文档库 最新最全的文档下载
当前位置:文档库 › 离散数学 图论复习

离散数学 图论复习

离散数学 图论复习
离散数学 图论复习

离散数学11春图论部分综合练习辅导

大家好!本学期的第二次教学辅导活动现在开始,本次活动主要是针对第二单元图论的重点学习内容进行辅导,方式同样是通过讲解一些典型的综合练习作业题目,帮助大家进一步理解和掌握图论的基本概念和方法.

图论作为离散数学的一部分,主要介绍图论的基本概念、理论与方法.教学内容主要有图的基本概念与结论、图的连通性与连通度、图的矩阵表示、最短路问题、欧拉图与汉密尔顿图、平面图、对偶图与着色、树与生成树、根树及其应用等.

本次综合练习主要是复习这一单元的主要概念与计算方法,与集合论一样,也安排了五种类型,有单项选择题、填空题,判断说明题、计算题、证明题.这样的安排也是为了让同学们熟悉期末考试的题型,能够较好地完成这一部分主要内容的学习.

下面是本学期第4,5次形考作业中的部分题目.

一、单项选择题

单项选择题主要是第4次形考作业的部分题目.

第4次作业同样也是由10个单项选择题组成,每小题10分,满分100分.在每次作业在关闭之前,允许大家反复多次练习,系统将保留您的最好成绩,希望大家要多练几次,争取好成绩.需要提醒大家的是每次练习的作业题目可能不一样,请大家一定要认真阅读题目.

1.设图G =,v ∈V ,则下列结论成立的是 ( ) .

A .deg(v )=2∣E ∣

B . deg(v )=∣E ∣

C .E v V v 2)deg(=∑∈

D .

E v V

v =∑∈)deg(

该题主要是检查大家对握手定理掌握的情况.复习握手定理:

定理3.1.1 设G 是一个图,其结点集合为V ,边集合为E ,则

∑∈=V

v E v ||2)deg(

也就是说,无向图G 的结点的度数之和等于边数的两倍.

正确答案:C

2.设无向图G 的邻接矩阵为

????????????????010*******

000011100100110, 则G 的边数为( ).

A .6

B .5

C .4

D .3

主要是检查对邻接矩阵的概念理解是否到位.大家要复习邻接矩阵的定义,

要记住当给定的简单图是无向图时,邻接矩阵为对称的.即当结点v i 与v j 相邻时,结点v j 与v i 也相邻,所以连接结点v i 与v j 的一条边在邻接矩阵的第i 行第j 列处和第j 行第i 列处各有一个1,题中给出的邻接矩阵中共有10个1,故有10÷2=5条边.

正确答案:B

3.如右图所示,以下说法正确的是 ( ) .

A .{(a, e )}是割边

B .{(a, e )}是边割集

C .{(a, e ) ,(b, c )}是边割集

D .{(d , e )}是边割集

先复习割边、边割集的定义: 定义3.2.9 设无向图G =为连通图,若有边集E 1?E ,使图G 删除了E 1的所有边后,所得的子图是不连通图,而删除了E 1的任何真子集后,所得的子图是连通图,则称E 1是G 的一个边割集.若某个边构成一个边割集,则称该边为割边(或桥)

因为删除答案A 或B 或C 中的边后,得到的图是还是连通图,因此答案A 、

B 、

C 是错误的.

正确答案:D

4.图G 如由图所示,以下说法正确的是 ( ).

A .a 是割点

B .{b, c }是点割集

C .{b , d }是点割集

D .{c }是点割集

主要是检查对点割集、割点的概念理解的情况.

定义3.2.7 设无向图G =为连通图,若有点集V 1?V ,使图G 删除了V 1的所有结点后,所得的子图是不连通图,而删除了V 1的任何真子集后,所得的子图是连通图,则称V 1是G 的一个点割集.若某个结点构成一个点割集,则称该结点为割点.

从图二中删除结点b, c ,得到的子图是由不连通图,而只删除结点b 或结点c ,得到的子图仍然是连通的,由定义可以知道,{b, c }是点割集.所以 正确答案:B

5.设有向图(a )、(b )、(c )与(d )如下图所示,则下列结论成立的是( ).

A .(a )是强连通的

B .(b )是强连通的 ο ο ο ο a b c d

ο e ο

ο ο a b d ο

C.(c)是强连通的D.(d)是强连通的

我们先复习强连通的概念:

定义3.2.5 在简单有向图中,若在任何结点偶对中,至少从一个结点到另一个结点可达的,则称图G是单向(侧)连通的;

若在任何结点偶对中,两结点对互相可达,则称图G是强连通的.

正确答案:A

问:上面的图中,哪个仅为弱连通的?

请大家要复习“弱连通”的概念.

6.设完全图K

n 有n个结点(n 2),m条边,当()时,K

n

中存在欧拉

回路.

A.m为奇数B.n为偶数C.n为奇数D.m为偶数我们先复习完全图的概念:

定义3.1.6简单图G=中,若每一对结点间都有边相连,则称该图为完全图.有n个结点的无向完全图记为K n.

由定义可知,完全图K n中的任一结点v到其它结点都有一条边,共有n-1条边,即每个结点的度数是n-1,当n为奇数时,n-1为偶数.

由定理4.1.1的推论

一个无向图具有一条欧拉回路,当且仅当该图是连通的,并且它的结点度数都是偶数.

所以,正确答案应该是C.

7.若G是一个汉密尔顿图,则G一定是( ).

