文档库 最新最全的文档下载
当前位置:文档库 › 考研数学一-概率论与数理统计大数定律和中心极限定理.doc

考研数学一-概率论与数理统计大数定律和中心极限定理.doc

考研数学一-概率论与数理统计大数定律和中心极限定理.doc
考研数学一-概率论与数理统计大数定律和中心极限定理.doc

考研数学一-概率论与数理统计大数定律和中心极限定理

(总分:48.00,做题时间:90分钟)

一、选择题(总题数:9,分数:9.00)

1.设随机变量X1,X2,…,X n,…独立同分布,EX i=μ(i=1,2,…),则根据切比雪夫大数定律,X1,X2,…,X n,…依概率收敛于μ,只要X1,X2,…,X n,…

(分数:1.00)

A.共同的方差存在.

B.服从指数分布.

C.服从离散型分布.

D.服从连续型分布.

2.假设天平无系统误差.将一质量为10克的物品重复进行称量,则可以断定“当称量次数充分大时,称量结果的算术平均值以接近于1的概率近似等于10克”,其理论根据是

(分数:1.00)

A.切比雪夫大数定律.

B.辛钦大数定律.

C.伯努利大数定律.

D.中心极限定理.

3.下列命题正确的是

(分数:1.00)

A.由辛钦大数定律可以得出切比雪夫大数定律.

B.由切比雪夫大数定律可以得出辛钦大数定律.

C.由切比雪夫大数定律可以得出伯努利大数定律.

D.由伯努利大数定律可以得出切比雪夫大数定律.

4.设X1,…,X n…是相互独立的随机变量序列,X n服从参数为n的指数分布(n=1,2,…),则下列随机变量序列中不服从切比雪夫大数定律的是

(分数:1.00)

__________________________________________________________________________________________

5.假设随机变量序列X1,…,X n…独立同分布且EX n=0

1.00)

A.

B.

C.

D.

6.设X n,n≥1为相互独立的随机变量序列且都服从参数为λ的指数分布,则

1.00)

__________________________________________________________________________________________

7.设随机变量X1,…,X n-林德伯格中心极限定理,当n充分大时,S n近似服从正态分布,只要X1,…,X n

1.00)

A.

B.

C.

D.

8.假设X1,…,X n,…为独立同分布随机变量序列,且EX n=0,DX n=σ2

1.00)

A.

B.

C.

D.

9.假设X n,n≥1n充分大时,可以用正态分布作为S n的近似分布,如果

1.00)

A.

B.

C.

D.

二、填空题(总题数:4,分数:4.00)

10.设某种电气元件不能承受超负荷试验的概率为0.05.现在对100个这样的元件进行超负荷试验,以X 表示不能承受试验而烧毁的元件数,则根据中心极限定理P5≤X≤10≈______.

(分数:1.00)

填空项1:__________________

11.将一枚骰子重复掷n次,则当n→∞时,n 1.00)

填空项1:__________________

12.设随机变量序列X1,…,X n,…相互独立且都在(-1,1)上服从均匀分布, 1.00)填空项1:__________________

13.设X1,X2,…,X100是独立同服从参数为4则

数:1.00)

填空项1:__________________

三、解答题(总题数:7,分数:35.00)

14.设某种元件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为40小时,在使用中,当一个元件损坏后立即更换另一个新的元件,如此继续下去,已知每个元件进价为a元,试求在年计划中应为购买此种元件作多少预算,才可以有95%的把握保证一年够用.(假定一年按2000个工作小时计算,

Ф(1.64)=0.95.)

(分数:5.00)

__________________________________________________________________________________________ 15.假设每人每次打电话通话时间X(单位:分)服从参数为l的指数分布,试求800人次通话中至少有3次超过6分钟的概率α,并利用泊松定理与中心极限定理分别求出α的近似值(e-2=0.1353,e-6=0.00248,Ф(0.707)=0.7611,Ф(1.41)=0.9207).

(分数:5.00)

__________________________________________________________________________________________

16.假设随机变量X与Y相互独立,且分别服从参数为λ与μ 5.00)

__________________________________________________________________________________________

17.编号为1,2,3的三个球随意放入编号为1,2,3的三个盒子中,每盒仅放一个球,令X i

数:5.00)

__________________________________________________________________________________________

18.已知随机变量X,Y的概率分布分别为 5.00)

__________________________________________________________________________________________

19.已知随机变量X与Y0-1分布,即

5.00)

__________________________________________________________________________________________

20.下列表格给出二维随机变量(X,Y)的联合分布、边缘分布的部分值,并已知

试将其余数值填入空白处.

