文档库 最新最全的文档下载
当前位置:文档库 › 高中数学~数列专题复习

高中数学~数列专题复习

高中数学~数列专题复习
高中数学~数列专题复习

高中数学必修五数列专题复习

主备人:海门实验 施庆

主备人心语~数学考试心理辅导模块

1.调整心态:强化必胜信心、优化跃跃欲试的应考情绪,进入应考状态,充分发挥自身水平。

2.强调策略:每做一题,不急于动手,先看清题设条件,挖掘隐晦信息;仔细分析题目,选择正确思路解答;越是似曾相识的题目越要冷静对待。

3.梳理思路:强化答题格式,推敲得分点,增强得分意识,解剖试题命题点,摸清问题的指向。

复习内容如下

考点1:数列的有关概念 1.在数列{}n a 中,12a =, 11

ln(1)n n a a n

+=++,则n a =

1.解:A .

211

ln(1)1

a a =++,321ln(1)2a a =++,…,11ln(1)1n n a a n -=++

- 1234ln()()()()2ln 1231

n n

a a n n ?=+=+-

2.已知)(156

2

*

∈+=

N n n n a n

,则数列{}n a 的最大项是

2.解:数列可以看成一种特殊的函数即)(156

2

*∈+=

N n n n

a n

可以看成2

()()

156

X

f X X N X +=

∈+通过求函数的最大值可知第12项和第13项最大.

3.在数列{}n a 中,

23312n n

a n ++=++ ,()n *∈N ,在数列{}n

b 中,)cos(πn n a b =,

()n *∈N ,则2008

2009b

b -=_________.

3解:n

a 的奇偶性为:奇,奇,偶,偶,奇,奇,偶,偶,…,从而n

b 分

别为: 1-,1-,1,1,1-,1-,

1,1,…,周期为4,所以,2008

20091(1)2b b -=--=.答:

2

4.已知数列}{n a 的通项公式为n a =12

n +,设1324

2111

n n n T a a a a a a +=

+++??? ,求n T .

4.解:

2

1

n n a a +?=

4

(1)(3)

n n ++=2(

1

1n +-13

n +).

13242

111n n n T a a a a a a +=+++

??? =2[(12-14

)+(13

-15

)+(14

-16

)+……+(1

n

1

2n +)+(11n +-13n +)]=2(12

+13-

1

2n +-13

n +) 考点2:等差数列

1.(2010辽宁文数)设n S 为等差数列{}n a 的前n 项和,若36324S S ==,,则

9a =

1解析:填15.

3161

32332

656242S a d S a d ??

=+=?????=+=??

,解得112a d =-??

=?,91815.a a d ∴=+= 2.在等差数列{}n

a 中,若4

681012120a

a a a a ++++=,则9111

3

a a -的值为

16 .

2.解:利用等差数列的性质得:468101285120a a a a a a ++++== ,824a =,91113

a a -=

88812

(3)1633

a d a d a +-+==

3.在等差数列{n a }中,22,

16610a

a x x --=是方程的两根,

则5691213a a a a a ++++= .

3解:26a a +=29a =6,∴9a =3,∴5691213a a a a a ++++=59a =15,答:15

4.等差数列}{n a 共有21n +项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________. 4解:依题意,中间项为1+n a ,于是有11(1)319

290n n n a na +++=??

=?

解得1

29n a

+=.1分析:本

题主要是考查等比数列的基本概念和性质,可利用方程思想将等比数列问题转化为1a 和q 处理,也可利用等比数列的定义进行求解.设公比为q ,

由题知,12

1113

21

a a a q a q =??++=?得2q =或30q =-<(舍去),∴34584a a a ++=

5.在数列{}n a 在中,542

n a n =-,212n a a a an bn ++=+ ,*n N ∈,其中,a b 为常数,

则ab = .

5.解:∵,2

54-=n a n ∴,231=a 从而2

22)25

423(2n

n n n S n

-=-+=

.∴a=2,2

1

-=b ,则1ab =-

6.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且745

3

n

n

A

n B n +=

+,7

7b a = .

