文档库 最新最全的文档下载
当前位置:文档库 › 自然电位、自然伽马测井基本原理

自然电位、自然伽马测井基本原理

自然电位、自然伽马测井基本原理
自然电位、自然伽马测井基本原理

自然电位测井方法原理

在早期的电阻率测井中发现:在供电电极不供电时,测量电

极M在井内移动,仍可在井内测量到有关电位的变化。这个电位

是自然产生的,故称为自然电位。使用图1所示电路,沿井提升

M电极,地面仪器即可同时测出一条自然电位变化曲线。

自然电位曲线变化与岩性有密切关系,能以明显的异常显示

出渗透性地层,这对于确定砂岩储集层具有重要意义。自然电位

测井方法简单,实用价值高,是划分岩性和研究储集层性质的基

本方法之一。

图 1自然电位测井原理

一、井内自然电位产生的原因

井内自然电位产生的原因是复杂的,但对于油井,主要有以下两个原因:地层水的含盐量(矿化度)与泥浆的含盐量不同,地层压力和泥浆柱压力不同,在井壁附近产生了自然电动势,形成了自然电场。

1.扩散电动势(Ed)的产生

如图2所示,在一个玻璃容器中,用一个渗透性的半透膜将

其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液,

并且在两边分别放人一只电极,此时表头指针发生偏转。此现象

可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达

到平衡的自然趋势,即高浓度溶液中的离子受渗透压的作用要穿

过渗透性隔膜迁移到低浓度溶液中去,这一现象称为离子扩散。

在扩散过程中,由于Cl-的迁移率大于Na+的迁移率,扩散

结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,高浓度溶

图2扩散电动势产生示意图液中Na+相对增多,形成正电荷聚集。这就在两种不同浓度的溶

液间产生了电动势,所以可测到电位差。离子在继续扩散,高浓度溶液中的Cl-,由于受高浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;而高浓度溶液中的Na+,由于受高浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。当接触面附近的电荷聚集使正、负离子的迁移速度相等时,电荷聚集就停止了,但离子还在继续扩散,溶液达到了动平衡,此时电动势将保持一定值:这个电动势是由离子扩散作用产生的,故称为扩散电位(Ed),也称扩散电动势,可用下式表示:

EE dd=KK dd lg cc1cc2

式中EE dd为扩散电位系数,mv;cc1,cc2为溶液盐类的浓度,g/L。

与上述实验现象一样,井内自然电位的产生也是两种不同浓度

的溶液相接触的产物。在纯砂岩井段所测量的自然电位即是扩散电

动势造成的,这是由于浓度为Cw的地层水和浓度为Cmf的泥浆滤

液在井壁附近接触产生扩散现象的结果。通常,Cw>Cmf,所以一般

扩散结果是地层水内富集正电荷,泥浆滤液中富集负电荷,如图3

所示,有

EE dd=KK dd lg cc ww cc mmmm图3井内自然电位分布示意图

或EE dd=KK dd lg RR mmmm RR ww

2.扩散吸附电动势(Eda)

如图4所示,将两种不同浓度(C1>C2)的NaCl溶液用

泥岩隔膜分开。实验结果表明:浓度大的一方富集了负电

荷,浓度小的一方富集了正电荷。其原因可以解释为:泥

岩的孔隙道极小,泥质颗粒对Cl-有选择性吸附作用,Cl-

都被束缚在泥质颗粒表面,不能自由移动,使得Cl-的迁

移速度为零,在扩散过程中,只有Na+可向低浓度一方移

动。因此,在泥岩井壁上只发生Na+的扩散,这时形成的

电动势称为扩散吸附电动势(Eda)。因为泥岩选择性地让

正离子通过,其作用有如化学中的半透膜,所以扩散吸附图4扩散吸附电动势示意图电位也称薄膜电位,其表达式为

EE dddd=KK dddd lg cc1cc2

式中KK dddd为扩散吸附电位系数。

在砂泥岩剖面的井内,在泥岩井壁附近,由于泥浆滤液浓度与地层水的浓度不同(Cw>Cmf)而产生的扩散吸附电动势为

EE dddd=KK dddd lg RR mmmm RR ww

3、过滤电动势(动电电动势)

在压力差的作用下,当溶液通过毛细血管时,由于毛细血管壁吸附溶液中负离子,使溶液正离子相对增多,并且同溶液一起向压力低的一端移动,因此在毛细管两端富集了不同符号的离子,压力低的一端带正电,压力高的一端带负电,从而产生了电位差,如图5所示:在岩层中有很多很细的连通孔隙,相当于上述的毛细管。当泥浆柱压力大于地层压力时,

由于岩层中的毛细管孔道壁和泥饼中的泥

质颗粒要吸附泥浆滤液中的负离子,而正

离子随着泥浆滤液向地层中移动,这

样在井壁附近聚集了大量负离子,在岩层

内部有大量正离子,这种电位称为过滤电

动势。

图 5过滤电动势形成示意图

二、自然电位测井曲线

在钻穿地层的过程中,地层与泥浆相接触,产生了扩散吸附作用,在泥浆与地层接触面上产生了自然电位。

1.井内自然电场的分布

设砂岩、泥岩的地层水矿化度分别为C2,C1,泥浆滤液的矿化度为Cmf,且有Cl≥C2>Cmf。在砂岩和泥浆接触面上,由于扩散作用,产生的扩散电动势为

EE dd=KK dd lg cc2cc mmmm

在泥岩和泥浆接触面上,由于扩散吸附作用,产生的扩散吸附电动势为

EE dddd1=KK dddd lg cc1mmmm

在砂岩和泥岩接触面上,由于扩散吸附作用,产生的扩散吸附电动势为

EE dddd2=KK dddd lg cc1cc2

在井与砂岩、泥岩接触面上,自然电流回路中的总自然电动势EE ss即

EE ss=EE dd+EE dddd1?EE dddd2

=klg cc2mmmm

式中 K=Kd+Kda,称为自然电位系数。可以写成:

