理: 按所选择的适应度函数并通过遗传中的复制、交叉及变异对个体进行筛选,使得适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。 数学模型如下: 设图由非空点集合和边集合组成,其中 又设的值为,故可表示为一个三元组 则求最短路径的数学模型可以描述为:

实验六:遗传算法求解TSP问题实验分析

实验六:遗传算法求解TSP问题实验 一、实验目的 熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。用遗传算法对TSP问题进行了求解,熟悉遗传算法地算法流程,证明遗传算法在求解TSP问题时具有可行性。 二、实验内容 参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。 对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。 增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。 1. 最短路径问题 所谓旅行商问题(Travelling Salesman Problem , TSP),即最短路径问题,就是在给定的起始点S到终止点T的通路集合中,寻求距离最小的通路,这样的通路成为S点到T点的最短路径。 在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。遗传算法方法的本质是处理复杂问题的一种鲁棒性强的启发性随机搜索算法,用

遗传算法解决这类问题,没有太多的约束条件和有关解的限制,因而可以很快地求出任意两点间的最短路径以及一批次短路径。 假设平面上有n个点代表n个城市的位置, 寻找一条最短的闭合路径, 使得可以遍历每一个城市恰好一次。这就是旅行商问题。旅行商的路线可以看作是对n个城市所设计的一个环形, 或者是对一列n个城市的排列。由于对n个城市所有可能的遍历数目可达(n- 1)!个, 因此解决这个问题需要0(n!)的计算时间。假设每个城市和其他任一城市之间都以欧氏距离直接相连。也就是说, 城市间距可以满足三角不等式, 也就意味着任何两座城市之间的直接距离都小于两城市之间的间接距离。 2. 遗传算法 遗传算法是由美国J.Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。通过模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。遗传算法在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。其假设常描述为二进制位串,位串的含义依赖于具体应用。搜索合适的假设从若干初始假设的群体集合开始。当前种群成员通过模仿生物进化的方式来产生下一代群体,如随机变异和交叉。每一步,根据给定的适应度评估当前群体的假设,而后使用概率方法选出适应度最高的假设作为产生下一代的种子。

自适应遗传算法讲解学习

自适应遗传算法

自适应遗传算法 一.主要流程: 1. 参数的初始化。设定遗传种群规模N ,阵元数M ,信源数P 等。 2. 编码。采用十进制编码方法。 3. 初始种群的产生。随机数生成。 4. 适应度函数的评价。选取 ()() R P ΘA )tr f = (1) 其中, H 1H )(A A A A P A -= (2) P A 是A 的投影矩阵,A 是阵列流型。 ∑==L i L 1 H 1XX R ) (3) R )是数据协方差矩阵的最大似然估计。 5. 选择。比例选择方法与精英选择方法结合使用,在当代种群中选择优良个体遗传到下一代。既保证了种群的多样性,也使最优个体得以保留。 1)比例选择方法(赌轮盘法):每个个体被选中的概率与它的适应度函数值大小成正比,即适应度函数越高的个体被选中的概率也就越高。 2)精英选择方法:让种群中适应度函数值最高的个体不进行配对交叉,直接复制到下一代中。但是容易陷入局部最优解,全局搜索能力差。 6. 交叉。按照概率P c 对种群中个体两两配对,进行交叉操作。本文中选取算数交叉的方式。 算数交叉:是由两个个体的线性组合来产生新的个体,假设第t 代的两个个体为A (t)、B (t),则算数交叉后产生的新个体是

()()()()t t t A B A αα-+=+11 (4) ()()()()t t t B A B αα-+=+11 (5) 其中,α选取(0,1)之间的随机数。 交叉概率:使交叉概率随着遗传代数的增长,逐渐减小,目的是进化前期注重交叉运算,全局搜索能力强。 2.02cos *4.0+?? ? ??*=πK T P c (6) 其中,T 是进化代数,K 是总进化次数。 7. 变异。按照概率P m 对种群个体进行变异。本文中选取均匀变异的方式。 均匀变异:如某基因座上的基因值为X k ,其取值范围为[Umin,Umax],对其进行变异后的值为 )U -r(U +U =X min max min k (7) 其中,r 选取[0,1]之间的随机数。 变异概率:使变异概率随着遗传代数的增长,逐渐增加,目的是进化后期注重变异运算,局部搜索能力强。 005.02sin *045.0+?? ? ??*=πK T P m (8) 其中,T 是进化代数,K 是总进化次数。 8. 终止条件判断。若已达到设定的最大遗传代数,则迭代终止,输出最优解;若不满足终止条件,则返回第4步,进行迭代寻优过程。