6.解:解法1:“若2,,,N m p q m p q *

=+∈,则2

q

p m a a a +=”解析:7

7

b a =

1131311313()

13

172()132

2

a a A

b b B +?==

+? 解法2:可设

(745n A k n n =+,(3)n B kn n =+,则

1(1438)n n n

a A A k n -=-=+,

(22)n b k n =+,则

7

7

b a =(14738)17(272)

2

k k ?+=?+

7.设等差数列{}n a 的前n 项和为n S ,若4510,15S S ≥≤,则4a 的最大值为___________.

7.解:∵等差数列{}n a 的前n 项和为n S ,且4510,15S S ≥≤ ∴

4151434102545152

S a d S a d ??

=+≥???

??=+≤?? 即

11235

23

a d a d +≥??

+≤? ∴

()41

41153533322323d d a a d d a a d a d d d -+?

=+≥+≥??

?=+=++≤+?

45332

d

a d +≤≤+,5362d d +≤+,1d ≤∴43314a d ≤+≤+= 故4a 的最大值为4.

8.(2010湖北卷理)已知函数

()2x

f x =,等差数列{}x a 的公差为2.若

246810

()4f a a a a a ++++=, 则212310log [()()()()]f a f a f a f a ???= .

8.解:依题意2468102a a a a a ++++=,所以135792528a a a a a ++++=-?=-

1210612310()()()()22a a a f a f a f a f a +++-????== ∴212310log [()()()()]6f a f a f a f a ?????=-

考点3:等比数列

1.(2010福建数)在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式n a = . 1【答案】n-14

【解析】由题意知11141621a a a ++=,解得11a =,所以通项n a =n-14. 【命题意图】本题考查等比数列的通项公式与前n 项和公式的应用,属基础题.

2.(2010江苏卷)8、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=_________ 2.解析:考查函数的切线方程、数列的通项.

在点(a k ,a k 2)处的切线方程为:22(),k k k y a a x a -=-当0y =时,解得2

k a x =,

所以1135,1641212

k k a a a a a +=++=++=.

3.在各项都为正数的等比数列{}n a 中,首项13a =,前三项和为21,则

345a a a ++=

3.解:84

4. 已知等比数列{}n a 的各项都为正数,它的前三项依次为1,1a +,25a +则数列{}n a 的通项公式是n a = . 4.解:n

a =1

3n -.

5. 三个数c b a ,,成等比数列,且(0)a b c m m ++=>,则b 的取值范围是 . 5.解:[,0)(0,]3

m m -?. 解:设,b a c bq q

==,则有1,0,1b m b bq m b q q

q

b

++=≠∴++= .

当0q >时,113m q b

q

=++≥,而0b >,03m b ∴<≤;

当0

≤-,而0m >,0<∴b ,则0m b -≤<,故[,0)(0,]3

m b m ∈-?

考点4:等差数列与等比数列综合应用

1.设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等

差数列,则q 的值为 .

1.解:1(1)1n n a q S q -=-,122n n n S S S ++=+,则有12111(1)(1)(1)

2111n n n a q a q a q q q q

++---?=+

---, 220q q ∴+-=,2q ∴=-.

,1q =时,1222(1)(2)23n n n S n S S n n n ++=≠+=+++=+ 2.在△ABC 中,tan A 是以-4为第3项,4为第7项的等差数列的公差,

tan B 是以

1

3

为第3项,9为第6项的等比数列的公比,则这个三角形

是 .

2解:锐角三角形.由题意得444tan tan 20A A =-+?=>,319tan tan 303

B B =?=>

tan tan tan tan()10,1tan tan A B

C A B A B

+=-+=-

=>-故 ABC ?是锐角三角形.

3.对于数列{}n a ,定义数列{}n

a ?满足:

1n n n a a a +=?-,(n *∈N ),定义数列2{}

n a ?满足:

21n n n a a a +?=?-?,(n *∈N ),若数列2{}n a ?中各项均为1,且21

20080a a

==,

则1

a =__________.