5.00)

__________________________________________________________________________________________

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点考研数学高数定理证明的知识点 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求 会证。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推 举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想 必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导” 和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得 函数在该点的导数为0。 前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直 接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔 定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连 续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。 那么最值和极值是什么关系?这个点需要想清楚,因为直接影响 下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若 最值均取在区间端点,则最值不为极值。那么接下来,分两种情况 讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条 告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值 和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在 开区间上任取一点都能使结论成立。 拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,

若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过 程中体现出来的基本思路,适用于证其它结论。 以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑 在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗 尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子 是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现 场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函 数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值 换成x,再对得到的函数求不定积分。 2015年真题考了一个证明题:证明两个函数乘积的导数公式。 几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的.较为 陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公 式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急 功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可 能从未认真思考过该公式的证明过程,进而在考场上变得很被动。 这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中 未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写 出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则, 因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。 利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有” 的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了 f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把

中心极限定理的创立与发展

中心极限定理的创立与发展 -----杨静邓明立 概率论极限理论是概率论的重要组成部分,是概率论的其他分支和数理统计的重要基础。的概率现象是由于无数的随机因素共同作用的结果---这些因素每一个都起到一点作用,但都没有起到很大的甚至决定性的作用。而极限定理告诉我们,这类多随机因素作用的现象必然会收敛于某个正态分布的概率模型。因此,该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 现实中有许多随机变量都具有上述特点,比如,大炮的射程受到多种因素影响:炮身结构,炮弹外形,炮弹几炮弹内炸药质量,瞄准的误差,风速,风向的干扰,大炮的使用年限等等,其中每种因素的微小差异对总的影响作用都不大,并且可以看作是互相独立的、互相不影响的。每种因素都会引起一个微小的误差,而炮弹落点的误差就是这许多随机误差的总和所影响的。由此看出,研究随机变量和的极限对于搞清楚随机现象的本质有着极其的重要价值。 在生产和生活中,有许多随机变量的取值呈现出“中间多,两头少,左右对称”的特点。例如,一般来说我国北方男性身高在170厘米左右的居多,而高于180厘米和低于160厘米的较少。或者在生产条件不变的情况下产品的抗压强度、长度、等许多随机变量指标也都存在这样类似的情况。这样的随机变量所服从的分布就是所谓的“正态分布”。许多随机变量服从正态分布。 极限理论中的中心极限定理曾是概率论的中心课题。中心极限定理有很多形式。凡是关于随机变量的数目无限增多时,其和的分布函数在一定的条件下收敛于正态分布函数的任何论断,都称为中心极限定理。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理”。

考研数学线代定理公式汇总

考研数学线代定理公式汇总

————————————————————————————————作者:————————————————————————————————日期:

3 概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ????? ?? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○ 注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○ 注 ()()a b r aE bA n aE bA aE bA x οολ+

4 ? ? ????? →???? :;具有 向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ???: ①称为n ? 的标准基,n ? 中的自然基,单位坐标向量87p 教材; ②12,,,n e e e ???线性无关; ③12,,,1n e e e ???=; ④tr =E n ; ⑤任意一个n 维向量都可以用12,,,n e e e ???线性表示. 行列式的定义 1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= =-∑ L L L L L M M M L 1 √ 行列式的计算: ①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