遗传算法——耐心看完-你就掌握了遗传算法【精品毕业设计】(完整版)

遗传算法入门到掌握 读完这个讲义,你将基本掌握遗传算法,要有耐心看完。 想了很久,应该用一个怎么样的例子带领大家走进遗传算法的神奇世界呢?遗传算法的有趣应用很多,诸如寻路问题,8数码问题,囚犯困境,动作控制,找圆心问题(这是一个国外网友的建议:在一个不规则的多边形中,寻找一个包含在该多边形内的最大圆圈的圆心。),TSP问题(在以后的章节里面将做详细介绍。),生产调度问题,人工生命模拟等。直到最后看到一个非常有趣的比喻,觉得由此引出的袋鼠跳问题(暂且这么叫它吧),既有趣直观又直达遗传算法的本质,确实非常适合作为初学者入门的例子。这一章将告诉读者,我们怎么让袋鼠跳到珠穆朗玛峰上去(如果它没有过早被冻坏的话)。 问题的提出与解决方案 让我们先来考虑考虑下面这个问题的解决办法。 已知一元函数: 图2-1 现在要求在既定的区间内找出函数的最大值。函数图像如图2-1所示。 极大值、最大值、局部最优解、全局最优解

在解决上面提出的问题之前我们有必要先澄清几个以后将常常会碰到的概念:极大值、最大值、局部最优解、全局最优解。学过高中数学的人都知道极大值在一个小邻域里面左边的函数值递增,右边的函数值递减,在图2.1里面的表现就是一个“山峰”。当然,在图上有很多个“山峰”,所以这个函数有很多个极大值。而对于一个函数来说,最大值就是在所有极大值当中,最大的那个。所以极大值具有局部性,而最大值则具有全局性。 因为遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fitness function)来衡量这个解决方案的优劣。所以从一个基因组到其解的适应度形成一个映射。所以也可以把遗传算法的过程看作是一个在多元函数里面求最优解的过程。在这个多维曲面里面也有数不清的“山峰”,而这些最优解所对应的就是局部最优解。而其中也会有一个“山峰”的海拔最高的,那么这个就是全局最优解。而遗传算法的任务就是尽量爬到最高峰,而不是陷落在一些小山峰。(另外,值得注意的是遗传算法不一定要找“最高的山峰”,如果问题的适应度评价越小越好的话,那么全局最优解就是函数的最小值,对应的,遗传算法所要找的就是“最深的谷底”)如果至今你还不太理解的话,那么你先往下看。本章的示例程序将会非常形象的表现出这个情景。 “袋鼠跳”问题 既然我们把函数曲线理解成一个一个山峰和山谷组成的山脉。那么我们可以设想所得到的每一个解就是一只袋鼠,我们希望它们不断的向着更高处跳去,直到跳到最高的山峰(尽管袋鼠本身不见得愿意那么做)。所以求最大值的过程就转化成一个“袋鼠跳”的过程。下面介绍介绍“袋鼠跳”的几种方式。 爬山法、模拟退火和遗传算法 解决寻找最大值问题的几种常见的算法: 1. 爬山法(最速上升爬山法): 从搜索空间中随机产生邻近的点,从中选择对应解最优的个体,替换原来的个体,不断重复上述过程。因为只对“邻近”的点作比较,所以目光比较“短浅”,常常只能收敛到离开初始位置比较近的局部最优解上面。对于存在很多局部最优点的问题,通过一个简单的迭代找出全局最优解的机会非常渺茫。(在爬山法中,袋鼠最有希望到达最靠近它出发点的山顶,但不能保证该山顶是珠穆朗玛峰,或者是一个非常高的山峰。因为一路上它只顾上坡,没有下坡。) 2. 模拟退火: 这个方法来自金属热加工过程的启发。在金属热加工过程中,当金属的温度超过它的熔点(Melting Point)时,原子就会激烈地随机运动。与所有的其它的物理系统相类似,原子的这种运动趋向于寻找其能量的极小状态。在这个能量的变

遗传算法实验报告(仅供参照)