A.平面图B.对偶图C.欧拉图D.连通图

我们先复习汉密尔顿图的概念:

定义4.2.1 给定图G,若存在一条路经过图G的每个结点一次且仅一次,则该路称为汉密尔顿路;若存在一条回路经过图G的每个结点一次且仅一次,则该回路称为汉密尔顿回路;

具有汉密尔顿回路的图称为汉密尔顿图.

由定义可知,汉密尔顿图是连通图.

所以,正确答案应该是D.

问:汉密尔顿图为什么不一定是欧拉图吗?

8.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).

A.e-v+2 B.v+e-2 C.e-v-2 D.e+v+2 本题主要检查大家是否掌握了欧拉定理.

定理4.3.2(欧拉定理)设连通平面图G的结点数为v,边数为e,面数为r,则欧拉公式v-e+r =2成立.

由欧拉公式v-e+r =2,得到r = e- v+2.

所以,答案A是正确的.

9.无向简单图G是棵树,当且仅当( ).

A .G 连通且边数比结点数少1

B .G 连通且结点数比边数少1

C .G 的边数比结点数少1

D .G 中没有回路.

可以运用教材中的定理5.1.1,可以作出正确选择.因为定理5.1.1中给出的图T 为树的等价定义之一是图T 连通且e=v -1,其中e 是边数,v 是结点数.也就是说:无向简单图G 是棵树,当且仅当G 连通且边数比结点数少1. 正确答案:A

注:由上面的树的等价定义可知,结点数v 与边数e 满足e=v -1关系的无向连通图就是树.

10.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为( ).

A .8

B .5

C .4

D .3 正确答案:B

设无向树T 的树叶数为x ,因为树叶是度数为1的结点.

那么,由定理3.1.1(握手定理) 设G 是一个图,其结点集合为V ,边集合为E ,则

∑∈=V

v E v ||2)deg(

得 4+3+2+x =2(8-1),即x =5.应选择B .

下面的内容主要是第5次形考作业的部分题目.

二、填空题

1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 .

也是检查大家对握手定理掌握的情况.

因为图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,即∑∈=?+?+?+?=V

v v 3044332211)deg(,根据握手定理,边数有

152/30==E .

应该填写:15

2.设给定图G (如右图所示),则图G 的点割集是

. 本题还是检查大家对点割集、割点的概念理解的情 况.

点割集、割点的定义前面已经复习了,从图G 中删除结点f ,得到的子图是不连通图,即结点集{f }是点割集;同样,从图G 中删除结点c ,e ,得到的子图也是不连通图,那么结点集{c , e }也是点割集.而删除其他结点集都没有满足点割集、定义的集合,所以

应该填写:{f }、{c , e } ο ο ο ο a b

c

d ο

e ο f

3.无向图G存在欧拉回路,当且仅当G连通且.由定理4.1.1的推论

一个无向图具有一条欧拉回路,当且仅当该图是连通的,并且它的结点度数都是偶数.

应该填写:结点度数都是偶数

4.设G=是具有n个结点的简单图,若在G中每一对结点度数之和大于等于,则在G中存在一条汉密尔顿路.

定理4.2.2设G=是具有n个结点的简单图,若在G中每一对结点度数之和大于等于n-1,则在G中存在一条汉密尔顿路.

应该填写:n-1

5.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去条边后使之变成树.(……边后,可以确定图G的一棵生成树)由握手定理(定理3.1.1)知道图G有18÷2=9 条边,又由定理5.1.1中给出的图T为树的等价定义之一是“图T连通且e=v-1”,可以知道:

应该填写:4.

6.设正则5叉树的树叶数为17,则分支数为i = .

定理5.2.1 设有正则m叉树,其树叶数为t,分枝数为i,则(m-1)i=t-1.

其中m=5,t=17,由(5-1)i=17-1,得i =4.

应该填写:4

三、判断说明题

1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.分析:先复习欧拉图的判别定理:

定理4.1.1的推论:一个无向图具有一条欧拉回路,当且仅当该图是连通的,并且它的结点度数都是偶数.

解:不正确.

因为题中的图G没有“连通”的条件.

2.如下图所示的图G存在一条欧拉回路.

解:不正确.

因为图G中结点b和c的度数是奇数.

注:这是一个汉密尔顿图,但不是欧拉图,它可以作为单向选择题7解答之后提出的问题的一个解答.

3.设G是一个有7个结点16条边的连通图,则G为平面图.

分析:定理4.3.3设G是一个有v个结点e条边的连通简单平面图,若v≥3,则e≤3v-6.

利用该定理判断本题.

解:不正确.

因为题中的连通简单平面图有v =7个结点,e =16条边,那么16≥3?7-6=15,由定理4.3.3知道,图G 不是平面图.

4.设G 是一个连通平面图,且有6个结点11条边,则G 有7个面.

分析:可以用平面图中的欧拉公式:v-e+r =2来判断,其中v 为结点数,e 为边数,r 为面数.

解:正确.

因为连通平面图G 有v =6个结点,e =11条边,那么由欧拉公式计算得:r =2+ 11- 6 = 7个面.

四、计算题

1.设G =,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试

(1) 给出G 的图形表示; (2) 写出其邻接矩阵;

(3) 求出每个结点的度数; (4) 画出其补图的图形.

解:(1) 因为V ={ v 1,v 2,v 3,v 4,v 5}, E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),

(v 4,v 5) },所以G 的图形表示为: (2) 分析:本题给定的简单图是无向图, 因此邻接矩阵为对称的.即当结点v i 与v j 相

邻时,结点v j 与v i 也相邻,所以连接结点v i 与v j 的一条边在邻接矩阵的第i 行第j 列处和 第j 行第i 列处各写一个1;当结点v i 与v j 没

有边连接时,邻接矩阵的第i 行第j 列处和第j 行第i 列处各写一个0.