EE ss=?klg RR mmmm ww=SSSSSS

通常把E。写作S5P,称为静自然电位。实际测井时以泥岩作自然电位曲线的基线(即零线),当Cw>Cmf时,砂岩的自然电位异常为负值,因此上式右端取负号。把井中巨厚的纯砂岩井段的自然电位幅度近似认为是SSP。静自然电位的变化范围在含淡水岩层的+50mV到含高矿化度盐水岩层的-200mV之间。

2.自然电位曲线特点

图6是一组含水纯砂岩的自然电位理论曲线,横坐标是自然电位与静自然电位之比ΔUsp/SSP,纵坐标为地层厚度h,曲线号码为层厚与井径之比h/d。当上、下围岩很厚且岩性相同时,从曲线上可以看到下列特点:曲线关于地层中点对称,地层中点处异常值最大;地层越厚,ΔUsp越接近SSP,地层厚度变小,△Usp下降,且曲线顶部变尖,底部变宽,△Usp≤SSP;当h>4d时,△Usp的半幅点对应地层的界面,因此较厚地层可用半幅点法确定地层界面,地层变薄时,不能用半幅点法分层。实测曲线与理论曲线特点基本相同,由于测井时受多方面因素的影响,实测曲线不如理论曲线规则(图7)。使用自然电位曲线时应注意:自然电位曲线没有绝对零点,是以泥岩井段的自然电位曲线幅度作基线;自然电位曲线幅度△Usp的读数是基线到曲线极大值之间的宽度所代表的毫伏数。

在砂泥岩剖面中,以泥岩作为基线,Cw>Cmf时,砂岩层段出现自然电位负异常;Cw

自然伽马测井方法原理

一、自然伽马测井

把仪器放到井下,测量地层放射性强度的方法叫自然伽马测井(GR)。这种方法已有很长的历史,GR与SP相配合能很好地划分岩性和确定渗透性地层,GR的另一优点是可在套管井中测量。

1、岩石的放射性

岩石的放射性,主要是由于含有铀(U)、钍(Th)、钾(K)等放射性元素,所以岩石的放射性强度决定放射性元素的含量。

一般条件下,岩石的放射性物质含量很少,按放射性的强弱沉积岩可分为以下几类:

(1)自然伽马放射性高:放射性软泥、红色粘土、海绿石砂岩、独居石等岩石。

(2)自然伽马放射性中:浅海相和陆上沉积的泥质岩石,如泥质砂岩,泥质石灰

岩,泥灰岩等。

(3)自然伽马放射性低:砂岩、石灰岩、石膏、岩盐、煤和沥青等

2、自然伽马测井测量原理

测量原理如图,测量装置由井下仪器和地面仪器组成。下井仪器有探测器(闪烁计数管)、放大器和高压电源等几部分。自然伽马射线由岩层穿过泥浆、仪器外壳进入探测器,探测器将γ射线转化为电脉冲信号,经放大器把电脉冲放大后由电缆送到地面仪器。

早期的自然伽马曲线采用计数率(脉冲/分钟)单位,曲线用r J表示,现今的自然伽马测井都采用标准刻度单位API,曲线用GR表示。定义高放射性地层与低放射性地层读数之差为200API单位,作为标准刻度单位。

3、自然伽马测井曲线

把自然伽马测井仪下到井中,测量地层放射性强度随深度变化的曲线,称为自然伽马曲线(GR)。

(1)曲线特点。根据理论计算自然伽马测井理论曲线如图。其特点为:

a、曲线对称于地层中点,在地层中点处有极大值或极小值,反映该层放射性大小。

b、当地层厚度h小于三倍的钻头直径d0 (h<3d0)时,极大值随h↗而↗(极小值随h↗而↘)。当h≥3d0时,极大值(或极小值)为一常数,与地层厚度无关,与岩石的自然放射性强度成正比。

c、h≥3d0时,由曲线的半幅点确定的底厚度等于地层的真实厚度,当h<3d0时,由半幅点确定的地层厚度大于地层的真实厚度,而且越薄,大得越多。

理论曲线是在测速为零、点状计数管的条件下计算得到的,但实际测井中,计数管不是点状的,测速也不为零,所以实测曲线和理论曲线是有些差异的,但基本形状仍然相似。

(2)自然伽马测井曲线的影响因素

a、层厚的影响。地层变薄会使泥岩层的自然伽马测井曲线值下降,砂岩层的自然伽马测井曲线值上升,并且地层越薄,这种下降和上升就越多。因此对h<3d0的地层,应用曲线时,应考虑层厚的影响。

b、井参数的影响。井径的扩大意味着下套管井水泥环增厚和裸眼井泥浆层增厚。若水泥环和泥浆不含放射性元素,则水泥环和泥浆层增厚会使GR值降低,

但由于泥浆有一些放射性,所以泥浆的影响很小。套管的钢铁对γ射线的吸收能力很强,所以下了套管的井,GR 值会有所下降。

c 、放射性涨落的影响。

在放射性源强度和测量条件不变的条件下,在相等的时间间隔内,对放射性的强度进行重复多次测量,每次记录的数值是不相同的,而总是在某一数值附近上下变化,这种现象叫放射性涨落。它和测量条件无关,是微观世界的一种客观现象,且有一定的规律性。这种现象是由于放射性元素的各个原子核的衰变彼此是独立的,衰变的次序是偶然的等原因造成的。

由于放射性涨落的存在,使得GR 曲线不像电测井光滑。放射性测井曲线上读数的变化,一是由地层性质变化引起的,另一方面是由放射性涨落引起的,要对放射性测井曲线进行正确地质解释,必须正确区分这两种原因造成的曲线变化。

d 、测速的影响。测井时的仪器上提速度是对GR 曲线产生影响。测速越大,GR 关于地层越不对称。(一般是τ?V 的影响,τ为积分电路时间常数) (3)自然伽马测井曲线的应用