考研数学中值定理五大注意事项

考研数学中值定理五大注意事项 来源:文都图书 中值定理是考研数学得分较低的一块,可以说是考生的“灾难区”,看到一个题目怎么思考处理是个问题,下面,就给大家就这一部分讲解一下事项。 1. 所有定理中只有介值定理和积分中值定理中的ξ所属区间是闭区间。 2. 拉格朗日中值定理是函数f(x)与导函数f'(x)之间的桥梁。 3. 积分中值定理是定积分与函数之间的桥梁。 4. 罗尔定理和拉格朗日中值定理处理的对象是一个函数,而柯西中值定理处理的对象是两个函数,如果结论中有两个函数,形式与柯西中值定理的形式类似,这时就要想到我们的柯西中值定理。 5. 积分中值定理的加强版若在定理证明中应用,必须先证明。 其次对于中值定理证明一般分为两大类题型:第一应用罗尔定理证明,也可又分为两小类:证明结论简单型和复杂型,简单型一般有证明f'(ξ)=0,f'(ξ)=k (k为任意常数),f'(ξ1)=g'(ξ2),f''(ξ)=0,f''(ξ)=g''(ξ),像这样的结论一般只需要找罗尔定理的条件就可以了,一般罗尔定理的前两个条件题目均告知,只是要需找两个不同点的函数值相等,需找此条件一般会运用闭区间连续函数的性质、积分中值定理、拉格朗日中值定理、极限的性质、导数的定义等知识点。复杂型就是结论比较复杂,需要建立辅助函数,再使辅助函数满足罗尔定理的条件。辅助函数的建立一般借助于解微分方程的思想。第二就是存在两个点使之满足某表达式。这样的题

目一般利用拉格朗日中值定理和柯西中值定理,处理思想把结论中相同字母放到等是一侧首先处理。 上述就是值定理需要注意的事项。希望大家在做题的过程中多加注意,可以配套着汤家凤的《2016考研数学绝对考场最后八套题》来进行对应的训练,掌握好上述的知识点。

考研数学公式大全(数三)

导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

2016考研数学中值定理证明思路总结

2016考研数学中值定理证明思路总结中值定理这块一直都是很多考生的“灾难区”,一直没有弄清楚看到一个题目到底怎么思考处理,因此也是考研得分比较低的一块内容,如果考生能把中值定理的证明题拿下,那么我们就会比其他没做上的同学要高一个台阶,也可以说这是一套“拉仇恨”的题目。下面小编就和大家来一起分析一下这块内容。 1.具体考点分析 首先我们必须弄清楚这块证明需要的理论基础是什么,相当于我们的工具,那需要哪些工具呢? 第一:闭区间连续函数的性质。 最值定理:闭区间连续函数的必有最大值和最小值。 推论:有界性(闭区间连续函数必有界)。 介值定理:闭区间连续函数在最大值和最小值之间中任意一个数,都可以在区间上找到一点,使得这一点的函数值与之相对应。 零点定理:闭区间连续函数,区间端点函数值符号相异,则区间内必有一点函数值为零。 第二:微分中值定理(一个引理,三个定理)

费马引理:函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那么f'(ξ)=0。 罗尔定理:如果函数f(x)满足: (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 在区间端点处的函数值相等,即f(a)=f(b), 那么在(a,b)内至少有一点ξ(a<ξ 柯西中值定理:如果函数f(x)及F(x)满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)对任一x∈(a,b),F'(x)≠0 那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。 第三:积分中值定理: 如果函数f(x) 在积分区间[a, b]上连续,则在[a, b]上至少存在一个点ξ,使下式成立

考研数学公式大全(考研必备)

高等数学公式篇 导数公式: 基本积分表: C kx dx k +=? )1a (,C x 1 a 1 dx x 1a a -≠++=+? C x ln dx x 1+=? C e dx e x x +=? C a ln a dx a x x +=?(1a ,0a ≠>) C x cos xdx sin +-=? C x sin dx x cos +=? C x arctan dx x 11 2+=+? C a x arcsin x a dx C x a x a ln a 21x a dx C a x a x ln a 21a x dx C a x arctan a 1x a dx C x cot x csc ln xdx csc C x tan x sec ln xdx sec C x sin ln xdx cot C x cos ln xdx tan 2 2222222+=-+-+=-++-=-+=++-=++=+=+-=???????? ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C )a x x ln(a x dx C shx chxdx C chx shxdx C a ln a dx a C x csc xdx cot x csc C x sec dx x tan x sec C x cot xdx csc x sin dx C x tan xdx sec x cos dx 222 2x x 2 22 2 a ln x 1)x (log a ln a )a (x cot x csc )x (csc x tan x sec )x (sec x csc )x (cot x sec )x (tan x cos )x (sin aX )X (0)C (a x x 2 21a a = '='?-='?='-='='='='='-2 2 22 x x x 11 )x cot arc (x 11 )x (arctan x 11 )x (arccos x 11 )x (arcsin x 1 )x (ln e )e (x sin )x (cos +- ='+= '-- ='-= '= '='-='