邻接矩阵: ???????

?????????0110010110110110110000100 (3) 由G 的图形可知,v 1,v 2,v 3,v 4,v 5结点的度数依次为1,2,4,3,2

(4) 由关于补图的定义3.1.9可知,先画出完全图(见图1),然后去掉原图,可得补图(见图2)如下:

图1 图2

注意:补图中,如果没有标出结点v 3,则是错的.

2.图G =,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试 ο ο ο ο v 1 ο v 5 v 2 v 3

v 4 ο ο ο ο v 1 ο v 5

v 2 v 3

v 4 ο ο ο ο v 1 ο v 5 v 2 v 3 v 4

(1)画出G 的图形; (2)写出G 的邻接矩阵;

(3)求出G 权最小的生成树及其权值.

解 (1)因为V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },所以G 的图形表示为:

(2)由图得图G 的邻接矩阵为:

011011

0011100110

110111110A ?? ? ? ?= ? ? ???

(3)图G 有5个结点,其生成树有4条边,用Kruskal 算法(避圈法)求其权最小的生成树T :

第1步,取具最小权1的边(a , c );

第2步,取剩余边中具最小权1的边(c , e );

第3步,取剩余边中不与前2条边构成回路的具最小权2的边(a , b ); 第4步,取剩余边中不与前3条边构成回路的具最小权3的边(b , d ). 所求最小生成树T 如右下图,其权为()11237W T =+++=.

注意:在用避圈法求最小的生成树的关键是:“取图中权数最小的边,且与前面取到的边不构成圈”,很多学生只注意到取权数最小的边了,而忽略了“不构成圈”的要求.

如果结点数少一个,边数也少些,大家应该会做了吧.

3.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.

解:方法(Huffman ):从2, 3, 5, 7, 17, 31中选2, 3为最低层结点,并从权数中删去,再添上他们的和数,即5, 5, 7, 17, 31;

再从5, 5, 7, 17, 31中选5, 5为倒数第2层结点,并从 上述数列中删去,再添上他们的和数,即7, 10, 17, 31;

然后,从7, 10, 17, 31中选7, 10为倒数第3层结点, 并从上述数列中删去,再添上他们的和数,即17, 17, 31; …… 最优二叉树如右图所示. 最优二叉树权值为:2?5+3?5+5?4+7?3+17?2+31?1 =10+15+20+21+34+31=131 讲评:作业中最优二叉树往往都能画对了,但计算总权值时

可能会把有些权的层数计算错了,导致总权值计算错误,大家一定要细心. 注意:这3个计算题大家一定要掌握.

五、证明题

证明题同学一般都做不好,原因是对证明题方法没有掌握,也是对一些概念不清楚所造成的.因此,希望大家认真学习教材和老师讲课中的证明方法,并通过作业逐步掌握做证明题的方法.

1.设G 是一个n 阶无向简单图,n 是大于等于3的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.

证明:设,G V E =<>,,G V E '=<>.则E '是由n 阶无向完全图n K 的边删去E 所得到的.所以对于任意结点u V ∈,u 在G 和G 中的度数之和等于u 在n K 中的度数.由于n 是大于等于3的奇数,从而n K 的每个结点都是偶数度的

( 1 (2)n -≥度),于是若u V ∈在G 中是奇数度结点,则它在G 中也是奇数度结点.故图G 与它的补图G 中的奇数度结点个数相等.

2.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k 条边才能使其成为欧拉图.

证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k 是偶数. 又根据定理4.1.1的推论,图G 是欧拉图的充分必要条件是图G 不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图. 故最少要加2

k 条边到图G 才能使其成为欧拉图.

ο ο ο ο ο 3 2 7 5 5 17 34 10 ο ο ο ο 17 31 ο ο 65

离散数学图论与系中有图题目

离散数学图论与系中有图题目

————————————————————————————————作者:————————————————————————————————日期:

图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。 例1 分别求右面两图的色数 (1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。 (2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。又因 为此图的最大度()4G ?=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤?=,因而()4G χ=。 (对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ?=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着 色,每个图至少需要几种颜色。 答案:(1) ()2G χ=;(2) ()3G χ=; (3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T 要放进贮藏室保管。出于安全原因, 下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B, 4个结点、6个结点和8个结点的三次正则图 (2) (1) (3) (2)(1)

离散数学图论练习题

图论练习题 一.选择题 1、设G是一个哈密尔顿图,则G一定是( )。 (1) 欧拉图(2) 树(3) 平面图(4)连通图 2、下面给出的集合中,哪一个是前缀码?() (1) {0,10,110,101111}(2) {01,001,000,1} (3) {b,c,aa,ab,aba}(4) {1,11,101,001,0011} 3、一个图的哈密尔顿路是一条通过图中()的路。 4、设G是一棵树,则G 的生成树有( )棵。 (1) 0(2) 1(3) 2(4) 不能确定 5、n阶无向完全图Kn 的边数是( ),每个结点的度数是( )。 6、一棵无向树的顶点数n与边数m关系是()。 7、一个图的欧拉回路是一条通过图中( )的回路。 8、有n个结点的树,其结点度数之和是()。 9、下面给出的集合中,哪一个不是前缀码( )。 (1) {a,ab,110,a1b11} (2) {01,001,000,1} (3) {1,2,00,01,0210} (4) {12,11,101,002,0011} 10、n个结点的有向完全图边数是( ),每个结点的度数是( )。 11、一个无向图有生成树的充分必要条件是( )。 12、设G是一棵树,n,m分别表示顶点数和边数,则 (1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。 13、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。 14、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。 15、设G是有n个结点m条边的连通平面图,且有k个面,则k等于: (1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2。 16、设T是一棵树,则T是一个连通且( )图。 17、设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 16 18、设无向图G有18条边且每个顶点的度数都是3,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 12

离散数学测验题--图论部分(优选.)

