文档库 最新最全的文档下载
当前位置:文档库 › 实验三 溢流阀静态性能实验

实验三 溢流阀静态性能实验

实验三  溢流阀静态性能实验
实验三  溢流阀静态性能实验

浅谈调节阀检查试验

浅谈调节阀检查试验 1 前言 调节阀是石油化工行业中应用最多的装置之一,它安装在工艺管道上,调节阀响应外部输入信号,并与其成比例的方式,使阀杆移动至对应位置,通过改变阀芯与阀座之间的间隙实现节流,改变流体通过的流通面积,达到控制流量的目的,从而控制系统的压力、温度和液位等。 根据国家标准《自动化仪表工程施工及验收规范》GB50093-2002“仪表试验”中11.1.1规定“仪表在安装和使用前,应进行检查、校准和试验,确认符合设计文件要求以及产品技术文件所规定的技术性能”和11.1.8条“仪表校准和试验的条件、项目、方法应符合产品技术文件的规定和设计文件要求”。 调节阀性能的好坏直接关系到装置试车和生产能否正常进行,对调节阀的检验是检查其性能指标的重要手段。有时因为参数模糊或标准不一,造成检定结论不同。检验的程序和手段以及内容应该符合有关规范的规定,对规范中没有规定的项目也应视不同的阀门类型而扩展。 2 国内外规范标准对检查项目的比较 随着引进装置和技术的加快,国内常用的一些技术参数与国外参数有时容易混乱。在规范中,对调节阀的检验规定了检查项目,包括阀体压力试验、阀座密封试验、膜头(气缸)泄漏、行程和全行程时间等项目。 2.1 阀体压力试验 阀体压力试验是检验阀体耐压,包括铸体本身是否有砂眼、机械连接部位是否严密以及有无变形是由专门的部门、专用的设备进行的,试验用的介质是洁净水,试验压力是工作压力的1.5倍,在规定时间内无泄漏为合格。

国内外常用阀门强度试验压力一览表 2.2 阀座密封试验 阀座密封试验是为了检查阀座和阀芯之间的严密性,调节阀的结构形式决定了其阀芯与阀座的密封等级,密封检查是在调节阀完全关闭的前提下,实际上是检查阀座的泄漏量:在规定的实验条件下,试验流体通过一个装配好的处于关闭状态下的阀门的数量,使用的介质根据实验的程序选定,一般使用洁净水,切断阀使用空气。 要清楚调节阀的泄漏计算方法,首先必须要明确流量系数这个概念,在国内和国外表示方法和定义的不同以及它们之间的关系。 调节阀流量系数的符号在国内为C和Kv,分别是用工程单位制(MKS制)和国际单位制(SI制)表示,定义分别是调节阀全开的前提下: C——温度5~40℃的水,在1kg/cm2压降下,1小时内流过调节阀的立方米数。 K v——温度5~40℃的水,在105Pa压降下,每小时内流过调节阀的立方米数。 国外一般采用英制单位,表示符号为C v,同样在全开的条件下:

溢流阀的静态特性测试-力士乐

溢流阀的静态特性测试 一、实验目的 深入了解溢流阀稳定工作时的静态特性。学会溢流阀静态特性中的调压范围、启闭特性的测试方法。并能对被试溢流阀的静态特性作适当的分析。 二、实验原理 通过对溢流阀开启、闭合过程的溢流量的测量,了解溢流阀开启和闭合过程的特性并确定开启和闭合压力。原理见图3-1。 三、实验仪器 力士乐液压教学实验台、秒表 四、实验内容 1.调压范围及压力稳定性 1)调压范围:应能达到规定的调压范围(0.5--6.3MPa),压力上升与下降时应平稳,不得有尖叫声。 2)调压范围最高值时压力振摆:压力振摆应不超过规定值( 0.2MPa)。 3)调压范围最高值时压力偏离值:三分钟后应不超过规定值(0.2MPa)。 2.启闭特性 1)开启压力:调节系统压力逐渐升高,当通过被试阀的溢流量为额定流量1%时的系统压力值称为被试阀的开启压力。 2)闭合压力:调节系统压力逐渐逐渐降低,当通过被试阀的溢流量为额定流量1%时的系统压力值称为被试阀的闭合压力。图3-2为启闭特性曲线 五、实验步骤 松开溢流阀11,关闭节流阀10,换向阀13失电。 1.启闭特性 调节溢流阀11,使系统压力达到4.5MPa。二位二通电磁换向阀13得电。调节被试阀14的实验压力为3.5MPa,用秒表配合量筒测量在试验压力下的全流量。 闭合过程:慢慢逐渐松节流阀10手柄,观察压力表P ,使被试阀14的进 12-2 口压力分别为3.5、3.4、3.3、3.2、3.1…MPa每一压力对应测一流量值,直到被试阀无流量(全流量的1%)溢出为止。 开启过程:调节节流阀10,使系统逐渐升压,当被试阀有流量溢出时开始测量压力与流量,逐渐升压,直到被试阀14流量到全流量为止。 松开溢流阀11,14手柄,停泵。 注意事项 1).调节被试阀进口压力时,开启过程,压力应一直逐渐上升,不允许上升 后又下降再向上调;闭合过程,压力应一直逐渐下降,不允许下降后又上升再下降,否则,压力时高时低,实验数据无法反映启闭特性。 2).使用量筒时要注意控制油面高度,每测完一个数据后,应立即打开放油 开关,以免油液喷出。 2.压力稳定性