(完整版)考研数学公式推导

积化和差 积化和差,指初等数学三角函数部分的一组恒等式。 公式 sinαsinβ=-[cos(α+β)-cos(α-β)]/2(注意此公式前的负号) cosαcosβ=[cos(α+β)+cos(α-β)]/2 sinαcosβ=[sin(α+β)+sin(α-β)]/2 cosαsinβ=[sin(α+β)-sin(α-β)]/2 证明 积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。 即只需要把等式右边用两角和差公式拆开就能证明: sinαsinβ=-1/2[cos(α+β)-cos(α-β)] =-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαsinβ)] =-1/2[-2sinαsinβ] 其他的3个式子也是相同的证明方法。 作用 积化和差公式可以将两个三角函数值的积化为另两个三角函数值的和乘以常数的形式,所以使用积化和差公式可以达到降次的效果。 在历史上,对数出现之前,积化和差公式被用来将乘除运算化为加减运算,运算需要利用三角函数表。 运算过程:将两个数通过乘、除10的方幂化为0到1之间的数,通过查表求出对应的反三角函数值,即将原式化为10^k*sinαsinβ的形式,套用积化和差后再次查表求三角函数的值,并最后利用加减算出结果。 对数出现后,积化和差公式的这个作用由更加便捷的对数取代。 和差化积 正弦、余弦的和差化积 指高中数学三角函数部分的一组恒等式 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 以上四组公式可以由积化和差公式推导得到 证明过程 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 因为 sin(α+β)=sin αcos β+cos αsin β,

第五章 数定理与中心极限定理

第五章 大数定理与中心极限定理 ■考试内容 切比雪夫(Chebyshev )不等式 切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗—拉普拉斯(De Moivre —Laplace )定理 列维—林德伯格(Levy —Lindberg )定理 ■考试要求 1.了解切比雪夫不等式。 2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数 定律) 3. 了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独 立同分布随机变量序列的中心极限定理) 3大均2中和1不等(3个大数定理、2个中心极限定理和一个不等式)。 一、切贝雪夫不等式 1.1 切贝雪夫不等式及其应用范围 如果不知道X 属于何种分布,只要()E X 和()D X 存在,就可以估算出以()E X 为中心的对称区间上取值的概率。即:则任给0,ε>有 或 ●证 明:由积分比较定理可知: ()[]()[]()()(){} {}() {}() {}() 2 2 2()()2 2()2 2 2 ()()()()1()()1x E X x E X x E X D X x E X f x dx x E X f x dx f x dx f x dx P X E X D X P X E X D X D X P X E X P X E X ε ε ε εεεεεεεεεε∞ -∞ -≥-≥-≥=-≥-≥ ==-≥?-≥≤ ?--<≤ ?-<≥- ??? ? 1.2 依概率收敛的定义 设a 是一个常数,n X 为一随机变量序列, 0, {}1n P X a εε?>?-<=或{}0n P X a ε-≥=,

考研数学线代定理公式总结(新)

同是寒窗苦读,怎愿甘拜下风! 概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 12,s i A p p p p n B AB E AB E ?? ??? ????? ?? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○ 注:全体n 维实向量构成的集合n 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○ 注 ()()a b r aE bA n aE bA aE bA x οολ+

同是寒窗苦读,怎愿甘拜下风! ? ? ????? →???? 具有 向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ???: ①称为 n 的标准基, n 中的自然基,单位坐标向量87p 教材; ②12,,,n e e e ???线性无关; ③12,,,1n e e e ???=; ④tr =E n ; ⑤任意一个n 维向量都可以用12,,,n e e e ???线性表示. 12 1212 11 12121222() 1212 ()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 √ 行列式的计算: ①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

2020考研 线性代数_常用公式

考研数学线性代数常用公式 数学考研考前必背常考公式集锦。希望对考生在暑期的复习中有所帮助。本文内容为线性代数的常考公式汇总。 1、行列式的展开定理 行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之 和,即 C 的 3、设A 为n 阶方阵,*A 为它的伴随矩阵则有**==AA A A A E . 设A 为n 阶方阵,那么当AB =E 或BA =E 时,有1-B =A 4、 对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种: 第一种:交换单位矩阵的第i 行和第j 行得到的初等矩阵记作ij E ,该矩阵也