离散数学图论单元测验题 一、单项选择题(本大题共10小题,每小题2分,共20分) 1、在图G =中,结点总度数与边数的关系是( ) (A) deg(v i )=2∣E ∣ (B) deg(v i )=∣E ∣ (C)∑∈=V v E v 2)deg( (D) ∑∈=V v E v )deg( 2、设D 是n 个结点的无向简单完全图,则图D 的边数为( ) (A) n (n -1) (B) n (n +1) (C) n (n -1)/2 (D) n (n +1)/2 3、 设G =为无向简单图,∣V ∣=n ,?(G )为G 的最大度数,则有 (A) ?(G )n (D) ?(G )≥n 4、图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( ) (A) 充分条件 (B) 必要条件 (C)充分必要条件 (D)既非充分也非必要条件 5、设},,,{d c b a V =,则与V 能构成强连通图的边集合是( ) (A) },,,,,,,,,{><><><><><=c d b c d b a b d a E (B) },,,,,,,,,{><><><><><=c d d b c b a b d a E (C) },,,,,,,,,{><><><><><=c d a d c b a b c a E 6、有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的( ) (A)度数 (B) 出度 (C)最大度数 (D) 入度 7、设图G 的邻接矩阵为 ?? ?? ?? ? ? ????????0101010010000011100000100 则G 的边数为( ). A .5 B .6 C .3 D .4 8、设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( ) (A) m -n +2 (B) n -m -2 (C) n +m -2 (D) m +n +2 9、在5个结点的二元完全树中,若有4条边,则有 ( )片树叶。 (A) 2 (B) 3 (C) 5 (D) 4 10、图2是( ) (A) 完全图 (B)欧拉图 (C) 平面图 (D) 哈密顿图

离散数学图论部分综合练习

1 离散数学图论部分综合练习 1.设图G =,则下列结论成立的就是 ( ). A.deg(V )=2∣E ∣ B.deg(V )=∣E ∣ C.E v V v 2)deg(=∑∈ D.E v V v =∑∈)deg( 2.图G 如图一所示,以下说法正确的就是 ( ) . A.{(a , d )}就是割边 B.{(a , d )}就是边割集 C.{(d , e )}就是边割集 D.{(a, d ) ,(a, c )}就是边割集 3.如图二所示,以下说法正确的就是 ( ). A.e 就是割点 B.{a, e }就是点割集 C.{b , e }就是点割集 D.{d }就是点割集 4.如图三所示,以下说法正确的就是 ( ) . A.{(a, e )}就是割边 B.{(a, e )}就是边割集 C.{(a, e ) ,(b, c )}就是边割集 D.{(d , e )}就是边割集 图三 5.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的就是 ( ). 图四 A.(a )就是强连通的 B.(b )就是强连通的 C.(c )就是强连通的 D.(d )就是强连通的 6.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A.m 为奇数 B.n 为偶数 C.n 为奇数 D.m 为偶数 7.设G 就是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A.e -v +2 B.v +e -2 C.e -v -2 D.e +v +2 8.无向图G 存在欧拉通路,当且仅当( ). A.G 中所有结点的度数全为偶数 B.G 中至多有两个奇数度结点 ο ο ο ο ο c a b e d ο f 图一 图二

离散数学图论部分综合练习

离散数学图论部分综合练习 1 .设图G =,则下列结论成立的是 ( ). A .deg(V )=2 E B .deg(V )=E C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 2.图G 如图一所示,以下说确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 3.如图二所示,以下说确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 4.如图三所示,以下说确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集 C .{(a, e ) ,(b, c )}是边割集 D .{(d , e )}是边割集 图三 5.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ). 图四 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 6.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数 C .n 为奇数 D .m 为偶数 7.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 8.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 ο ο ο ο ο c a b e d ο f 图一 图二

离散数学(图论部分)1-4章习题课

离散数学(图论部分)1-4章习题课 1. 证明:在10个人中,或有3人互相认识,或有4人互不认识。 证:设x为10人中之任意某人,则在余下9人中:(1) x至少认识其中4人,或(2) x至多认识其中3人(即至少不认识其中6人),两者必居其一。 (1) 若此x认识的4人互不相识,命题得证;否则,互相认识的2人加上x 构成互相认识的3人,命题得证。 (2) 若此x不认识的6人中有3人互相认识,命题得证;否则,由 Ramsey(3,3)=6知,此6人中至少有3人互不认识,此3人加上x为互 不认识的4人,命题得证。 2. 设(a) V={a,b,c,d},A={,,,,} (b) V={a,b,c,d,e},E={(a,b),(a,c),(b,c),(d,e)} 画出上述图的图解。 解:略。 3. 试找出K3的全部子图,并指出哪些是生成子图。 解:K3共有17个子图。其他略。 4. 证明:在至少有2人的团体中,总存在2个人,他们在这个团体中恰有相同数 目的朋友。 解:在n个人的团体中,各人可能有的朋友数目为0, 1, 2, 3, …, n-1,共n个数,但其中0和n-1 不能共存,故n个人事实上可能的朋友数目只有n-1个。 由鸽巢原理,命题得证。 5.某次宴会上许多人互相握手。证明:必有偶数个人握了奇数次手。 证:以人为顶点,握手关系为邻接关系构造一个无向图。由图的性质,奇数度的顶点必为偶数个,即握了奇数次手的人数必为偶数。 6. 证明:Ramsey(3,4)=9。(提示:题1的推广) 证:在9个人中,不可能每个人都恰好认识其他的3个人(即图的9个顶点不