人工智能实验报告

遗传算法实验报告 一、问题描述 对遗传算法的选择操作,设种群规模为4,个体用二进制编码,适应度函数,x的取值区间为[0,30]。 若遗传操作规定如下: (1)选择概率为100%,选择算法为轮盘赌算法; (2)交叉概率为1,交叉算法为单点交叉,交叉顺序按个体在种群中的顺序; (3)变异几率为0 请编写程序,求取函数在区间[0,30]的最大值。 二、方法原理 遗传算法:遗传算法是借鉴生物界自然选择和群体进化机制形成的一种全局寻优算法。与传统的优化算法相比,遗传算法具有如下优点:不是从单个点,而是从多个点构成的群体开始搜索;在搜索最优解过程中,只需要由目标函数值转换得来的适应值信息,而不需要导数等其它辅助信息;搜索过程不易陷入局部最优点。目前,该算法已渗透到许多领域,并成为解决各领域复杂问题的有力工具。在遗传算法中,将问题空间中的决策变量通过一定编码方法表示成遗传空间的一个个体,它是一个基因型串结构数据;同时,将目标函数值转换成适应值,它用来评价个体的优劣,并作为遗传操作的依据。遗传操作包括三个算子:选择、交叉和变异。选择用来实施适者生存的原则,即把当前群体中的个体按与适应值成比例的概率复制到新的群体中,构成交配池(当前代与下一代之间的中间群体)。选择算子的作用效果是提高了群体的平均适应值。由于选择算子没有产生新个体,所以群体中最好个体的适应值不会因选择操作而有所改进。交叉算子可以产生新的个体,它首先使从交配池中的个体随机配对,然后将两两配对的个体按某种方式相互交换部分基因。变异是对个体的某一个或某一些基因值按某一较小概率进行改变。从产生新个体的能力方面来说,交叉算子是产生新个体的主要方法,它决定了遗传算法的全局搜索能力;而变异算子只是产生新个体的辅助方法,但也必不可少,因为它决定了遗传算法的局部搜索能力。交叉和变异相配合,共同完成对搜索空间的全局和局部搜索。 三、实现过程 (1)编码:使用二进制编码,随机产生一个初始种群。L 表示编码长度,通常由对问题的求解精度决定,编码长度L 越长,可期望的最优解的精度也就越高,过大的L 会增大运算量。 (2)生成初始群体:种群规模表示每一代种群中所含个体数目。随机产生N个初始串结构数据,每个串结构数据成为一个个体,N个个体组成一个初始群体,N表示种群规模的大小。当N取值较小时,可提高遗传算法的运算速度,但却降低种群的多样性,容易引起遗传算法早熟,出现假收敛;而N当取值较大时,又会使得遗传算法效率降低。一般建议的取值范围是20—100。遗传算法以该群体作为初始迭代点; (3)适应度检测:根据实际标准计算个体的适应度,评判个体的优劣,即该个体所代表的可行解的优劣。本例中适应度即为所求的目标函数; (4)选择:从当前群体中选择优良(适应度高的)个体,使它们有机会被选中进入下一次迭代过程,舍弃适应度低的个体。本例中采用轮盘赌的选择方法,即个体被选择的几率与其适应度值大小成正比; (5)交叉:遗传操作,根据设置的交叉概率对交配池中个体进行基因交叉操作,形成新一代的种群,新一代中间个体的信息来自父辈个体,体现了信息交换的原则。交叉概率控制

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷 考试科目: 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。要求设计遗传算法对该问题求解。 a e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 一、问题分析(10分) 这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。 在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。 二、实验原理与数学模型(20分) (1)试验原理: 用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 遗传算法是一种现代智能算法,实际上它的功能十分强大,能够用于求解一些难以用常规数学手段进行求解的问题,尤其适用于求解多目标、多约束,且目标函数形式非常复杂的优化问题。但是遗传算法也有一些缺点,最为关键的一点,即没有任何理论能够证明遗传算法一定能够找到最优解,算法主要是根据概率论的思想来寻找最优解。因此,遗传算法所得到的解只是一个近似解,而不一定是最优解。 (2)数学模型 对于求解该问题遗传算法的构造过程: (1)确定决策变量和约束条件;

matlab自适应遗传算法

function [xv,fv]=AdapGA(fitness,a,b,NP,NG,Pc1,Pc2,Pm1,Pm2,eps) %×?êêó|ò?′???·¨ L = ceil(log2((b-a)/eps+1)); x = zeros(NP,L); for i=1:NP x(i,:) = Initial(L); fx(i) = fitness(Dec(a,b,x(i,:),L)); end for k=1:NG sumfx = sum(fx); Px = fx/sumfx; PPx = 0; PPx(1) = Px(1); for i=2:NP PPx(i) = PPx(i-1) + Px(i); end for i=1:NP sita = rand(); for n=1:NP if sita <= PPx(n) SelFather = n; break; end