3 解:由数列2{}n

a ?中各项均为1,知数列{}n

a ?是首项为1

a ?,公差为1的

等差数列,所以,1111

1

1

(1)(2)2(1)n

k n k a

a a a n n a n -=?==+-+-+?-∑.这说明,n a 是关于n 的二次函数,且二次项系数为12

,由21

20080a a

==,得1

(21)(2008)2

n a n n -=-,从而

120070a =.

点评:等差比数列的通项公式和前n 项和的公式是数列中的基础知识,必须牢固掌握.

4.在数列{}n a 中,11a =,122n n n a a +=+. (Ⅰ)设1

2n n n a b -=

.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的

前n 项和n S .

4.解:(1)122n n n a a +=+,

11122

n n

n n a a +-=+, 11n n b b +=+, 则n b 为等差数列,11b =, n b n =,12n n a n -=.

(2)1221022)1(232221--?+?-++?+?+?=n n n n n S

n n n n n S 22)1(23222121321?+?-++?+?+?=-

两式相减,得

1222222121210+-?=----?-?=-n n n n n n n S

5.等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列,

11b =,且2264,b S = 33960b S =.

(1)求n a 与n b ; (2)求和:1

21

11

n

S S S +

++ .

5.解、(1)设{}n a 的公差为d ,{}n b 的公比为q ,则d 为正整数,

3(1)n a n d =+-,1

n n b q

-=

依题意有23322(93)960

(6)64

S b d q S b d q ?=+=?=+=?①

解得2,8d q =??=?或6

5403

d q ?

=-???

?

=

??(舍去) 故132(1)21,8n n n a n n b -=+-=+=

(2)35(21)(2)n S n n n =++++=+ ∴1

21

111111

132435(2)

n S S S n n +

++=++++

???+ 11111111(1)2324352n n =

-+-+-++-+ 1111(1)2212n n =+--++32342(1)(2)

n n n +=-++

6.已知直线:2n y x n =-

与圆22:22()n n C x y a n n N ++=++∈交于不同点

A n 、

B n ,

其中数列{}n a 满足:2

111

1,4

n n n

a a A B +==.

(Ⅰ)求数列{}n a 的通项公式;

(Ⅱ)设(2),3

n n n b a =+求数列{}n b 的前n 项和n S .

6.解:(1)圆心到直线的距离d n =

21111

(

)22,22(2)

2

322

n n n n n n n n a A B a a a a ++-∴==++=+∴=?-则易得 (2)10121123(2)2,

3

122232*********n n n n n n

n n

b a n S n S n --=+=?=?+?+?+???+?=?+?+?+???+?

相减得(1)21n n S n =-+

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1 .数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或 其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第项. 2.数列的通项公式 一个数列{a n }的与之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 与通项a n 的关系为: =n a ?????≥==21n n a n 4.求数列的通项公式的其它方法 ⑴公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1.根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴-3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解:⑴ a n =(-1) n )12)(12(12+--n n n ⑵ a n =)673(21 2+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得

高中数学数列练习题

数列经典解题思路 求通项公式 一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) K ,1716 4,1093,542,211 (3) K ,52,2 1,32 ,1 解:(1)110-=n n a (2);122++=n n n a n (3);12 +=n a n 二、公式法 例1. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( D ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 例2. 已知等比数列{}n a 的首项11=a , 公比10<

高中数学数列知识点总结(经典)

数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界 项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由10 0n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. (7)项数为奇数12-n 的等差数列{} n a ,有

高中数学数列复习题型归纳解题方法整理

数列 典型例题分析 【题型1】 等差数列与等比数列的联系 例1 (2010陕西文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数 列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an } 的前n 项和S n . 解:(Ⅰ)由题设知公差d ≠0, 由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812d d ++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n. (Ⅱ)由(Ⅰ)知2m a =2n ,由等比数列前n 项和 公式得 S m =2+22+23+…+2n =2(12) 12 n --=2n+1-2. 小结与拓展:数列{}n a 是等差数列,则数列}{n a a 是 等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。(a>0且a ≠1).