可以看做交换单位矩阵的第i 列和第j 列得到的.如1,3001010100?? ?= ? ?? ?E . 第二种:将一个非零数k 乘到单位矩阵的第i 行得到的初等矩阵记作()i k E ;该矩阵也可以看做将单位矩阵第i 列乘以非零数k 得到的.如 2100(5)050001?? ?-=- ? ?? ?E . 第三种:将单位矩阵的第i 行的k 倍加到第j 行上得到的初等矩阵记作()ij k E ;该矩阵也可以看做将单位矩阵的第j 列的k 倍加到第i 列上得到的.如 3,2100(2)012001?? ?-=- ? ??? E . 注: 1)初等矩阵都只能是单位矩阵一次初等变换之后得到的. 2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵()ij k E 看做列变换是将单位矩阵第j 列的k 倍加到第i 列,这一点考生比较容易犯错. 5、矩阵A 最高阶非零子式的阶数称之为矩阵A 的秩,记为()r A . 1)()()(),0r r r k k ==≠T A A A ; 2)()1r ≠?≥A O A ; 3)()1r =?≠A A O 且A 各行元素成比例; 4)设A 为n 阶矩阵,则()0r n =?≠A A . 6、线性表出 设12,,...,m ααα是m 个n 维向量,12,,...m k k k 是m 个常数,则称1122...m m k k k ααα+++为向量组12,,...,m ααα的一个线性组合. 设12,,...,m ααα是m 个n 维向量,β是一个n 维向量,如果β为向量组

考研数学辅导,第三讲 中值定理的证明

第四讲 中值定理的证明技巧 一、 考试要求 1、 理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定 理),并会应用这些性质。 2、 理解并会用罗尔定理、拉格朗日中值定理、泰勒定理,了解并会用柯西中值 定理。掌握这四个定理的简单应用(经济)。 3、 了解定积分中值定理。 二、 内容提要 1、 介值定理(根的存在性定理) (1)介值定理 在闭区间上连续的函数必取得介于最大值 M 与最小值m 之间的任何值. (2)零点定理 设f(x)在[a 、b]连续,且f(a)f(b)<0,则至少存在一点,c ∈(a 、b),使得f(c)=0 2、 罗尔定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 (3))()(b f a f = 则一定存在),(b a ∈ξ使得0)('=ξf 3、 拉格朗日中值定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 则一定存在),(b a ∈ξ,使得))((')()(a b f a f b f -=-ξ 4、 柯西中值定理 若函数)(),(x g x f 满足: (1)在[]b a ,上连续 (2)在),(b a 内可导 (3)0)('≠x g 则至少有一点),(b a ∈ξ使得)(') (') ()()()(ξξg f a g b g a f b f = --

5、 泰勒公式 如果函数)(x f 在含有0x 的某个开区间),(b a 内具有直到1+n 阶导数, 则当x 在 ),(b a 内时, )(x f 可以表示为0 x x -的一个n 次多项式与一个余项)(x R n 之和,即 ) ())((!1 ))((!21))(()()(00)(200000x R x x x f n x x x f x x x f x f x f n n n +-+???+-''+-'+= 其中1 0)1()()!1() ()(++-+=n n n x x n f x R ξ (ξ介于0x 与x 之间). 在需要用到泰勒公式时,必须要搞清楚三点: 1.展开的基点; 2.展开的阶数; 3.余项的形式. 其中余项的形式,一般在求极限时用的是带皮亚诺余项的泰勒公式,在证明不等式时用的是带拉格朗日余项的泰勒公式. 而基点和阶数,要根据具体的问题来确定. 6、利用中值定理解题的技巧 (1)辅助函数的构造 微分中值定理通常用来证明一些等式、不等式及方程根的存在性。在证明方程根的存在性和不等式时,经常要构造出一个辅助函数,辅助函数的构造方法通常有三种:找原函数法;指数因子法;常数k 值法。 ①、方程根的存在性 方程根的存在性,常用介值定理和罗尔定理来证明。这里着重讲解罗尔定理。下面通过例题来给出三种构造辅助函数的方法。 ②、存在多个中间值的证明 有一类问题,要证明存在两个或两个以上的中间值,满足一定的等式,由于用一次中值定理只能找到一个中间值,故这类问题通常至少要用两次中值定理才能解决。 (2)非构造性的证明 有一类证明题,在证明过程中,不需要构造辅助函数,只需对原题中的函数进行讨论,称这类问题为“非构造性的证明”。 7、利用泰勒公式解题的技巧 泰勒公式常用干处理与高阶导数相关的函数的性态研究,在解题方面,通常用于证明与中间值相联系的不等式以及求函数极限。 (1) 带拉格朗日型余项的泰勒公式