①划分岩性。主要根据地层中泥质含量的变化引起GR 曲线幅度变化来区分不同的岩性。

I、砂、泥岩剖面

砂岩(GR 值低) → ↑

sh V 泥岩(GR 值) II 、碳酸盐剖面

白云岩、石灰岩(GR 值低) → ↑

sh V 泥岩(GR 值) III 、膏岩剖面

岩盐、石膏(GR 值低) → ↑

sh V 泥岩(GR 值) ②进行地层对比

GR 曲线与地层中所含流体性质无关,其幅度主要决定于地层中的放射性物质,通常对于不同岩性其幅度较为稳定,另外,对比的标准层也易选取,通常选用厚度泥岩作标准层,进行油田范围或区域范围内的地层对比

③估算地层中泥质含量

首先用自然伽马相对幅度的变化计算出泥质含量指数I GR :

min

max min GR GR GR GR I GR ??=目的 GR :

目的层自然伽马幅度;max GR 、min GR 为纯泥岩、纯砂岩的自然伽马幅度。 通常I GR 的变化范围为0~1,用下式将I GR 转化成泥质含量Vsh :

1212??=?G I G sh GR V G :希尔奇指数,可根据实验室取芯分析资料确定。

二、自然伽马能谱测井

自然伽马测井只能测量地层中放射性元素的总含量,无法分辨地层中含有什么样的放射性元素,为此研制了自然伽马能谱测井,即测量不同放射性元素放射出不同能量的γ射线,从而确定地层中含有何种放射性元素。

根据实验室对铀、钍、钾放射的γ射线能量的测定,发现铀、钍、钾放射的γ射线谱都存在各自易鉴别的特征谱峰。自然伽马能谱测井的探测器与GR基本相同,所不同的是其增加了多道脉冲,能分别测量不同幅度的脉冲数,从而得出不同能量的γ射线能谱,用以测定不同的放射性元素。自然伽马能谱测井根据测出的γ射线特征峰值,经刻度可输出铀、钍、钾三条曲线及一条总的自然伽马曲线。

自然伽马能谱测井除了GR曲线的应用外,还可研究沉积环境,区分粘土矿物。

自然电位附自然伽马

自然电位测井方法原理 在早期的电阻率测井中发现:在供电电极不供电时,测量电 极M在井内移动,仍可在井内测量到有关电位的变化。这个电位 是自然产生的,故称为自然电位。使用图1所示电路,沿井提升 M电极,地面仪器即可同时测出一条自然电位变化曲线。 自然电位曲线变化与岩性有密切关系,能以明显的异常显示 出渗透性地层,这对于确定砂岩储集层具有重要意义。自然电位 测井方法简单,实用价值高,是划分岩性和研究储集层性质的基 本方法之一。 图 1 自然电位测井原理 一、井内自然电位产生的原因 井内自然电位产生的原因是复杂的,但对于油井,主要有以下两个原因:地层水的含盐量(矿化度)与泥浆的含盐量不同,地层压力和泥浆柱压力不同,在井壁附近产生了自然电动势,形成了自然电场。 1.扩散电动势(Ed)的产生 如图2所示,在一个玻璃容器中,用一个渗透性的半透膜将 其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液, 并且在两边分别放人一只电极,此时表头指针发生偏转。此现象 可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达 到平衡的自然趋势,即高浓度溶液中的离子受渗透压的作用要穿 过渗透性隔膜迁移到低浓度溶液中去,这一现象称为离子扩散。 在扩散过程中,由于Cl-的迁移率大于Na+的迁移率,扩散 结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,高浓度溶 图2扩散电动势产生示意图液中Na+相对增多,形成正电荷聚集。这就在两种不同浓度的溶 液间产生了电动势,所以可测到电位差。离子在继续扩散,高浓度溶液中的Cl-,由于受高浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;而高浓度溶液中的Na+,由于受高浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。当接触面附近的电荷聚集使正、负离子的迁移速度相等时,电荷聚集就停止了,但离子还在继续扩散,溶液达到了动平衡,此时电动势将保持一定值:这个电动势是由离子扩散作用产生的,故称为扩散电位(Ed),也称扩散电动势,可用下式表示: mv g/L。 与上述实验现象一样,井内自然电位的产生也是两种不同浓度 的溶液相接触的产物。在纯砂岩井段所测量的自然电位即是扩散电 动势造成的,这是由于浓度为Cw的地层水和浓度为Cmf的泥浆滤 液在井壁附近接触产生扩散现象的结果。通常,Cw>Cmf,所以一般 扩散结果是地层水内富集正电荷,泥浆滤液中富集负电荷,如图3

自然伽马能谱测井曲线在地质上的解释与应用

自然伽马能谱测井曲线在地质上的解释与 应用 / 汐钎 一 第16卷第1期地学工程进展V o1.16No.1 1999年6月ADV ANCEINEARTHSCIENCEENGINEERINGJun?,1999 擅■通过实倒舟绍了放射性元素铀,钍,钾的地球化学特性和自然佃马能谱曲线在地质上的解释与应用.提出6种有关解释应用的意见.1)商钾多为伊利石桔土岩和钾长 石砂岩,商蚀多由有机质造成.而商牡尉为^山岩有关堆层.2)平曩用钍,钾曲线可以计算 地层据质古量.3)铀异常曲线可以指示地层中流体运动.4)寻拽放射性矿层与异常带. s)研究生油岩.6)进行堆层对比. 关■栩地球化学特性f自然伽马瞎谱曲线}铀,钍,钾异常f解释应用 数控测井中一个必不可少的测井项目自然伽马能谱测井已在世界各地的深井~超深井中 得到广泛采纳和使用,它可在裸眼井和套管井中进行测量,并提供自然伽马射线总计数钾 (),铀(x10)和钍(×10)测量的连续记录.70年代中期,自然伽马能谱铡井首先用于英国北海地区,当时主要为了确定云母和计算粘土含量,作为一种比较有效的测井方法已广泛用 于碳酸盐岩和砂泥岩地层,它不仅有助于评价地层泥质含量,岩性变化.而且可用于操测放射 性矿物,进行地层对比,研究沉积环境.同时还可做为研究生油层的重要资料.