【题型2】与“前n项和Sn与通项an”、 常用求通项公式的结合 例 2 已知数列{a n}的前三项与数列{b n}的前 三项对应相同,且a1+2a2+22a3+…+2n-1a n= 8n对任意的n∈N*都成立,数列{b n+1-b n}是等 差数列.求数列{a n}与{b n}的通项公式。 解:a1+2a2+22a3+…+2n-1a n=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2a n-1=8(n -1)(n∈N*) ② ①-②得2n-1a n=8,求得a n=24-n, 在①中令n=1,可得a1=8=24-1, ∴a n=24-n(n∈N*).由题意知b1=8,b2=4, b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{b n+1-b n}的公差为-2-(-4)=2,∴b n

高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2= 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 322111=== a S b , ∴ 212 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 2 12)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3 n n n a (1)(2)n n =≥,12)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n 例5.A 例6. 解:1324321-+++++=n n nx x x x S ①()n n n nx x n x x x xS +-++++=-132132 ② ①-②()n n n nx x x x S x -++++=--1211 , 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111 ∴()() 2 1111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++= 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+27 32354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918===a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列

人教版高中数学必修5《数列》练习题(有答案)

必修5数列 2.等差数列{}n a 中,()46810129111120,3 a a a a a a a ++++=-则的值为 A .14 B .15 C .16 D . 17 3.等差数列{}n a 中,12910S S a =>,,则前项的和最大. 解:0912129=-=S S S S , 10111211111030,00a a a a a a ∴++=∴=∴=>, ,又 4.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为. 解:∵ ,,, ,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为10010=S , 6.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,. ①求出公差d 的范围; ②指出1221S S S ,, , 中哪一个值最大,并说明理由. 解:①)(6)(610312112a a a a S + =+=36(27)0a d =+> ② 12671377666()013000 S a a S a a a S =+>=<∴<>∴, 最大。 1. 已知等差数列{}n a 中,12497116a a a a ,则,===+等于() A .15 B .30 C .31 D .64 794121215a a a a a +=+∴= A 2. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-==. 54

3. 已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则. 4. 等差数列{}n a 的前n 项和记为n S ,已知50302010==a a ,. ①求通项n a ;②若n S =242,求n . 解:d n a a n )1(1-+= 1 1 10201930 123050 21019502 n a d a a a a n a d d +==??==∴∴=+??+==??,解方程组 5.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分 钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇?②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇? 故第一次相遇是在开始运动后7分钟. 故第二次相遇是在开始运动后15分钟 10.已知数列{}n a 中,,31=a 前n 和1)1)(1(2 1 -++= n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式; ③设数列? ?? ?? ? +11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立? 若存在,求M 的最小值,若不存在,试说明理由. 12122(1)(1)() 2n n n n n n n a n a a a a a ++++∴+=++∴=+∴数列{}n a 为等差数列. ②1)1(311-+==+n n a n na a ,

重点高中数学数列知识点总结

重点高中数学数列知识点总结

————————————————————————————————作者:————————————————————————————————日期:

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100 n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由1 00n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1 +=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, 1-=n n S S 偶奇.

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word 版 ______年______月______日 ____________________部门

———综合训练篇 一、选择题: 1. 在等差数列中,,则的值为 ( D ){}n a 120 31581=++a a a 1092a a - A .18 B .20 C .22 D .24 2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32 C .64 D .27{}n a 30,8531==+S a a {} n b ,,4311a b a b ==5b 3.等差数列中,则数列的前9项之和S9等于{} n a 1 a {a ( C )A .66 B .144 C .99 D .297 4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{} n a 2a 321a 1 a 5 443a a a a ++2 15-215+2 51-2 1 5+215- 5.设等比数列的前项和为,若则( B ){}n a n n S ,33 6=S S = 69S S A. 2 B. C. D.3738 3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向 量的坐标是 ( B ){}n a n n S 210S =555S =(,) n P n a 2(2,)()n Q n a n N *++∈ A. B. C. D.1(2,)2 1(,2)2--1(,1) 2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则 的值为( C ) A . B . C . D .a 1b 1c 1a c c a +15941594±15341534 ± 8. 已知数列的通项则下列表述正确的是 ( A ){} n a ,1323211 ????????-??? ??? ? ? ??=--n n n a A .最大项为最小项为 B .最大项为最小项不存在,1a 3 a ,1a C .最大项不存在,最小项为 D .最大项为最小项为3 a ,1a 4a 9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大 值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M , 且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