第四章 大数定律与中心极限定理

第四章大数定律与中心极限定理 第一节大数定律 一、历史简介 概率论历史上第一个极限定理属于贝努里,后人称之为“大数定律”.1733年,德莫佛——拉普拉斯在分布的极限定理方面走出了根本性的一步,证明了时二项分布的极限分布是正态分布.拉普拉斯改进了他的证明并把二项分布推广为更一般的分布.1900年,李雅普诺夫进一步推广了他们的结论,并创立了特征函数法.这类分布极限问题是当时概率论研究的中心问题,卜里耶为之命名“中心极限定理”.20世纪初,主要探讨使中心极限定理成立的最广泛的条件,二三十年代的林德贝尔格条件和费勒条件是独立随机变量序列情形下的显著进展.在第一章已经指出,随机事件在大量重复试验中呈现明显的统计规律性,即一个事件在大量重复试验中出现的频率具有稳定性.这种稳定性的提法应该说是什么形式? 贝努里是第一个研究这一问题的数学家.他于是1713年首先提出后人称之为“大数定律”的极限定理. 二、大数定律 定理1(贝努里大数定律) 设是重贝努里试验中事件出现的次数,是事件在每次试验中出现的概率,则对任意的,有 证明:令表示在第次试验中出现的次数.若第次 试验中出现,则令;若若第次试验中不出现,则令.由贝 努里试验定义,是个相互独立的随机变量,且 而

于是 由契比晓夫不等式有 又由独立性知道有 从而有 这就证明了定理1. 若是随机变量序列,如果存在常数列,使得对任意的 ,有

成立,则称随机变量序列服从大数定律. 定理2(契比晓夫大数定律) 设是一列两两不相关的随机变量,又设它们的方差有界,即存在常数,使有 则对于任意的,有 证明:利用契比晓夫不等式,有 因为是一列两两不相关的随机变量,它们的方差有界,即可得到 从而有

考研数学定理声明.doc

都是有多年考研辅导经验的,指导复习当然针对性强,有事半功倍的效果。缺点就是,嘿嘿,学费问题。你所在地的学费情况我就不清楚了,你可以自己去查一下~还有一句话想说,其实这两个办法也不是对立的,你可以在学校里去旁听老师的课,把第一轮扎扎实实的复习完,放假回家去报名参加个辅导班,利用假期有针对性的做第二轮复习~相信两轮复习下来,你的长进一定不蝎呵呵~ 我就说这么多,要是以后想起来了会再来补充的~最后祝你如愿考上理想院校哦~加油 也不知道一楼是哪个名校数学系的研究生,广州大学吗?这么有才华!听他的话等楼主没考到130哭的地方都找不到。 考研每一门学科都要复习好几轮,也不知道楼主考什么专业,数学几? 基础差的话第一轮复习要弄清楚定理及其证明过程。如果应届本科生又是学理科,平时成绩不错,高数,线性分都很高的话第一轮可以直接看教材做题。

有一个证明题,而且基本上都是应用中值定理来解决问题的。但是要参加硕士入学数学统一考试的考生所学专业要么是理工要么是经管,考生们在大学学习数学的时候对于逻辑推理方面的训练大多是不够的,这就导致数学考试中遇到证明推理题就发怵,以致于简单的证明题得分率却极低。给大家简单介绍一些解决数学证明题的入手点,希望对有此隐患的考生有所帮助。 1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。 知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

2020年考研高等数学的7个定理定义

2020年考研高等数学的7个定理定义 1、函数的有界性 在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内 有界的充分必要条件是在定义域内既有上界又有下界。 2、函数的单调性、奇偶性、周期性 3、数列的极限 定理(极限的性)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定 有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分 条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a。 如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是 发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有 可能是收敛的。 4、函数的极限 函数极限的定义中00(或A0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存有的充分必要条件是左极限右极限各 自存有并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存有。