离散数学的基础知识点总结

离散数学的基础知识点总结 第一章命题逻辑 1.前键为真,后键为假才为假;<—>,相同为真,不同为假;2?主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有2n个极小项或极大项,这2n为(0~2n-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第二章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含T,存在量词用合取“; 3.既有存在又有全称量词时,先消存在量词,再消全称量词;

第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幕集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幕集P(A)有2°个元素,|P(A)|= 2|A|= 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔AXB的基数为mn , A到B上可以定义2mn种不同的关系; 2.若集合A有n个元素,则|A X\|= n2, A上有2n个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全圭寸闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x组成的集合;

离散数学图论复习

离散数学11春图论部分综合练习辅导 大家好!本学期的第二次教学辅导活动现在开始,本次活动主要是针对第二单元图论的重点学习内容进行辅导,方式同样是通过讲解一些典型的综合练习作业题目,帮助大家进一步理解和掌握图论的基本概念和方法. 图论作为离散数学的一部分,主要介绍图论的基本概念、理论与方法.教学内容主要有图的基本概念与结论、图的连通性与连通度、图的矩阵表示、最短路问题、欧拉图与汉密尔顿图、平面图、对偶图与着色、树与生成树、根树及其应用等. 本次综合练习主要是复习这一单元的主要概念与计算方法,与集合论一样,也安排了五种类型,有单项选择题、填空题,判断说明题、计算题、证明题.这样的安排也是为了让同学们熟悉期末考试的题型,能够较好地完成这一部分主要内容的学习. 下面是本学期第4,5次形考作业中的部分题目. 一、单项选择题 单项选择题主要是第4次形考作业的部分题目. 第4次作业同样也是由10个单项选择题组成,每小题10分,满分100分.在每次作业在关闭之前,允许大家反复多次练习,系统将保留您的最好成绩,希望大家要多练几次,争取好成绩.需要提醒大家的是每次练习的作业题目可能不一样,请大家一定要认真阅读题目. 1.设图G =,v ∈V ,则下列结论成立的是 ( ) . A .deg(v )=2∣E ∣ B . deg(v )=∣E ∣ C .E v V v 2)deg(=∑∈ D . E v V v =∑∈)deg( 该题主要是检查大家对握手定理掌握的情况.复习握手定理: 定理3.1.1 设G 是一个图,其结点集合为V ,边集合为E ,则 ∑∈=V v E v ||2)deg( 也就是说,无向图G 的结点的度数之和等于边数的两倍. 正确答案:C 2.设无向图G 的邻接矩阵为 ????????????????010******* 000011100100110, 则G 的边数为( ). A .6 B .5 C .4 D .3 主要是检查对邻接矩阵的概念理解是否到位.大家要复习邻接矩阵的定义,

离散数学图论部分经典试题及答案

离散数学图论部分综合练习 一、单项选择题 1.设图G 的邻接矩阵为 ??? ???? ? ????? ???01010 1001000001 1100100110 则G 的边数为( ). A.6 B.5 C.4 D.3 2.已知图G 的邻接矩阵为 , 则G 有( ). A.5点,8边 B.6点,7边 C.6点,8边 D.5点,7边 3.设图G =,则下列结论成立的就是 ( ). A.deg(V )=2∣E ∣ B.deg(V )=∣E ∣ C.E v V v 2)deg(=∑∈ D.E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的就是 ( ) . A.{(a , d )}就是割边 B.{(a , d )}就是边割集 C.{(d , e )}就是边割集 D.{(a, d ) ,(a, c )}就是边割集 5.如图二所示,以下说法正确的就是 ( ). A.e 就是割点 B.{a, e }就是点割集 C.{b , e }就是点割集 D.{d }就是点割集 6.如图三所示,以下说法正确的就是 ( ) . A.{(a, e )}就是割边 B.{(a, e )}就是边割集 C.{(a, e ) ,(b, c )}就是边割集 D.{(d , e )}就是边割集 ο ο ο ο ο c a b e d ο f 图一 图二

图三 7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的就是 ( ). 图四 A.(a )就是强连通的 B.(b )就是强连通的 C.(c )就是强连通的 D.(d )就是强连通的 应该填写:D 8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A.m 为奇数 B.n 为偶数 C.n 为奇数 D.m 为偶数 9.设G 就是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A.e -v +2 B.v +e -2 C.e -v -2 D.e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A.G 中所有结点的度数全为偶数 B.G 中至多有两个奇数度结点 C.G 连通且所有结点的度数全为偶数 D.G 连通且至多有两个奇数度结点 11.设G 就是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树. A.1m n -+ B.m n - C.1m n ++ D.1n m -+ 12.无向简单图G 就是棵树,当且仅当( ). A.G 连通且边数比结点数少1 B.G 连通且结点数比边数少1 C.G 的边数比结点数少1 D.G 中没有回路. 二、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数就是 . 2.设给定图G (如图四所示),则图G 的点割 集就是 . 3.若图G=中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点 数|S|与W 满足的关系式为 . 4.无向图G 存在欧拉回路,当且仅当G 连通 且 . 5.设有向图D 为欧拉图,则图D 中每个结点的入度 . ο ο ο ο ο c a b e d ο f 图四