高中数学数列知识点基础

数列的相关概念和定义 1.数列的定义 按照一定顺序排列的一列数称为数列。数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第1位的数称为这个数列的第1项,也叫做首项,排在第2位的数称为这个数列的第2项,排在第n位的数称为这个数列的第n项。 项数有限的数列称为有穷数列;项数无限的数列称为无穷数列,有穷数列的最后一项一般也称为末项. 数列的一般形式:a 1, a 2, a 3, … , a n ,…, 可以简记为{a n}.其中a n表示数列的第n项, 称为数列的通项。 一般地,如果数列的第n项a n与n之间的关系可以用 a n=f(n) 来表示,其中f(n)是关于n的不含其他未知数的表达式,则称上述关系式为这个数列的一个通项公式。显然,根据数列的通项公式,能够写出这个数列的任意一项。 2.数列与函数的关系 数列{a n}可以看成定义域为正整数集的子集的函数,数列中的数就是自变量从小到大依次取正整数值时对应的函数值,而数列的通项公式也就是相应函数的解析式,这也就提示我们,数列也可以用平面直角坐标系中的点来直观的表示。如此我们用类似函数性质的术语来描述数列。从第2项起,每一项都大于它的前一项的数列称为递增数列;从第2项起,每一项都小于它的前一项的数列称为递减数列;各项都相等的数列称为常数数列,简称为常数列。 3.数列中的递推关系 如果已知数列的首项(或前几项),且数列的相邻两项或两项以上的关系都可以用一个公式来表示,则称这个公式为数列的递推关系,也称为递推公式或递归公式。一般来说,根据数列的首项(或前几项)以及数列的递推关系,可以求出这个数列的每一项。

高中数学数列复习题

1 已知数列{a n }的前三项与数列{b n }的前三项对应相同,且a 1+2a 2+22a 3+…+2 n -1a n =8n 对任意的n∈N *都成立,数列{b n +1-b n }是等差数列.求数列{a n }与{b n }的通项公 式。 2 在等比数列{a n }中,a n >0 (n ∈N *),公比q ∈(0,1),且a 1a 5 + 2a 3a 5 +a 2a 8=25,a 3与a s 的等比中项为2。(1)求数列{a n }的通项公式;(2)设b n =log 2 a n ,数列{b n }的前n 项和为S n 当1212n S S S n ++???+最大时,求n 的值。 3 (数列{}n a 中,11a =,且点1(, )n n a a +()n *∈N 在函数()2f x x =+的图象上. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在数列}{n a 中,依次抽取第3,4,6,…,122n -+, …项,组成新数列{}n b ,试求数列{}n b 的通项n b 及前n 项和n S . 4 已知数列{}n a 的前n 项和为n S ,11a =,141n n S a +=+,设12n n n b a a +=-.(Ⅰ)证明数列{}n b 是等比数列; (Ⅱ)数列{}n c 满足21log 3 n n c b =+*()n ∈N ,求1223341n n n T c c c c c c c c +=++++L 。 5 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 6 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 7 已知数列{}n a 满足321=a ,n n a n n a 1 1+=+,求n a 。 8 在数列{}n a 中,11a =,当2n ≥时,有132n n a a -=+,求{}n a 的通项公式。 9 设各项均为正数的数列{}n a 的前n 项和为n S ,对于任意正整数n ,都有等式:n n n S a a 422 =+成立,求{}n a 的通项n a . 解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式。 10 设{}n a 是首项为1的正项数列,且01212=-----n n n n na na a a ,(n ∈N*),求数列 的通项公式an. 11 数列{}n a 中,2 11= a ,前n 项的和n n a n S 2=,求1+n a . 12 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.