一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数 y=f(x)图形的铅直渐近线。 5、极限运算法则 有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小; 如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b。 6、极限存有准则 两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1。 夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn 且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。 单调有界数列必有极限。 7、函数的连续性 设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当 x→x0时的极限存有,且等于它在点x0处的函数值f(x0),即 lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。 不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但 lim(x→x0)f(x)不存有;3、虽在x=x0有定义且lim(x→x0)f(x)存有,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。 如果x0是函数f(x)的间断点,但左极限及右极限都存有,则称 x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相 等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。 有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。

考研数学公式大全(考研必备)

(sin (tan (cot x ) x ) x ) cos x sec 2 x (ln x ) x (arcsin x ) 1 (sec x ) (csc x ) ( a x ) csc sec x 2 x tan x 1 (arccos x ) x 1 2 1 x 2 a x a x ) csc x ln a 1 x ln a cot x (arctan x ) 1 1 x 2 1 (log ( arc cot x ) 1 x 2 kdx kx C x a dx 1 1 dx x ln x C e x d x a e x 1 x a 1 C, (a 1) C a x dx a x ln a C ( a 0, a 1) sin xdx cosx C cosxdx sin x C 1 tanxdx ln cosx C 1 x 2 dx dx arctanx C sec2 xdx tan x C cot xdx ln sin x C secxdx ln secx tan x C cos2 x dx sin 2 x csc2 xdx cot x C cscxdx dx ln cscx cot x C secx tanxdx secx C cscx cot xdx cscx C a 2 x 2 1 arctan a dx x a a a x x C a x dx x 2 a 2 1 ln x 2a x 1 ln a C shxdx a x ln a chx C C dx a2 x 2 dx 2a a C a2 x 2 arcsin x a C chxdx dx x 2 shx C a 2 ln(x 2 x 2 a ) C 导数公式: 基本积分表: 高等数学公式篇 ( C ) 0 (cos x ) ( e x ) e x sin x ( X a ) aX a 1 1

考研数学必背公式

[基础知识] -=(-b)(+b+…++) ( n为正偶数时)-=(+b)(-b+…+-) ( n为正奇数时)+=(+b)(-b+…-+) = (1)a,b位实数,则 ○1;○2;○3≤. (2),…,>0, 则 ○1≥ <[x]x 和差化积;积化和差(7): sinα+sinβ=2(sin)(cos) sinαcosβ=(sin+cos) sinα-sinβ=2(cos)(sin) cosαcosβ=(cos+cos) cosα+cosβ=2(cos)(co) sinαsinβ=-(cos-cos) cosα-cosβ=2(sin)(sin) 1+= 1+= =-=1-2=2-1

= tan===± cot===万能公式:,则, sec(x) csc(x) cot(x) arcsin(x) arccos(x) arctan(x) arc cot(x)

[极限] 函数极限x?:(6) =A: ? >0,? >0,当0<|x- x0|< 时,恒有|f(x)-A|< . =A: ? >0,? >0,当0<(x- x0)< 时,恒有|f(x)-A|<. =A: ? >0,? >0,当0<( x0- x)< 时,恒有|f(x)-A|< . =A: ? >0, ?X>0,当|x|>X时,恒有|f(x)-A|<. =A: ? >0, ?X>0,当x>X时,恒有|f(x)-A|< . =A: ? >0, ?X>0,当-x>X时,恒有|f(x)-A|< . 数列极限n∞ : =A: ? >0,?N>0 当n>N时,恒有|X n-A|< . ∞ (1)唯一性:设=A,=B,则A=B. (2)局部有界性:若存在,则存在>0,使f(x)在U={x|0<|x-x0|<内有界. (3)局部保号性:○1(脱帽)若=A>0,则存在x0的一个去心 邻域,在该邻域内恒有f(x)>0. ○2(戴帽)若存在x0的一个去心邻域,在该邻域内f(x)>(≥)0, 且=A(?),则A≥0.

考研数学:必考的定理证明整理(2)

考研数学:必考的定理证明整理(2)考研数学的定理证明是一直考生普遍感觉不太有把握的内容,而2016年考研数学真题释放出一个明确信号——考生需重视教材中重要定理的证明。下面跨考教育为考生梳理一下教材中那些要求会证的重要定理。 三、微积分基本定理的证明 该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。 变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。 “牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。 该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。 四、积分中值定理 该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学

相关文档
相关文档 最新文档