1放射性元素铀,钍,钾的地球化学特性 在自然界中铀有三种同位素(u,U",U),且都具有放射性,铀在地壳中的浓度大约 为3×10~,也是来源于硅酸火戚岩,而且主要戚分为放射性矿物.在自然界中铀以+4和+6 两种离子价的状态而存在.四价铀盐通常不溶解但易变戚六价铀.六价铀盐不仅存在于溶液 中,而且易氧化形戚uO,其氧化物极易溶解且具有很大的流动性.常和有机物碳酸盐岩结合 在一起. 钍同位素Th"是自然界中一种稳定的元素,其他只作为铀系的一部分,很不稳定如Th 和Th,钍在地壳的平均浓度为12×10~.钍来源于硅酸火戚岩以+4价形式存在,形成化舍 物Th(OH),在自然界中由于物理风化作用容易水解.故具有一定的流动性.由于Th"有较 大的离子半径且易被牯土矿物所吸附.除蒙脱石钍含量较低外,绝大部分粘土矿物都有较恒定 收稿日期l1999-O4-l2 作者筒舟橱蕾忙,男-53岁t工程柙,现在中国新星石油公司华北石油局三瞢录井坫工作 用 应 癣 ^^日¨上 质墼地 缀一 曲塑炳舢 I油澳盯 谱醋

第7章 GR和放射性同位素测井

放射性测井 放射性测井(核测井)是测量记录反映岩石极其孔隙流体的核物理性质的参数,研究井剖面岩层性质的一类测井方法。 特点:不受井眼介质限制,在裸眼井和套管井、各种钻井泥浆的井中均可测,能进行套管井的地层评价,能够快速分析和确定岩石及其孔隙流体各种化学元素。 分类:按使用的放射性源或测量的放射性类型分 1、伽马测井:以研究伽马辐射为基础,包括GR、NGS、地层密度、岩性密度、放射性同位素示踪测井等。 2、中子测井:以研究中子与岩石及孔隙流体相互作用为基础,包括热中子、超热中子、中子伽马、脉冲中子非弹性散射伽马能谱、中子寿命及活化测井等。 第七章自然伽马测井和放射性同位素测井岩石中含有天然的放射性核素主要是铀系,钍系和钾的放射性同位素. 自然伽马测井:用伽马射线探测器测量岩石总的自然射线强度,以研究井剖面地层性质; 自然伽马能谱测井:在井内对岩石自然伽马射线进行能谱分析,分别测量层内铀、钍、钾含量来研究井剖面地层性质。 第一节伽马测井的核物理基础 一、放射性核素和核衰变 1.核素和同位素 核素:指原子核具有一定数目质子和中子,并处在同一能态上的同类原子。 同位素:指核中质子数相同而中子数不同的核素,它们在元素周期表中占有同一位置。 2.稳定核素和放射性核素 稳定核素:不会自发衰变为另一种核. 放射性核素:原子核能自发地发生衰变,由一种核变为另一种核. 核衰变时发射的三种射线:γ、β、α。 γ——高频电磁波(光子流),穿透能力强,较被测井仪测定(放射性测井探测的主要对象)

β——高速电子流,带负电,穿透能力差; α——氦核组成的离子流,带正电,穿透能力最差。 3.核衰变定律: 放射性核素——放射出带电粒子(β、α)——激发态的新原子核——辐射γ——稳太的原子核,这个过程称为核衰变。 放射性核数随时间减小而遵循一定的规律,即核衰变定律: t o e N t N λ-=)( N0—初始原子个数;λ—衰变常数(表示衰变速度的参数),表示单位时间每个核发生衰变的几率,λ越大,衰变速度越快。 半衰期: 放射性核素因衰变而减少到原来一半所需的时间。 λ693 .0=T ,常见放射性核素的半衰期见表7-1,117页。 4.放射性活度 活度(强度):一定量的放射性核素在单位时间内发生衰变的核素。 单位:1Ci(居里)=3.7X1010核衰变/秒 贝克:1Bq = 1 次核衰变/秒 比度(浓度):放射性核素的放射性活度与其质量之比。 二、岩石的放射性核素 1.主要放射性核素 起决定作用的是铀系,铀系和钾。 2.伽马能谱 不同的核衰变放出的γ能量不同,一般谱成分太多,只选择代表性的伽马射线来识别: 铀系选 92U 238 钍系选 90Th232 钾 19K 40 三、岩石的自然放射性与岩石性质的关系 1.总放射性 (1)沉积岩的放射性低于岩浆岩和变质岩; (2)沉积岩中自然伽马放射性随泥含量的增加而增加。 粘土中:蒙脱石,伊利石,高岭石,绿泥石(降低)

测井曲线解释

主要测井曲线及其含义 主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf ≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。 ⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 四、双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。 感应测井曲线的应用:①划分渗透层。②确定岩层真电阻率。③快速、直观地判断油、水层。 油层: RILD>RILM>RFOC