高中数学专题复习数列训练题

高中数学专题复习数列训练题 1.已知递增的等差数列满足11 =a ,4223-=a a ,则=n a (A )12-=n a n 或n a n 23-= (B) 12-=n a n (C) 12+=n a n (D) n a n 23-= 2。设等比数列{}n a 的公比为q ,前n 项和为n S ,若1+n S 、n S 、2+n S 成等差数列,则q 的值为 (A )1或2- (B) 2- (C)2 (D)1或2 3。首项为正数的数列{}n a 满足)3(4 121+=+n n a a ,*∈N n ,若对一切*∈N n 都有 n n a a >+1,则1a 的取值范围是 (A )),3()1,0(+∞Y (B) ),3()1,(+∞-∞Y (C) )1,0( (D) )3,0( 4。在项数为12+n 的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于 (A )9 (B)10 (C)11 (D)12 5。已知两个等差数列{}n a ,{}n b ,它们的前n 项和为n S 和n T ,若325++=n n T S n n ,则=5 5b a (A )1245 (B) 947 (C) 1247 (D) 21 47 6。已知数列{}n a 的通项公式为)34()1(--=n a n n ,n S 是其前n 项和,则33178S S S -+的值为 (A )48 (B)49 (C)50 (D)47 7。已知数列 {}n a 的前n 项和为n S ,且1-=n n n S S a )2(≥n ,921=a ,则=10a (A )74 (B) 94 (C) 634 (D) 63 5 8。设等差数列 {}n a 的前n 项和为n S ,且65S S <,876S S S >=,则下列结论错误的是 (A )0 (D) 6S 与7S 均为n S 的最大值 9。设数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项和为n T ,满足22n S T n n -=,*∈N n ,则=n a (A )22 3-?n (B) 2231-?-n (C) 2231-?+n (D) 1231+?-n 10。数列{}n a 满足12)1(1-=-++n a a n n n ,则{}n a 的前60项的和为 (A )1820 (B)1830 (C)1846 (D)1849 二.填空题:

高中数学数列知识与练习题附答案

数列的概念和性质(一)练习题 答案 及时反馈1.(1) 2 +n n ;(2)1)1(2+-n n 一.巩固提高 1.C.;2.A ; 3D. 二.能力提升 5.(1)n a = ) 12)(12(+-n n n : (2)n a =)1()1(1 +--n n n

(3)n a = n 3174- (为了寻求规律,将分子统一为4,则有144,114,84,5 4 ,……; 所以n a =n 3174 -) (4)n a =110-n (5)n a = 9934(1102-n ). 由(4)的求法可得1a =9934(102-1), 2a =9934(104-1),3a =9934(106-1),……故n a =99 34(1102-n ) 6.(1))12(3--n ; (2) 1 )1() 1(+++n n n n ; (3)?????-=为正偶数)为正奇数)(n n n n a n (2 21 ;或41 )1(2--+=n n n a . (评注:? ??=为正偶数)为正奇数)(n n g n n f a n ()()(,则:)(4)1(1)(2)1(1n g n f a n n n -++--= ) 数列的概念和性质(二)

答案:即时反馈1. ???∈≥--==),2(22)1(1 * N n n n n a n 即时反馈2. 分析:) 32)(12(223 2)11(121 1+++= ++ += ++n n n n a n b b n n n 13 844842 2>++++=n n n n , 所以数列}{n b 是单调递增数列. 即时反馈3. 数列}{n a 中最小的项是7a =8a =16 分析:法1:直接由二次函数性质求出 法2:由n a >1-n a 且n a <1+n a 求出: 及时反馈4. (1) 2 1 (2) 1+n a 43= n a (),1*N n n ∈≥ 1+n S 4 3 =21+n S (),1*N n n ∈≥ 巩固提高.1.D 2.D 3.B 4.B