实验二 溢流阀的特性测试

实验二溢流阀的静态性能实验 一、实验目的 1、深入理解溢流阀稳定工况的静态特性。根据实验结果对被测阀的静态特性作适当分析。 2、通过实验,学会溢流阀静态性能的测试方法,学会使用本实验所用的仪器和设备。 二、实验装置与实验条件 1.实验装置与回路: 实验装置:YZ-01型液压传动综合教学实验台。 实验回路: 注:油源的流量应大于被试阀的试验流量;允许在给定的基本回

路中增设调节压力、流量的或保证试验系统安全工作的元件。 1、测量点的位置 测量压力点的位置:进口测压点应设置被试阀的上游,距被试阀的距离为5d(d 为管道通径);出口测压点应设置在被试阀的10d 处。 注:测量仪表连接时要排除连接管道内的空气。 测温点的位置:设置在油箱的一侧,直接浸泡在液压油中。 2、实验用液压油的清洁度等级:固体颗粒污染等级代号不得高于 19/16。 三、实验内容及步骤 a、调压范围的测定 先导式溢流阀的调定压力是由导阀弹簧的压紧力决定的,改 变弹簧的压缩量就可以改变溢流阀的调定压力。 具体步骤:如图所示将被试阀2关闭,溢流阀1完全打开。 启动泵,运行半分钟后,调节溢流阀1,使泵出口压力升至7Mpa。 将被试阀2完全打开,泵的压力降至最低值。调节被试阀2的 手柄,从全开至全关,再全关至全开,观察压力的变化理否平 稳,并测量压力的变化范围是否符合规定的调节范围。 b、稳态压力—流量特性试验 溢流阀的稳态特性包括开启和闭合两个过程。本实验中用数据采集系统进行数据采集,若没有数据采集系统则用记录描 点法。

开启过程:关闭溢流阀1,将被试阀2调定在所需压力值(比如5Mpa),打开溢流阀1,使通过被试阀2的流量为零,逐渐关 闭溢流阀1并记录相对应的压力,流量。并通过对压力和溢流 量的比值的分析,可以绘制特性曲线图(如图所示)。开启实验 作完后,再将溢流阀1逐渐打开,分别记录下各压力处的流量。 即得到闭合数据。 卸压—建压特性试验 卸压—建压试验是动态试验,周期短,肉眼只能观察到现象,而数据记录有一定的困难,所以由数据采集系统来完成相 对容易些。具体操作如下: 关闭阀1,将被试阀2调定在所需试验压力下(比如5Mpa),将电磁阀3通电,系统处于卸荷状态,然后将电磁阀3断电。 卸荷控制阀换向阀切换时,数据采数系统记录测试被试阀从所 控制的压力卸到最低压力值所需的时间和重新建立控制压力值 的时间。电磁阀3的切换时间不得在于被试阀的响应时间的 10%,最大不超过10ms。 当溢流阀是先导控制型式时,可以用一个卸荷控制阀换向阀切换先导级油路,使被试阀卸荷,逐点测出各流量时被试阀 的最低工作压力。 (一)特性曲线