SP_自然电位测井曲线的形状

第二节 自然电位测井曲线的形状 在井钻穿地层的过程中,地层与钻井液相接触,产生扩散吸附作用,在钻井液与地层接 触面上产生自然电位。下面分析夹在厚层泥岩中的砂岩自然电位曲线的形状。 一、井内自然电场的分布 若砂岩的地层水矿化度为C 2,泥岩的地层水矿化度为C 1,钻井液的矿化度为C mf,,设C 1> C 2>C mf ,井内自然电位的分布如图1-4所示。 在砂岩和钻井液的接触面上,由于扩散作用产生扩散电动势E d 为: C C K E mf d d 2lg = (1-6) 在泥岩和钻井液的接触面上,由于扩散吸附作用产生的扩散吸附电动势E da : C C K E mf da da 1lg = (1-7) 在泥岩和砂岩的接触面上,由于扩散吸附作用,产生的扩散吸附电动势 E da : C C K E da da 2 1lg = (1-8) 在井与砂岩、泥岩的接触面上,自然电流回路的总自然电动势Es ,是每 个接触面上自然电动势的代数和。 E s =C C K mf d 2lg +C C K mf da 1lg -C C K da 2 1lg =C C K mf d 2lg +K da (C C mf 1lg -C C 21lg ) 图1-4砂泥岩交界面处自然电场的分布 =C C K mf d 2lg + K da C C mf 2lg =(K d + K da) C C mf 2lg =K C C mf 2lg (1-9) 式中 K=(K d +K da )——自然电位系数。 对于纯砂岩和泥岩地层,其地层水和钻井液滤液的盐类为氯化钠,在25℃时,K d = -11.6mV,K da =59.1 mV ,K d -K da = -70.7 mV,令K= -( K d -K da )=70.7 mV 代人式(1-9), E S =C C mf 2lg 7.70 (1-10) 在溶液的浓度不很大时,可以认为电阻率与浓度成反比。则式(1-10)可写成: R R E mf S 2lg 7.70= (1-11) 式中 R mf ——钻井液滤液电阻率; R 2——砂岩地层水电阻率,以下用R w 表示。 如果砂岩含有泥质,或者泥岩不纯,将使总的自然电动势减小,不能按上式计算砂泥岩

第一章 自然伽马测井和自然伽马能谱测井

‘0、核测井原理概述 核测井这门课程是和《原子核物理基础》是相互衔接的一门课程。本课程的重点是自然伽马测井自然伽马能谱测井,密度测井,中子测井以及核磁测井方法原理的讨论,资料的解释应用只稍作提及。 核测井,在核磁共振测井出现之前,我们又叫做放射性测井。放射性测井主要有三种方法:自然伽马测井测量地层的天然放射性;密度测井测量人工伽马源与地层作用后的γ射线;中子测井利用中子作用于地层作用,然后测量经地层慢化后的中子,或中子核反应产生的伽马射线。这些测井方法主要用于了解地层的岩性和测量地层的孔隙度。密度测井与中子测井结合也可用来判别储集层空间中的流体性质。 核磁测井严格地说不是放射性测井方法,核磁测井利用氢核具有核磁在外磁场作用下的共振吸收特性,测量地层中的氢核的状态和数目,进而求得地层的孔隙度,束缚水饱和度等参数。 第一章 自然伽马测井和自然伽马能谱测井 自然伽马测井测量地层中天然放射性矿物放出的伽马射线来了解地层的岩性等方面的特性。本章从五个方面来讨论:1.伽马射线的测量(自然伽马测井的物理基础);2.岩石的放射性来源(自然伽马测井的地质基础);3.井中自然伽马的测量;4. 自然伽马测井资料的应用;5.最后介绍自然伽马能谱测井的原理及其应用。 §1 伽马射线及其探测 1、 伽马射线及其性质 (1)伽马射线:处于激发态的原子核,回到基态时,放出伽马射线。伽马射线是一种能量很高,波长很短的电磁波。 γ+→X X A Z m A Z △E=h ν=h λ c 式中 h ν是伽马射线的能量,h 是普郎克常数,ν是频率,c 是光速,λ是波长。岩石地层中放出的伽马射线的能量范围为1kev~7Mev. (2)伽马射线与物质的相互作用 如前所述,伽马射线射入物质后主要与物质发生三种相互作用。 光电效应:伽马射线的全部能量转移给原子中的电子,使电子从原子中发射出来,

静自然电位测井仪

高分辨率静自然电位测井仪(HRSSPT) 前言 静自然电位测井SSP是求取地层水电阻率Rw非常有效的测井方法,但由于目前的自然电位测井SP测量的并不是SSP,所以直接用SP资料求取地层水电阻率Rw会遇到许多问题。新研制的高分辨率静自然电位测井仪可以直接测量SSP。该仪器经过多口井的现场试验,所录取的资料达到了预期的设计目标,已能满足工程的需要。 一、自然电位SP测井原理 自然电位SP测井测量的是自然电位随井深变化的曲线。其原理测量线

路如图1所示。 图1 裸眼井SP测量原理 在井内放一个测量电极,地面放一个参考电极,将测量电极沿井筒移动时,即可测量出一条随深度变化的自然电位SP曲线。 二、井内自然电位产生的原因 对于油井来说,井内自然电位产生的原因主要有两个:

1.地层水矿化度Cw和钻井泥浆矿化度Cm的不同,引起离子的扩散作用和岩石颗粒对离子的吸附作用,产生扩散吸附电位; 2.地层压力与泥浆柱压力不同时,在孔隙型地层会发生过滤作用,产生过滤电位。 实践证明,油井的自然电位主要是扩散吸附电位,只有在泥浆柱和地层间的压力差很大的情况下,才考虑过滤电位的影响。 扩散吸附电位产生的原理 在油井中,扩散吸附电位产生的原理可用图2来说明。 参照图2,当地层被钻穿后: 1.在砂岩孔隙性地层段,泥浆滤液和孔隙中的地层水直接接触。由于在 一般的情况下,泥浆的矿化度小于地层水的矿化度,并假定泥浆和地层水所含的盐类都为氯化钠NaCl,所以氯离子Cl-和钠离子Na+ 会从含有矿化度较高地层水的储集层一侧向矿化度低的井眼泥浆一侧进行扩散。由于氯离子Cl-的迁移速率比钠离子Na+ 快,所以当扩散达到平衡时,在储集层内带正电荷的钠离子Na+含量会比带负电荷的氯离子Cl-多,产生正电位;而在井筒内带负电荷氯离子Cl-会比带正电荷的钠离子Na+多,产生负电位。这样在井眼和储层之间形成负的扩散电位差Ej,Ej的大小与地层水的矿化度和泥浆的矿化度有关。 2.在泥岩地层段,由于泥岩所含的粘土矿物对带负电的氯离子Cl-有非 常强的吸附能力,氯离子Cl-无法进行扩散迁移,只有带正电的钠离子Na+可以扩散迁移到井筒内,在井眼和泥岩层之间形成正的吸附电位差Em,Em的大小与泥岩地层水的矿化度和泥浆的矿化度有关。