离散数学知识点总结

总结离散数学知识点 第二章命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第三章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;

2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基 2种不同的关系; 数为mn,A到B上可以定义mn 2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;

离散数学图论习题

第4章图论 综合练习 一、单项选择题 1.设L是n阶无向图G上的一条通路,则下面命题为假的是( ). (A) L可以不是简单路径,而是基本路径 (B) L可以既是简单路径,又是基本路径 (C) L可以既不是简单路径,又不是基本路径 (D) L可以是简单路径,而不是基本路径 答案:A 2.下列定义正确的是( ). (A) 含平行边或环的图称为多重图 (B) 不含平行边或环的图称为简单图 (C) 含平行边和环的图称为多重图 (D) 不含平行边和环的图称为简单图 答案:D 3.以下结论正确是 ( ). (A) 仅有一个孤立结点构成的图是零图 (B) 无向完全图K n每个结点的度数是n (C) 有n(n>1)个孤立结点构成的图是平凡图 (D) 图中的基本回路都是简单回路 答案:D 4.下列数组中,不能构成无向图的度数列的数组是( ). (A) (1,1,1,2,3) (B) (1,2,3,4,5) (C) (2,2,2,2,2) (D) (1,3,3,3)答案:B 5.下列数组能构成简单图的是( ). (A) (0,1,2,3) (B) (2,3,3,3) (C) (3,3,3,3) (D) (4,2,3,3) 答案:C 6.无向完全图K3的不同构的生成子图的个数为(). (A) 6 (B) 5 (C) 4 (D) 3 答案:C 7.n阶无向完全图K n中的边数为(). (A) 2)1 (+ n n (B) 2)1 (- n n (C) n (D)n(n+1) 答案:B 8.以下命题正确的是( ). (A) n (n1)阶完全图K n都是欧拉图 (B) n(n 1)阶完全图K n都是哈密顿图 (C) 连通且满足m=n-1的图(V=n,E=m)是树 (D) n(n5)阶完全图K n都是平面图 答案:C 10.下列结论不正确是( ). (A) 无向连通图G是欧拉图的充分必要条件是G不含奇数度结点 (B) 无向连通图G有欧拉路的充分必要条件是G最多有两个奇数度结点 (C) 有向连通图D是欧拉图的充分必要条件是D的每个结点的入度等于出度 (D) 有向连通图D有有向欧拉路的充分必要条件是除两个结点外,每个结点的入度等于

离散数学之图论

第四篇图论 自从1736年欧拉(L.Euler)利用图论的思想解决了哥尼斯堡(Konigsberg)七桥问题以来,图论经历了漫长的发展道路。在很长一段时期内,图论被当成是数学家的智力游戏,解决一些著名的难题。如迷宫问题、匿门博奕问题、棋盘上马的路线问题、四色问题和哈密顿环球旅行问题等,曾经吸引了众多的学者。图论中许多的概论和定理的建立都与解决这些问题有关。 1847年克希霍夫(Kirchhoff)第一次把图论用于电路网络的拓扑分析,开创了图论面向实际应用的成功先例。此后,随着实际的需要和科学技术的发展,在近半个世纪内,图论得到了迅猛的发展,已经成了数学领域中最繁茂的分支学科之一。尤其在电子计算机问世后,图论的应用范围更加广泛,在解决运筹学、信息论、控制论、网络理论、博奕论、化学、社会科学、经济学、建筑学、心理学、语言学和计算机科学中的问题时,扮演着越来越重要的角色,受到工程界和数学界的特别重视,成为解决许多实际问题的基本工具之一。 图论研究的课题和包含的内容十分广泛,专门著作很多,很难在一本教科书中概括它的全貌。作为离散数学的一个重要内容,本书主要围绕与计算机科学有关的图论知识介绍一些基本的图论概论、定理和研究内容,同时也介绍一些与实际应用有关的基本图类和算法,为应用、研究和进一步学习提供基础。

第4-1章无向图和有向图 学习要求:仔细领会和掌握图论的基本概论、术语和符号,对于图论研究的一些最基本的课题,如道路问题、连通性问题和着色的问题等,应掌握主要的定理内容和证明方法以及基本的构造方法,以便为下一章研究提供理论工具。学习本章要用到集合和线性代数矩阵运算的知识,特别是集合数和矩阵秩的概念。 §4-1-1 图的基本概念 图是用于描述现实世界中离散客体之间关系的有用工具。在集合论中采用过以图形来表示二元关系的办法,在那里,用点来代表客体,用一条由点a指向点b的有向线段来代表客体a和b之间的二元关系aRb,这样,集合上的二元关系就可以用点的集合V和有向线的集合E构成的二元组(V,E)来描述。同样的方法也可以用来描述其它的问题。当我们考察全球航运时,可以用点来代表城市,用线来表示两城市间有航线通达;当研究计算机网络时,可以用点来表示计算机及终端,用线表示它们之间的信息传输通道;当研究物质的化学结构时,可以用点来表示其中的化学元素,而用线来表示元素之间的化学键。在这种表示法中,点的位置及线的长短和形状都是无关紧要的,重要的是两点之间是否有线相连。从图形的这种表示方式中可以抽象出图的数学概念来。 一、图 定义4-1-1.1一个(无向)图G是一个二元组(V(G),E(G)),其中V (G)是一个有限的非空集合,其元素称为结点;E(G)是一个以不同结点的无序对为元素,并且不含重复元素的集合,其元素称为边。 我们称V(G)和E(G)分别是G的结点集和边集。在不致引起混淆的地方,常常把V(G)和E(G)分别简