伺服阀的特性及性能参数

第三节 伺服阀的特性及性能参数 一.伺服阀规格的标称电波伺服阀的规格用额定电流I n 额定压力n p 和额定流量n Q 来标称。 额定电流系产生额定流量所需的任一极性的输入电流,它与压力或力矩马达两个线圈的连接形式(单接、串联、并联或差动连接)有关。额定压力系产生额定流量的供油压力。 额定流量有两种定义方法: 1)以额定空载流量0Q 作为额定流量,即以额定电流、额定压力下,负载压力为零时的空载流量来标称额定流量 ρ ρ s n xi d s vm d p I WK C p Wx C Q 220==式中ρ 2xi d WK C K =xi K -----以I 为输入、v x 为输出的伺服阀增益,m/A。 2)以规定负载压下的负载流量L Q 作为额定流量,即以额定电流、额 定压力和规定阀上压降v p 下的负载流量来标称额定流量 v n L s n L s vm d L p KI p p KI p p Wx C Q =?=?=)()(2ρ 式中L s v p p p ?=…………阀上总压降,Pa。 为了得到最低的输出功率,常取32s L p p =。由于高压伺服阀多为21=s p Mpa,中压伺服阀为6=s p MPa(或6.3MPa),于是7=v p 或2MPa。所以许多伺服阀常以v p 为7或2MPa 时的负载流量来标称额定流量。 对于四通阀来说,单个阀口的压降p ?为阀上压降的一半,因此也有一些中压伺服阀以规定阀口压降p ?=1MPa 时的负载流量来标称额

定流量。 可见,不能笼统地谈额定流量,一定要明确是哪种定义及条件下的额定流量。选用或代用伺服阀时尤其要注意这一点。 〔实例〕某引进设备的钢带自动跑偏控制系统,实际油源压力 4.5MPa,采用阀口引进p ?=1MPa 时负载流量L Q =20L/min 的伺服阀。 现要改用额定压力3.6=s p MPa 的国产伺服阀,问代用阀的额定控制流量应多大? 注意,系统实际油源压力为4.5MPa,因为伺服阀的实际使用压力可以等于,也可以低于其额定压力。由题意知,原系统阀上总压降22=?=p p v MPa,不管代用什么阀,新阀的负载流量应等于原阀的负载流量,所以,如果新阀的额定压力为4.5MPa,则由式(4-15)比式(4-16)得新阀的空载流量应为 2 5.4200==v s L p p Q Q 现在所选代用阀额定压力为 6.3MPa,为了降压到4.5MPa 下使用时仍具有所需的流量,显然应选用额定空载流量更大一些的代用阀,即应取 5.355.43.625.4205.43.60'0===Q Q L/min 二.伺服阀的静态及动态特性 (一)伺服阀的静态特性 伺服阀的功率均为滑阀,而力(矩)马达及前置级为比例控制元件,因此伺服阀的一台特性基本上同滑阀的静态特性。以零开口流量型伺服阀为例,综述如下:

实验二-电动调节阀的流量特性测试实验

实验二 电动调节阀的流量特性测试实验 任何一个最简单的控制系统也必须由检测环节、调节单元及执行单元组成。执行单元的作用就是根据调节器的输出,直接控制被控变量所对应的某些物理量,例如液位、温度、压力和流量等参数,从而实现对被控对象的控制目的。因此,完全可以说执行单元是用来代替人的操作的,是工业自动化的“手脚”。电动调节阀是本实验装置的执行单元之一。 一. 电动调节阀工作原理 执行器按照使用能源的种类,可分为气动、液动和电动三种,本装置采用的是智能型单座调节阀。顾名思义它是由电动执行器进行操作的,它接受调节器的输出电流4~20mA 信号,并转换为相应的输出轴直线位移,去控制调节机构以实现自动调节。电动调节器的优点则是能源采用方便,信号传输速度快,传输距离远等。 执行器由执行机构和调节机构两部分组成。执行机构是执行器的推动装置,它可以按照调节器的输出信号量,产生相应的推力,以带动智能调节阀的主推动轴产生直线位移,主推动杆总位移为16mm ,控制单座调节阀0~100%的开度连续变化。而调节机构(调节阀)是执行器的调节装置,它受执行机构的操纵,可以改变调节阀阀芯与阀座间的流通面积,以达到最终调节被控介质的目的。 本执行器的结构如图1所示,电动执行器首先接受来自调节器的输出信号,以作为执行器的输入信号即执行器的动作依据;该输入信号送入信号转换单元,转换信号制式后与反馈的执行机构位置信号进行比较,其差值作为执行机构的输入,以确定执行机构的作用方向和大小;执行机构的输出结果再控制调节器的动作,以实现对被控介质的调节作用;其中执行机构的输出通过位置发生器可以产生其反馈控制所需要的位置信号。 图1 电动执行器的工作原理 从上述描述和图1可知,电动调节阀执行机构的动作构成了负反馈控制回路,这是提高执行器调节精度、保证执行器工作稳定的重要手段。为保证电动执行器输出与输入之间呈现严格的比例关系,必须采用比例负反馈构成闭环控制回路,图2为本套装置的电动执行器的工作原理示意图: 图2 电动执行器原理图 其中I i 表示输入电流,θ表示输出轴转角,两者存在如下关系: i I K ?=θ (1) K 是比例系数。图2中伺服放大器由前置磁放大器、可控硅触发电路和可控硅交流开关组成,如图3