主要测井曲线及其含义

主要测井曲线及其含义

自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。 ③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,

第一章 自然电位测井

第一章自然电位测井 第一节自然电场的产生 一、扩散电动势产生的条件 1. 两种溶液的矿化度不同 2. 中间具有渗透性隔层 3.正负离子的迁移率不同 井中砂岩剖面的扩散电动势:泥浆滤液和地层水的矿化度不同;附着在地层上的泥饼具有渗透性;泥浆滤液和地层水的正负离子迁移率不同。 二、扩散吸附电动势 组成泥岩的粘土矿物,其结晶构造和化学性质只允许阳离子通过泥岩扩散,而吸附带负电的阴离子的作用称为阳离子交换作用。扩散结果在浓度小的一方富集正电荷带正电,在浓度大的一方富集负电荷,形成扩散吸附电动势E da: 扩散吸附电动势产生的条件:1.两种溶液的矿化度不同;2.两种溶液用渗透性隔层隔离;3.渗透性隔层对不同极性的离子具有不同的吸附性。 井中泥岩剖面的扩散吸附电动势:1. 泥浆滤液矿化度低于地层水矿化度2. 泥岩具有渗透性3. 泥岩具有吸附阴离子的阳离子交换能力。 当井壁附近地层水和泥浆滤液矿化度都较低时,且C w>C mf时泥岩剖面上的扩散吸附电动势为: 在矿化度较低的情况下,溶液的电阻率与溶液的矿化度成反比关系,因此上式可写为: 三、氧化还原电位 地下煤层与其接触的溶液(地层水或钻井液)发生氧化还原反应,从而在其接触面上形成氧化还原电位,最终形成沿井身的自然电位异常。当煤层处于氧化状态时,可形成自然电位正异常;当煤层处于还原状态时,可形成自然电位的负异常。 无烟煤和石墨的氧化反应最强烈,自然电位曲线表现为正异常。 瘦煤、炼焦煤、肥煤氧化反应强度递减,其自然电位正异常依次减小。 气煤和褐煤处于还原状态且强度不大自然电位表现为不大的负异常。 由于烟煤中含有的金属硫化物氧化作用很强,因此烟煤的自然电位正异常与其所含的金属硫化物有关。 四、过滤电动势 在岩石中,岩石颗粒之间形成很细的毛细管孔道,当泥浆柱的压力大于地层的压力时,泥浆滤液通过井壁在岩石孔道中流过,形成过滤电动势。 在砂泥岩剖面的井中的自然电场主要由砂岩井段的扩散电位和泥岩井段扩散吸附电位组成。在煤层中自然电位以氧化还原电位为主。 第二节自然电位测井及曲线特征

主要测井曲线及其含义

主要测井曲线及其含义 自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的―正‖、―负‖以及幅度的大小与泥浆滤液电阻率R mf和地层水电阻率Rw的关系一致。Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分

布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。 ③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 双感应测井

自然电位原理与应用

图 2-1 井中砂、泥岩接触情况下离子扩散及形成的电荷分布(Cw >Cmf ) 图2-1-1 井中砂、泥岩接触情况下离子扩散及形成的电荷分布(Cw>Cmf ) 1.自然电位测井 自然电位测井是在裸眼井中测量井轴上自然产生的电位变化,以研究井剖面地层性质的一种测井方法。它是世界上最早使用的测井方法之一,是一种最简便而实用意义很大的测井方法,至今仍然是砂泥岩剖面淡水泥浆裸眼井必测的项目之一。对于区分岩石性质,尤其是在区分泥质和非泥质地层方面,更有其突出的优点。 1.1自然电场的产生 井内有自然存在的电位变化,说明井内有自然电流流动,井内必然有自然产生的电动势。实践研究表明,能够引起井内自然电流,进而产生一定电位值的自然电动势有多种,包括扩散电动势、扩散吸附电动势、过滤电动势、氧化还原电动势等。在沉积岩地区的油气钻井中,主要遇到的是前三种,而且常常以前两种占绝对优势。 1.1.1扩散电动势(地层水与泥浆之间的直接扩散) 砂岩孔隙中的地层水与井内泥浆之间,相当于不同浓度的两种NaCl 溶液呈直接接触。溶液中的Cl -和Na +将从高浓度的岩层一方朝着井内直接扩散(图2-1-1a )。由于两种离子的移动速度(在电化学中称迁移率)不同,Cl -的移动速度比Na +大,于是扩散之后,在低浓度的泥浆一方将出现过多的移动速度快的Cl -,带负电;而在高浓度的岩层一方,则将出现移动速度慢的Na +离子,带正电。正负离子在不同浓度的溶液两方相对集中的结果,便产生了电位差——地层一方的电位高于泥浆一方的电位。 但是,随着扩散过程的继续进行,所形成的电场反过来会影响离子进一步的扩散。也就是使原来移动速度快的Cl -离子减慢,而使移动速度慢的Na +加快。当溶液两方电荷积累到一定程度,使不同符号的离子 以相等的速度继续扩散,达到 所谓动态平衡时,电荷的积累 便停止。于是在不同浓度的两 种溶液之间形成一固定的电 动势。这种由于溶液直接接 触,并通过离子的自由扩散所 形成的电动势,称为扩散电动 势,如图2-1-1b 中砂岩与泥 浆接触处的情况。 可以看出,扩散电动势的极性是,低浓度溶液一方为负,高浓度溶液一方为正。扩散电动势的大小,与两种溶液之间的浓度差有关,还与溶液中盐离子的类型和溶液温度有关。显然,溶液之间的浓度差越大,形成的扩散电动势也会越大。根据实验得知,对所述地层水和泥浆滤液这两种NaCl 溶液进行直接扩散而言,扩散电动势(用符号E d 表示)可由下式决定: mf w d d C C K E lg (2-1-1)

地球物理测井[曲线解释]