end Selmother = round(rand()*(NP-1))+1; posCut = round(rand()*(L-2)) + 1; favg = sumfx/NP; fmax = max(fx); Fitness_f = fx(SelFather); Fitness_m = fx(Selmother); Fm = max(Fitness_f,Fitness_m); if Fm>=favg Pc = Pc1*(fmax - Fm)/(fmax - favg); else Pc = Pc2; end r1 = rand(); if r1<=Pc nx(i,1:posCut) = x(SelFather,1:posCut); nx(i,(posCut+1):L) = x(Selmother,(posCut+1):L); fmu = fitness(Dec(a,b,nx(i,:),L)); if fmu>=favg Pm = Pm1*(fmax - fmu)/(fmax - favg); else Pm = Pm2;

基于遗传算法的自动排课系统毕业设计

摘要 随着科学技术和社会信息技术的不断提高,计算机科学的日渐成熟,其强大的功能已为人们深刻认识,它在人类社会的各个领域发挥着越来越重要的作用,给人们的生活带来了极大的便利,成为推动社会发展的首要技术动力。排课是学校教学管理中十分重要、又相当复杂的工作之一。解决好教学工作中的排课问题对整个教学计划的进行,有着十分重要的意义。首先对排课的已有算法作了相关的调查研究,决定采用遗传算法。通过设计实现基于遗传算法的自动排课系统,研究了遗传算法在排课系统中的应用。 关键词:遗传算法、自动排课、Java。

Abstract Along with science technical and community information technical increases continuously, calculator science is gradually mature, its mighty function has behaved deep cognition, and it has entered the human social each realm erupts to flick the more and more important function, bringing our life biggest of convenience. Curriculum arrangement is an important and complicated working in school,so solving the problem is of great importance for teaching programming.Investigated and studied the algorithm existed, determine that adoptgenetic algorithm. ThroughDesign Implementation theAuto CourseArrangementManagement System Base onGenetic Algorithm, researched the application of genetic algorithmin theCourseArrangementManagement System. Keywords: Genetic Algorithm Auto Course Arrangement ManagementJava.

4遗传算法与函数优化

第四章遗传算法与函数优化 4.1 研究函数优化的必要性: 首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。 其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。 4.2 评价遗传算法性能的常用测试函数 在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括: ●连续函数或离散函数; ●凹函数或凸函数; ●二次函数或非二次函数; ●低维函数或高维函数; ●确定性函数或随机性函数; ●单峰值函数或多峰值函数,等等。 下面是一些在评价遗传算法性能时经常用到的测试函数: (1)De Jong函数F1: 这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2: 这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。 (3)De Jong 函数F3: 这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值 30),,,,(543213-=x x x x x f 。

遗传算法实验报告17643

信息与管理科学学院计算机科学系 实验报告 课程名称:人工智能 实验名称:遗传算法问题 姓名:苏鹏海贾美丽赵妍张汉昭 学号:1510003063 1510003024 班级:计科实验室:软件技术实验室指导教师:张慧日期: 2016.11.09

&&遗传算法问题 一、实验目的 1.熟悉和掌握遗传算法的原理、实质; 2.学会使用遗传算法解决问题; 3.学会编写遗传算法程序寻找函数最值; 二、实验原理 遗传算法是仿真生物遗传学和自然选择机理,通过人工方式所构造的一类搜索算法,从某种程度上说遗传算法是对生物进化构成进行的数学方式仿真。在遗传算法中染色体对应的是一系列符号序列,在标准的遗传算法(即基本遗传算法)中,通常用0, 1组成的位串表示,串上各个位置对应基因座,各位置上的取值对应等位基因。遗传算法对染色体进行处理,染色体称为基因个体。一定数量的基因个体组成基因种群。种群中个体的数目为种群的规模,各个体对环境的适应程度称为适应度。 三、实验内容 用遗传算法求根号2,也就是求方程f(x)=x*x-2=0的正整数解,x=1时f(1)<0,x=2时f(2)>0,由介值定理,则1到2中间存在一个根,根据代数基本定理和根的对称性知这就是我们要找的根,由目标函数得到适应度函数,我们选择个体都在[1,2]之间,那适应度函数我可以取 j(x)=40/(2+|x*x-2|)-10,由x的取值范围知j的范围是(0,10) x和y交叉就用取平均(x+y)/2,交叉概率取0.9,变异概率为0, 四、步骤分析 1.选择目标函数,确定变量定义域及编码精度,形成编码方案 2.随机产生一个规模为(即该种群中含有个体)的种群 2 3.个体评价:计算群体P(t)中各个个体适应度 4.选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传 到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建 立在群体中个体的适应度评估基础上的。(选择运算用轮盘赌算法) 5.对被选择进入匹配池中的个体进行交叉操作,形成新种群 6.以小概率在种群中选择个体进行变异操作形成新种群 7.计算每个个体的适值 8.根据适值概率选择新个体形成新种群 9.检查结束条件,若满足则算法结束,当前种群中适值最高的个体即所求 解;否则转3