上海大学 离散数学2 图部分试题

离散数学图论部分综合练习 一、单项选择题 1.设无向图G 的邻接矩阵为 ??????? ? ??? ?? ???010 1010010000011100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2∣E ∣ B .deg(V )=∣E ∣ C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集 C .{(a, e ) ,(b, c )}是边割集 D .{(d , e )}是边割集 ο ο ο ο ο c a b e d ο f 图一 图二

图三 7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ). 图四 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 应该填写:D 8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数 C .n 为奇数 D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点 11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树. A .1m n -+ B .m n - C .1m n ++ D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ). A .G 连通且边数比结点数少1 B .G 连通且结点数比边数少1 C .G 的边数比结点数少1 D .G 中没有回路. 二、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结 点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 ο ο ο ο c a b f

离散数学第七章图的基本概念知识点总结docx

图论部分 第七章、图的基本概念 7.1 无向图及有向图 无向图与有向图 多重集合: 元素可以重复出现的集合 无序积: A&B={(x,y) | x∈A∧y∈B} 定义无向图G=, 其中 (1) 顶点集V≠?,元素称为顶点 (2) 边集E为V&V的多重子集,其元素称为无向边,简称边. 例如, G=如图所示, 其中V={v1, v2, …,v5}, E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} , 定义有向图D=, 其中 (1) V同无向图的顶点集, 元素也称为顶点 (2) 边集E为V?V的多重子集,其元素称为有向边,简称边. 用无向边代替D的所有有向边所得到的无向图称作D的基图,右图是有向图,试写出它的V和E 注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的

通常用G表示无向图, D表示有向图, 也常用G泛指 无向图和有向图, 用e k表示无向边或有向边. V(G), E(G), V(D), E(D): G和D的顶点集, 边集. n 阶图: n个顶点的图 有限图: V, E都是有穷集合的图 零图: E=? 平凡图: 1 阶零图 空图: V=? 顶点和边的关联与相邻:定义设e k=(v i,v j)是无向图G=的一条边, 称v i,v j 为e k的端点, e k与v i (v j)关联. 若v i ≠v j, 则称e k与v i (v j)的关联次数为1;若v i = v j, 则称e k为环, 此时称e k与v i 的关联次数为2; 若v i不是e k端点, 则称e k与v i 的关联次数为0. 无边关联的顶点称作孤立点. 定义设无向图G=, v i,v j∈V, e k,e l∈E,若(v i,v j) ∈E, 则称v i,v j相邻; 若e k,e l 至少有一个公共端点, 则称e k,e l相邻. 对有向图有类似定义. 设e k=?v i,v j?是有向图的一条边,又称v i是e k的始点, v j是e k的终点, v i邻接到v j, v j邻接于v i.

离散数学图论部分综合练习

离散数学 图论部分综合练习 一、单项选择题 1.设图G 的邻接矩阵为 ??????? ?????????010******* 000011100000100 则G 的边数为( ). A .5 B .6 C .3 D .4 2.下列数组中,能构成无向图的度数列的数组是( ) . A .(1, 1, 2, 3) B .(1, 2, 3, 4, 5) C .(2, 2, 2, 2) D .(1, 3, 3) 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2∣E ∣ B .deg(V )=∣E ∣ C .E v V v 2)deg(=∑∈ D . E v V v =∑∈)deg( 4.设有向图(a )、(b )、(c )与(d )如下图所示,则下列结论成立的是( ). A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 5.给定无向图G 如右图所示,下面给出的结点集子集中, 不是点割集的为( ). A .{b , d } B .{d } C .{a , c } D .{g , e } 6.图G 如右图所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 7.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).

A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 8.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点 9.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树. A .1m n -+ B .m n - C .1m n ++ D .1n m -+ 10.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为( ). A .8 B .5 C .4 D .3 二、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如由图所示),则图G 的点割集 是 . 3.两个图同构的必要条件是它们的结点数相等、边数 相等以及 . 4.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 ,则在G 中存在一条汉密尔顿路. 5.设无向图G =是汉密尔顿图,则V 的任意非空子集V 1,都有 ≤∣V 1∣. 6.设有向图D 为欧拉图,则图D 中每个结点的入度 . 7.设完全图K n 有n 个结点(n ≥2),m 条边,当 时,K n 中存在欧拉回路. 8.设图G =,其中|V |=n ,|E |=m .则图G 是树当且仅当G 是连通的,且m = . 9.连通无向图G 有6个顶点9条边,从G 中删去 条边才有可能得到G 的一棵生成树T . 10.给定一个序列集合{1,01,10,11,001,000},若去掉其中的元素 ,则该序列集合构成前缀码. 三、判断说明题 1.判断下图的树是否同构?说明理由.