地球物理测井 第一节:概述 地球物理测井的分类:分为电法测井和非电法测井两种。 1、电法测井: a:视电阻率、b:微电极、c:自然电位、d:微球型聚焦、e:感应测井。 2、非电法测井: a:声速测井、b:自然伽玛测井、c:中子测井、d:密度测井,e:井径、f:井斜、g:井温、h:地层倾角(HDT)、I:地层压力(RFT)、j:垂直地震测井(VSP) 第二节:电法测井 一、视电阻率曲线: 测井时将电极系放入井下,在上提过程中测量记录一条△Vmn(电位差)随井深变化的曲线,称为视电阻率曲线。 梯度电极系:成对电极间的距离小于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。 电位电极系:成对电极间的距离大于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。 底部梯度电极系在高阻层测井曲线的形状特点如下: (1)对着高阻层视电阻率升高,但曲线不对称于地层中点,高阻层顶界面、底界面分别在极小值、极大值的1/2mn处。 (2)对于厚层、地层中部附近曲线出现平直或变化平缓,随地层

减薄平直段缩短直至消失,该处视电阻率值接近地层真电阻率。 (3)对于薄层,在高阻层底界面以下一个电极处,在视电阻率曲线上出现一个“假极大”,极小也比原层上移。 视电阻率曲线的应用: 1、划分岩层界面: 利用底部梯度电极系视电阻率曲线划分岩层界面的原理是高阻层顶界面(底界面)位于视电阻率曲线极小值(极大值以下1/2MN处。 2、判断岩性: 在砂泥岩剖面中,当地层水含盐浓度不是很大时,砂岩电阻率大于泥岩的电阻率,粉砂岩泥质砂岩、砂质泥岩介于它们之间。但视电阻率曲线无法区分灰岩和拉拉扯扯云岩,它们的电阻都非常大。 3、地层对比和定性判断油水层: 对于同一储层,如果0.45m底部梯度幅度高于4m底部梯度梯度测井曲线幅度该层可能为水层,反之则为水层。 二:微电极测井 微电极测井:利用特制的短电极系帖附井壁,测量井壁附近的岩层电阻率的一种测井方法叫微电极测井。 微电极测井曲线的应用: 1、详细划分地层:地层界面一般在曲线的转折点或半幅点 2、划分渗透层,判断岩性:微电极曲线在渗层上显示正幅度差,数值中等,地层渗透率越好,二者的幅度差越大,因此可以根据微电极曲线的幅度差判断地层的渗透性好坏。各种岩性的微电极曲线特征如下: (1)泥岩和粘土,为非渗生地层,没有幅度差,值很低。 (2)渗透性砂岩:渗透性砂岩在微电极曲线上显示中等幅度和较大正

常用测井曲线含义及测井解释方法

主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP 为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层:

顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 四、双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。 感应测井曲线的应用:①划分渗透层。②确定岩层真电阻率。③快速、直观地判断油、水层。 油层: RILD>RILM>RFOC 水层: RILD< RILM< RFOC 纯泥层: RILD、RILM基本重合 五、双侧向测井 双侧向测井是采用电流屏蔽方法,迫使主电极的电流经聚焦后成水平状电流束垂直于井轴侧向流入地层,使井的分流作用和低阻层对电流的影响减至最小程度,因而减少了井眼和围岩的影响,较真实地反映地层电阻率的变化,并能解决普通电极系测井所不能解决的问题。 双侧向测井资料的应用:①确定地层的真电阻率。②划分岩性剖面。③快速、直观地判断油、水层。 六、八侧向测井和微球形聚焦测井. ⑴、八侧向是一种浅探测的聚焦测井,电极距较小,纵向分层能力强,主要用来反映井壁附近介质的电阻率变化。⑵、微球形聚焦测井是一种中等探测深度的微聚焦电法测井,是确定冲洗带电阻率测井中较好的一种方法 主要应用:①划分薄层。②确定Rxo。 七、井径测井 主要用途:

自然伽马能谱测井原理及其应用

班级资工11101班学号 201107964 姓名陈强

目录 自然伽马能谱测井原理 (3) 自然伽马能谱测井分析与应用 (5) 关于自然伽玛能谱的几点认识与总结 (9)

自然伽马能谱测井原理及其应用 The Principle and Application of Natural Gamma Ray Spectrometry Logging 1 自然伽马能谱测井原理 1.1 自然伽马能谱测井的理论基础 地层中存在的放射性核素,主要是天然放射性核素,这些核素又分放射系和非放射系的天然放射性核素。放射系为钍系、铀系和锕铀系,但锕铀系的头一个核素235U在自然界中的丰度很低,其放射性贡献甚微,不予考虑。非放射系的天然放射性核素如表1所列。从表中可见,主要是87Rb和40K,但是87Rb无伽马辐射。所以,在研究地层中的自然伽马能谱主要是238U、232Th放射系和40K放射的伽马射线能谱。

因为地层岩石的自然伽马射线主要是由铀系和钍系中的放射性核素及40K产生的。而铀系和钍系所发射的伽马射线是由许多种核素共同发射的伽马射线的总和,但每种核素所发射的伽马射线的能量和强度不同,因而伽马射线的能量分布是复杂的。而40K只能发射一种伽马射线,其能量1.46Mev的单能。如果我们把横座标表示为伽马射线的能量,纵座标表示为相应的该能量的伽马射线的强度。把这些粒子发射的伽马射线的能量画在座标系中,那么就得到了伽马射线的能量和强度的关系图,这个图称为自然伽马的能谱图。铀系和钍系在放射性平衡状态下系内核素的原子核数的比例关系是确定的,因此不同能量伽马的相对强度也是确定的,因此我们可以分别在这两个系中选出某种核素的特征核素伽马射线的能量来分别识别铀和钍。这种被选定的某种核素称为特征核素,它发射的伽射线的能量称为特征能量,在自然伽马能谱测井中,通常选用铀系中的214Bi发射的1.76MeV 的伽马射线来识别铀,选用钍系中的208Tl发射的2. 62MeV的伽马射线来识别钍,用1.46MeV的伽马射线来识别钾。当我们把伽马射线按我们所选定的特征能量分别计数,那么这就叫测谱。测谱测出的结果打印成数据表或绘成能谱图。因而将测得的自然伽马能谱转换成地层的铀、钍、钾的含量,并计录在磁带上或以连续测井曲线的形式输出,这就是自然伽马能谱测井。要用自然伽马能谱测井,必须满足两个条件:(1)地层岩石中必须存在具有7辐射的放射性核素,或者说,岩石中的放射性核素必须具有7辐射;(2)放射性核素在地层岩石中的分布必须具有特异性。