数学建模遗传算法与优化问题【精品毕业设计】(完整版)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

遗传算法与组合优化.

第四章 遗传算法与组合优化 4.1 背包问题(knapsack problem ) 4.1.1 问题描述 0/1背包问题:给出几个尺寸为S 1,S 2,…,S n 的物体和容量为C 的背包,此处S 1,S 2,…,S n 和C 都是正整数;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。 数学形式: 最大化 ∑=n i i i X S 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 广义背包问题:输入由C 和两个向量C =(S 1,S 2,…,S n )和P =(P 1,P 2,…,P n )组成。设X 为一整数集合,即X =1,2,3,…,n ,T 为X 的子集,则问题就是找出满足约束条件∑∈≤T i i C X ,而使∑∈T i i P 获得最大的子集T ,即求S i 和P i 的下标子集。 在应用问题中,设S 的元素是n 项经营活动各自所需的资源消耗,C 是所能提供的资源总量,P 的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。 广义背包问题可以数学形式更精确地描述如下: 最大化 ∑=n i i i X P 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 背包问题在计算理论中属于NP —完全问题,其计算复杂度为O (2n ),若允许物件可以部分地装入背包,即允许X ,可取从0.00到1.00闭区间上的实数,则背包问题就简化为极简单的P 类问题,此时计算复杂度为O (n )。

4.1.2 遗传编码 采用下标子集T 的二进制编码方案是常用的遗传编码方法。串T 的长度等于n(问题规模),T i (1≤i ≤n )=1表示该物件装入背包,T i =0表示不装入背包。基于背包问题有近似求解知识,以及考虑到遗传算法的特点(适合短定义距的、低阶的、高适应度的模式构成的积木块结构类问题),通常将P i ,S i 按P i /S i 值的大小依次排列,即P 1/S 1≥P 2/S 2≥…≥P n /S n 。 4.1.3 适应度函数 在上述编码情况下,背包问题的目标函数和约束条件可表示如下。 目标函数:∑==n i i i P T T J 1 )( 约束条件:C S T n i i i ≤∑=1 按照利用惩罚函数处理约束条件的方法,我们可构造背包问题的适应度函数f (T )如下式: f (T ) = J (T ) + g (T ) 式中g (T )为对T 超越约束条件的惩罚函数,惩罚函数可构造如下: 式中E m 为P i /S (1≤i ≤n )i 的最大值,β为合适的惩罚系数。 4.2 货郎担问题(Traveling Salesman Problem ——TSP ) 在遗传其法研究中,TSP 问题已被广泛地用于评价不同的遗传操作及选择机制的性能。之所以如此,主要有以下几个方面的原因: (1) TSP 问题是一个典型的、易于描述却难以处理的NP 完全(NP-complete )问题。有效地 解决TSP 问题在可计算理论上有着重要的理论价值。 (2) TSP 问题是诸多领域内出现的多种复杂问题的集中概括和简化形式。因此,快速、有效 地解决TSP 问题有着极高的实际应用价值。 (3) TSP 问题因其典型性已成为各种启发式的搜索、优化算法的间接比较标准,而遗传算法 就其本质来说,主要是处理复杂问题的一种鲁棒性强的启发式随机搜索算法。因此遗传算法在TSP 问题求解方面的应用研究,对于构造合适的遗传算法框架、建立有效的遗传操作以及有效地解决TSP 问题等有着多方面的重要意义。

遗传算法参数调整实验报告(精)