(word完整版)高中数学必修五数列测试题

必修五阶段测试二(第二章 数列) 时间:120分钟 满分:150分 一、选择题(本大题共12小题,每小题5分,共60分) 1.(2017·山西朔州期末)在等比数列{a n }中,公比q =-2,且a 3a 7=4a 4,则a 8等于( ) A .16 B .32 C .-16 D .-32 2.已知数列{a n }的通项公式a n =????? 3n +1(n 为奇数),2n -2(n 为偶数),则a 2·a 3等于( ) A .8 B .20 C .28 D .30 3.已知等差数列{a n }和等比数列{b n }满足a 3=b 3,2b 3-b 2b 4=0,则数列{a n }的前5项和S 5为( ) A .5 B .10 C .20 D .40 4.(2017·山西忻州一中期末)在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( ) A .102 B.9658 C.9178 D .108 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A .81 B .120 C .168 D .192 6.等差数列{a n }中,a 10<0, a 11>0, 且a 11>|a 10|, S n 是前n 项的和,则( ) A .S 1, S 2, S 3, …, S 10都小于零,S 11,S 12,S 13,…都大于零 B .S 1,S 2,…,S 19都小于零,S 20,S 21,…都大于零 C .S 1,S 2,…,S 5都大于零,S 6,S 7,…都小于零 D .S 1,S 2,…,S 20都大于零,S 21,S 22,…都小于零 7.(2017·桐城八中月考)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4 D .不确定 8.(2017·莆田六中期末)设{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6和S 7均为S n 的最大值 9.设数列{a n }为等差数列,且a 2=-6,a 8=6,S n 是前n 项和,则( ) A .S 4<S 5 B .S 6<S 5 C .S 4=S 5 D .S 6=S 5 10.(2017·西安庆安中学月考)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n (n ∈N *,n ≥2),则a 6等于( )

(推荐)高中数学数列知识点精华总结

数 列 专 题 ◆ 考点一:求数列的通项公式 1. 由a n 与S n 的关系求通项公式 由S n 与a n 的递推关系求a n 的常用思路有: ①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式; 数列的通项a n 与前n 项和S n 的关系是a n =? ?? ?? S 1,n =1, S n -S n -1,n≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可 并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . 2.由递推关系式求数列的通项公式 由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. ◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1 a n =f(n),常用累乘法求通项; ◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通 项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列; 2)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n +1 转为用迭加法求解. 3) ◆ 倒数变形

3.数列函数性质的应用 数列与函数的关系 数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性. 函数思想在数列中的应用 (1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法. (3)数列{a n }的最大(小)项的求法 可以利用不等式组? ?? ?? a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组? ?? ?? a n -1≥a n , a n ≤a n +1,找到 数列的最小项. [例3] 已知数列{a n }.(1)若a n =n 2 -5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值. (2)若a n =n 2 +kn +4且对于n ∈N * ,都有a n +1>a n 成立.求实数k 的取值范围. 考点二:等差数列和等比数列 等差数列 等比数列 定义 a n -a n -1=常数(n≥2) a n a n -1=常数(n≥2) 通项公式 a n =a 1+(n -1)d a n =a 1q n -1 (q≠0)

(完整版)高中数学全国卷数列专题复习

数列专题复习(1) 一、等差数列和等比数列的性质 1、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a = (A ) 172 (B )19 2 (C )10 (D )12 2、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = 3、设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A 5 B 7 C 9 D 11 4、已知等比数列{}n a 满足114a =,()35441a a a =-,则2a = A.2 B.1 1C.2 1 D. 8 5、等比数列{a n }满足a 1=3, 135a a a ++ =21,则357a a a ++= A21 B42 C63 D84 6、等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = (A ) ()1n n + (B )()1n n - (C ) ()12 n n + (D) ()12 n n - 7、设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m = A .3 B .4 C .5 D .6 8、等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1= (A ) 13 (B )13 - (C ) 19 (D )1 9 - 9、已知{n a }为等比数列,472a a +=,568a a =-,则110a a += A7 B5 C -5 D -7 10、已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = (A) 11、如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 12、等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为________. 13、等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =___________。 14、设S n 为等差数列{}n a 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k = (A)8 (B)7 (C) 6 (D) 5 15、设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1= 2n n c a +,c n +1=2 n n b a +,则( ).

高考数学必考知识点:数列问题篇

高考数学必考知识点:数列问题篇 ?高考数学之数列问题的题型与方法 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3) 数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。 知识整合 1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合

题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题; 语文课本中的文章都是精选的比较优秀的文章,还有不少名 家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强 语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作 中自觉不自觉地加以运用、创造和发展。2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力, “教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”

相关文档
相关文档 最新文档