主要测井曲线及含义

一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。

自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。 ⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。 ⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 四、双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。 感应测井曲线的应用:①划分渗透层。②确定岩层真电阻率。③快速、直观地判断油、水层。油层: RILD>RILM>RFOC 水层: RILD< RILM< RFOC 纯泥层: RILD、RILM基本重合 五、双侧向测井 双侧向测井是采用电流屏蔽方法,迫使主电极的电流经聚焦后成水平状电流束垂直于井轴侧向流入地层,使井的分流作用和低阻层对电流的影响减至最小程度,因而减少了井眼和围岩的影响,较真实地反映地层电阻率的变化,并能解决普通电极系测井所不能解决的问题。 双侧向测井资料的应用:①确定地层的真电阻率。②划分岩性剖面。③快速、直观地判断油、水层。 六、八侧向测井和微球形聚焦测井. ⑴、八侧向是一种浅探测的聚焦测井,电极距较小,纵向分层能力强,主要用来反映井壁附近介质的电阻率变化。⑵、微球形聚焦测井是一种中等探测深度的微聚焦电法测井,是确定冲洗带电阻率测井中较好的一种方法 主要应用:①划分薄层。②确定Rxo。 七、井径测井 主要用途: 计算固井水泥量;

自然伽马能谱操作手册

自然伽马能谱(SL1318XA) 操作手册

一、仪器简介 1318XA能谱测井仪是一种自然伽马测井仪,能定量地辨别自然放射性的三种主要来源:钾(K)40、铀系核素和钍系核素。 基本能谱测井曲线为四条深度函数曲线,一条为总伽马射线强度(按API单位刻度),其余三条为地层中测得的钾(按百分比刻度)、铀(按ppm刻度)和钍(按ppm刻度)的浓度。还能得到这些曲线中任意两条的比值。 1318XA能谱测井仪可以使用单芯电缆或多芯电缆,可用150V D.C.或180V A.C.供电(马龙头电压)。 二、仪器技术指标 部件号:112226 仪器长度:7.0ft(2.13m) 外壳直径:3.63in(9.22cm),最大3.70in(9.398cm)。 重量:115LB(52.2Kg)。 最大耐压:20 000PSI(1406Kg/cm2或137.9MPa)。 电缆头供电电压:150V D.C.;45-50mA。 180V A.C.;45-50mA。 最大测速:10ft(3m)/min;(推荐值) 测量基准点:从后堵头尖端至探测器晶体 12in(30.48cm)。 缆芯用法:2,10-150V D.C.;(开关S1在D.C.处)。 4, 6-180V A.C.;(开关S1在A.C.处)。 7-信号输出。 10-地。 探测器: 型号:钠活化碘化铯晶体。 长度:12in(30.48cm)。 直径:2in(5.08cm)。 温度:400°F(持续4小时)。

三、仪器外形尺寸 仪器外形尺寸图 四、所需设备 1、9204信号恢复面板内的1、 2、3号插板。 2、1318XA能谱测井仪刻度筒。 五、信号流程 六、开关档位设置 9206面板:“7芯/临时/测试”开关置“7芯”档。 “测井/马达/扩展”开关置“测井”档。 “7芯/非标准/扩展Ⅲ”开关置“7芯”档。 “测井/模拟/扩展Ⅱ”开关置“测井”档。 9204面板:“INT/EXT”置“INT”。

测井曲线的识别及应用

第一讲测井曲线的识别及应用 钻井取芯、岩屑录井、地球物理测井是目前比较普及的三种认识了解地层的方法。钻井获取的岩芯资料直观、准确,但成本高、效率低。岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真。测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的一种录井方法;具有经济实用、收获率高、易保存的优势,是目前我们认识地层的主要途径。 鄂尔多斯盆地常规测井系列分为综合测井和标准测井两种。 综合测井系列:重点反映目的层段钻井剖面的地层特征。测量井段由井底到直罗组底部,比例尺1:200。由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成。探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线。 标准测井系列:全面反映钻井剖面地层特征,测量井段由井底到井口(黄土层底部),比例尺1:500,多用于盆地宏观地质研究。过去标准测井系列较单一,仅有视电阻率、自然咖玛测井等两三条曲线。近几年完钻井的标准测井系列曲线较完善,只比综合测井系列少了微电极测井一项。 一、测井曲线的识别微电极系测井、四米电阻测井、感应—八侧向测井、都是以测定岩石的电阻率为物理前提,但曲线的指向意义各异。微电极常用于判断砂岩渗透性和薄层划分。感应—八侧向测井用于判定砂岩的含油水层性能。四米电阻、声速、井径、自然电位、自然咖玛用于砂泥岩性划分。它们各有特定含义,又互相印证,互为补充,所以,我们使用时必须综合考虑。 1、微电极测井 大家知道,油井完钻后由井眼向外围依次是:泥饼、冲洗带、侵入带、地层。泥饼是泥浆中的水分进入地层后,吸附、残留在砂岩壁上的泥浆颗粒物。冲洗带是紧靠井壁附近,地层中的流体几乎被钻井液全部赶走了的部分;其深入地层的范围一般约7—8 厘米。侵入带是钻井液与地层中流体的混合部分。 微电极测井是一种探测井壁周围泥饼和冲洗带电阻率的测井方法。由三个微电极系测得的微梯度和微电位两条曲线组成。微梯度探测范围(横向深度)4—5 厘米,显示的是

相关文档
相关文档 最新文档