遗传算法参数调整实验报告 算法设计: 编码方案:遍历序列 适应度函数:遍历路程 遗传算子设计: 选择算子:精英保留+轮盘赌 交叉算子:Pxover ,顺序交叉、双亲双子, 变异算子:Pmutation ,随机选择序列中一个染色体(城市)与其相邻染色体交换 首先,我们改编了我们的程序,将主函数嵌套在多层迭代之内,从外到内依此为: 过程中,我们的程序将记录每一次运行时种群逐代进化(收敛)的情况,并另外记录总体测试结果。 测试环境: AMD Athlon64 3000+ (Overclock to 2.4GHz)

目标:寻求最优Px 、Pm 组合 方式:popsize = 50 maxgen = 500 \ 10000 \ 15000 Px = 0.1~0.9(0.05) Pm = 0.01~0.1(0.01) count = 50 测试情况:运行近2万次,时间约30小时,产生数据文件总共5.8GB 测试结果:Px, Pm 对收敛结果的影响,用灰度表示结果适应度,黑色为适应度最低 结论:Px = 0.1 ,Pm = 0.01为最优,并刷新最优结果19912(之前以为是20310),但20000次测试中最优解只出现4次,程序需要改进。 Maxgen = 5000 Pm=0.01 Px = 0.1 Maxgen = 10000 0.1 0.9 Px = 0.1 0.9 0.1

目标:改进程序,再寻求最优参数 方式:1、改进变异函数,只保留积极变异; 2、扩大测试范围,增大参数步进 popsize = 100 \ 200 \ 400 \ 800 maxgen = 10000 Px = 0.1 \ 0.5 \ 0.9 Pm = 0.01 \ 0.04 \ 0.07 \ 0.1 count = 30 测试情况:运行1200次,时间8小时,产生数据文件600MB 测试结果: 结论:Px = 0.1,Pm = 0.01仍为最优,收敛情况大有改善,10000代基本收敛到22000附近,并多次达到最优解19912。变异函数的修改加快了整体收敛速度。 但是收敛情况对Pm并不敏感。另外,单个种群在遗传过程中收敛速度的统计,将是下一步的目标。

基于遗传算法的配送路径优化研究开题报告

北京师范大学珠海分校 本科生毕业论文(设计)开题报告

理论和实践的意义及可行性论述 (包括文献综述) 理论和实践的意义:当前,现代物流是企业继续降低物资消耗、提高劳动生产 率后的第三利润源泉。但我国物流企业的运输成本普遍偏高。其中很重要一个 原因就是对配送车辆运输路线规划不科学。要想降低运输成本,离不开对配送 路线的优化和配送车辆的合理安排。对物流配送车辆行驶路径进行优化,可以降低物流成本,节约运输时间,是提高物流经济效益的有效手段。 可行性论述:配送路径优化问题是典型的优化组合问题,具有很高的计算复杂 性。但遗传算法解决作为一种有效的全局搜索方法具有隐并行性和较强的鲁棒性,在解决非线性的大规模复杂问题上具有很好的适应性,适合于对VPR问 题进行优化求解。标准遗传算法虽然未必每次都能找到最优解,但通过对标准 遗传算法进行改进,完全可以在有限时间内对较复杂的VPR问题计算出次优 解或可行解。因此,用遗传算法来解决物流车辆调度问题还是完全可行的。 文献综述: [1]朱剑英?非经典数学方法[M].武昌:华中科技大学出版社,2001 [2]李敏强,寇纪淞,林丹,李书全?遗传算法的基本理论与应用[M].北京:科 学技术出版社,2002 [3]孙丽丽?物流配送中车辆路径算法分析与研究[D].上海:上海海事大学,2007 [4]盖杉.基于遗传算法的物流配送调度系统 [D].长春:长春理工大学,2007 [5]高运良,基于免疫遗传算法的物流配送V RP 求解[D].武汉:武汉科技大学, 2007 论文撰写过程中拟采取的方法和手段 本论文主要采用遗传算法作为解决物流配送路径优化问题的主要算法。但由于标准遗传算法具有“早熟收敛”的缺陷,有可能使算法陷入局部最优解。论文还将尝试通过把其他算法和遗传算法相结合,来有效控制早熟现象的发生。为了快速得到任意两个配送点之间的最优路线。本论文还拟采用佛洛依德 算法构造配送路线的地理数据库的方式来对路线网络进行预处理。从而减少整 个算法的时间复杂度和空间复杂度。