离散数学图论与关系中有图题目

图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。 例1 分别求右面两图的色数 (1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。 (2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。又因 为此图的最大度()4G ?=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤?=,因而()4G χ=。 (对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ?=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着 色,每个图至少需要几种颜色。 答案:(1) ()2G χ=;(2) ()3G χ=; (3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T 要放进贮藏室保管。出于安全原因, 下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B, 4个结点、6个结点和8 个结点的三次正则图 (2) (1) (3) (2) (1)

离散数学(图论)课后总结

第八章图论 例1、下面哪些数的序列,可能是一个图的度数序列?如果可能,请试画出它的图. 哪些可能不是简单图?a) (1,2,3,4,5) b) (2,2,2,2,2) c) (1,2,3,2,4) d) (1,1,1,1,4) e) (1,2, 2,4,5) 解:a)不是, 因为有三个数字是奇数. b) c) d)是. e) 不是简单图,因为它有5个结点, 有一个结点度为5, 必然有环或平行边. 例2、已知无向简单图G中,有10条边,4个3度结点,其余结点的度均小于或等于2,问G中至少有多少个结点?为什么? 解:已知边数|E|=10, ∑deg(v)=2|E|=20其中有4个3度结点, 余下结点度之和为: 20-3×4=8 因为G是简单图, 其余每个结点度数≤2, 所以至少还有4个结点.所以G中至少有8个结点. 强连通、单侧连通和弱连通 在简单有向图G中,如果任何两个结点间相互可达, 则称G是强连通. 如果任何一对结点间, 至少有一个结点到另一个结点可达, 则称G是单侧连通. 如果将G看成无向图后(即把有向边看成无向边)是连通的,则称G是弱连通. 在简单有向图中,具有强连通的最大子图,称为强分图.具有单侧连通的最大子图,称为单侧分图. 具有弱连通的最大子图,称为弱分图. 注:我每次都会被各种分图弄糊涂!!考试时要注意啊,千万不要错了 利用可达性矩阵求强分图,注意初等矩阵变换的知识不要忘了!! 令图G=, 集合Si V Si’=V-Si , 令|V|=n Si={u|从u0到u的最短路已求出} Si’={u’|从u0到u’的最短路未求出} Dijkstra算法:(求从u0到各点u的最短路长) 第一步. 置初值: d(u0,u0)=0 d(u0,v)=∞(其中v≠u0) i=0 S0={u0} S0’=V-S0 , 第二步.若i=n-1 则停. 否则转第三步 第三步. 对每个u’∈Si’ 计算d(u0,u’)=min{d(u0,u’), d(u0,ui)+c(ui,u’)} ui ∈Si计算min{d(u0,u’)}u’∈S i’并用ui+1记下达到该最小值的那个结点u’ 置Si+1 =Si∪{ui+1} i=i+1 Si’=V-Si , 转第二步. 例3、求最短路 解:例.求右图中从v1到v6的 最短路 1.置初值: u0=v1 d(u0,u0)=0 d(u0,v2)=d(u0,v3)=d(u0,v4)=d(u0,v5)=d(u0,v6)=∞ 2.3. i=0 S0={v1} S0’={v2,v3,v4,v5,v6} d(u0,v2)=min{d(u0,v2), d(u0,u0)+c(u0,v2)}=min{∞,0+3}=3 d(u0,v3)=min{d(u0,v3),d(u0,u0)+c(u0,v3)}=min{∞,0+∞}=∞ d(u0,v4)=min{d(u0,v4), d(u0,u0)+c(u0,v4)}=min{∞,0+5}=5

离散数学基本知识

离散数学基本知识 01 什么是“数据结构”? 这里我就不说那些“官方的定义”,简单谈谈自己的理解吧。 数据结构是一种抽象的封装。 好像还是有点绕脑,不过没关系,我们继续往下看。 说简单点就是,把一堆基本的数据,按照某种顺序给揉成一坨。 相信大家都吃过饭吧? 做一道菜需要放各种调料,如盐、味精,还有肉等,把它们混在一起就做成了一道菜。 口水鸡是我最喜欢的一道菜,这里我们就以口水鸡为例,来讲一讲什么是数据结构。下图是百度百科中口水鸡的做法。

好,下面我就用程序来表示一下,我写的是伪码,大家能懂就好哈。先来抽象一下“口水鸡”:

对,上述这个结构体就是一个自定义的数据结构,将很多种不同的东西融合在一起;而计算机中的数据结构,则是把一些基本的数据类型,如int、double等融合成一些复杂的数据结构,如map、队列。 抽象完口水鸡再来抽象“你”吧: 然后再来抽象一下“厨师”:

这里的抽象有点随意,不过大家理解就好,我们把一堆很基本的元素抽象成了3个数据结构,这三个元素就是所谓的数据结构。 而平时我们说的链表无非就是把一些基本元素和指针做了融合,树、图也是把指针和一些基本元素融合后再外加一些流程,如函数。 比如python的dict,dict的key,value就是两种相同或者不同的数据类型;dict还提供了一些函数,譬如get(),set()。dict就是一个典型的被封装的数据结构。 所以我说数据结构是一种抽象的封装,当然,数据结构并没有我们举的例子那样简单,但是原理是一样的。 我们平时写程序都是直接去调用这些数据结构,而没有去想它们的内部实现是怎样的。数据结构这门课就是要告诉我们常见的数据结构是如何实现的,比如Vector,map的实现。我们常常听到的譬如平衡二叉树,红黑树,大顶堆等词汇就是出自数据结构这门课。具体了解数据结构后,我们就可以知道队列的内部实现是什么样,词典的内部实现又是什么样。

离散数学图论部分综合练习

离散数学图论部分综合练习 1.设图G =,则下列结论成立的是 ( ). A .deg(V )=2 E B .deg(V )=E C . E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 2.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 3.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 4.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集 C .{(a, e ) ,(b, c )}是边割集 D .{(d , e )}是边割集 图三 5.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ). 图四 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 6.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数 C .n 为奇数 D .m 为偶数 7.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 ο ο ο ο ο c a b e d ο f 图一 图二

相关文档