介绍遗传算法的发展历程

介绍遗传算法的发展历程 遗传算法起源于对生物系统进行的计算机模拟研究。早在20世纪40年代,就有学者开始研究利用计算机进行生物模拟的技术,他们从生物学的角度进行了生物的进化过程模拟、遗传过程模拟等研究工作。 早期的研究特点是侧重于对一些复杂操作的研究。最早意识到自然遗传算法可以转化为人工智能算法的是J.H.Hnllaad教授。1965年,Holland教授首次提出了人工智能操作的重要性,并将其应用到自然系统和人工系统中。1967年,Holland教授的学生.J.D.Bagley在其博士论文中首次提出了“遗传算法”一词,并发表了遗传算法应用方面的第一篇论文,从而创立了自适应遗传算法的概念e J.D.Bagley发展了复制、交叉、变异、显性、倒位等遗传算子,在个体编码上使用了双倍体的编码方法。1970年,Cavicchio把遗传算法应用于模式识别。Holistien最早把遗传算法应用于函数优化。20世纪70年代初,Holland 教授提出了遗传算法的基本定理—模式定理,从而奠定了遗传算法的理论基础。模式定理揭示出种群中优良个体(较好的模式)的样本数将以指数级规律增长,因而从理论上保证了遗传算法是一个可以用来寻求最优可行解的优化过程。1975年,Holland教授出版了第一本系统论述遗传算法和人工自适应系统的专著《自然系统和人工系统的自适应性》。同年,K.A.De Song在博士论文《遗传自适应系统的行为分析》‘护结合模式定理进行了大量的纯数值函数优化计算实验,建立了遗传算法的工作框架,为遗传算法及其应用打下了坚实的基础,他所得

出的许多结论迄今仍具有普遍的指导意义。20世纪80年代,Hntland 教授实现了第一个基于遗传算法的机器学习系统—分类器系统(Classifier Systems,简称CS),提出了基于遗传算法的机器学习的新概念,为分类器系统构造出了一个完整的框架。1989年,D.J.Goldberg 出版了专著—《搜索、优化和机器学习中的遗传算法》。该书系统总结了遗传算法的主要研究成果,全面而完整地论述了遗传算法的基本原理及其应用。可以说这本书奠定了现代遗传算法的科学基础,为众多研究和发展遗传算法的学者所瞩目。1991年,L,Davis编辑出版了《遗传算法手册》一书,书中包括了遗传算法在科学计算、工程技术和社会经济中的大量应用样本,为推广和普及遗传算法的应用起到了重要的指导作用。1992年,J.R.Koza将遗传算法应用于计算机程序的优化设计及自动生成,提出了遗传规划(Genetic Programming,简称GP)的概念。

用遗传算法求解Rosenbrock函数最优解实验报告

姓名学号 实验 成绩 华中师范大学计算机科学系 实验报告书 实验题目:用遗传算法求解Rosenbrock函数的最大值问题课程名称:智能计算 主讲教师:沈显君 辅导教师: 课程编号: 班级:2011级 实验时间:2011.11

用遗传算法求解Rosenbrock函数最大值问题 摘要: 本文利用遗传算法研究了求解Rosenbrock函数的最大值问题.在较多的计算机模拟实验结果中表明,用遗传算法可以有效地解决这一问题.文中分析了一种基于遗传算法对Rosenbrock函数最大值问题的求解,得到了适于解决此问题的合理的遗传操作,从而为有效地解决最速下降法所不能实现的某一类函数代化问题提供了一种新的途径.通过对基于遗传算法对Rosenbrock函数最大值问题的求解,进一步理解遗传算法对解决此类问题的思想。 关键词:遗传算法,Rosenbrock函数,函数优化,最速下降法。 Abstract: This paper deals with the maximum of Rosenbrock s function based ongenetic algorithms. The simulated results show that the problem can be solved effectivelyusing genetic algorithms. The influence of some rnodified genetic algorithms on searchspeed is also examined. Some genetic operations suitable to the optimization technique areobtained, therefore, a novel way of solving a class of optimizations of functions that cannot be realized using the method of steepest descent is proposed.Through dealing with the maximum of Rosenbrock s function based ongenetic algorithms,a better understanding of the genetic algorithm to solve such problems thinking. Keyword:ongenetic algorithms,Rosenbrock function,function optimization,Steepest descent method

相关文档