伺服阀的特性及性能参数(精)

第三节 伺服阀的特性及性能参数 一.伺服阀规格的标称 电波伺服阀的规格用额定电流I n 额定压力n p 和额定流量n Q 来标称。 额定电流系产生额定流量所需的任一极性的输入电流,它与压力或力矩马达两个线圈的连接形式(单接、串联、并联或差动连接)有关。 额定压力系产生额定流量的供油压力。 额定流量有两种定义方法: 1) 以额定空载流量0Q 作为额定流量,即以额定电流、额定压力下,负载压力为零时的空载流量来标称额定流量 ρ ρ s n xi d s vm d p I WK C p Wx C Q 220== 式中 ρ2xi d W K C K = xi K -----以I 为输入、v x 为输出的伺服阀增益,m/A 。 2) 以规定负载压下的负载流量L Q 作为额定流量,即以额定电流、额定压力和规定阀上压降v p 下的负载流量来标称额定流量 v n L s n L s vm d L p KI p p KI p p Wx C Q =-=-=)()(2ρ 式中 L s v p p p -=…………阀上总压降,Pa 。 为了得到最低的输出功率,常取2s L p p =。由于高压伺服阀多为21=s p Mpa ,中压伺服阀为6=s p MPa (或6.3 MPa ),于是7=v p 或2 MPa 。所以许多伺服阀常以v p 为7或2MPa 时的负载流量来标称额定流量。 对于四通阀来说,单个阀口的压降p ?为阀上压降的一半,因此也有一些中压伺服阀以规定阀口压降p ?=1MPa 时的负载流量来标称额定流量。 可见,不能笼统地谈额定流量,一定要明确是哪种定义及条件下的额定流量。选用或代用伺服阀时尤其要注意这一点。 〔实例〕某引进设备的钢带自动跑偏控制系统,实际油源压力4.5MPa ,采用阀口引进p ?=1MPa 时负载流量L Q =20L/min 的伺服阀。现要改用额定压力3.6=s p MPa 的国产伺服

调节阀流量特性测试

过程控制系统实验报告实验项目: 调节阀流量特性测试学号: 1404210114 姓名: 邱雄 专业:自动化 班级: 3 2017年11月28日

一、实验目得 1、掌握阀门及对象特性测试得方法。 2、了解S值变化对阀门特性得影响。 3、根据对象特点合理选择特性测试方法。 二、实验内容 1.测定不同S值下得调节阀流量特性。 2.测定二阶液位对象得阶跃响应特性。 三、实验系统得P&ID图(管道仪表流程图)、方块图P&ID图: 图(1)

方块图: 四、实验步骤 1、接通监控操作站、数据采集站电源预热相关设备。 2、启动监控操作系统设置“采集模式”。选中“采集模式”中得“模拟采 集”。 3、进入调节阀流量测试界面。 4、进入压力调节器操作面板。设置调节器为反作用,比例、积分、微分参 数得参考值分别为50%、4秒、0秒,点击选项“自动”进入自动调节。设定“给 定值”为90%,使泵得出口压力(调节器操作面板得测量值)为90%。 6、测试UV-101气动调节阀流量特性。在前面已经打开了相应得球阀, 并设置为350。分别记录设定值由0、30、60、75、80、83、86、89、92、 95、98、100%增加时与由100、98、95…0%减少时对应得流量(FT-101)。 7、改变S值再测试其流量特性。保持UV-101全开,调节球阀M10开度, 使流量(FT-101)为原来(MV全开时)得50%,即减小S值。重复第6步。 五、实验数据及结果 测试UV-101气动阀得流量特性数据如下: UV-1 83 8992 95 98 100

F T-101 93、09 69、85 42、98 28、75 24、81 21、21 15、47 12、43 9、57 7、01 5、04 表(1) U V-1 89 83 80 75 60 30 0 FT-101 5、04 5、12 5、30 5、36 5、4 10、51 12、97 17、87 31、67 59、65 93、06 表(2) 图(1) 调节球阀M10开度,使流量(FT -101)为原来(MV 全开时)得50%,调节阀 开度此时为43。所得数据如下: UV-1 83 89 92 95 98 100 F T-101 49、71 45、12 34、56 25、71 22、01 20、02 14、66 12、50 9、81 7、12 5、04 表(3)

溢流阀性能试验报告

溢流阀性能实验 (实验类型:验证) XXX XXX XXX 班级:第组共人 姓名: 1.实验目的:了解主溢流阀主要性能指标,学会测定溢流阀静态特性的基本方法,绘制溢流阀启闭特性曲线。 静态特性――指溢流阀在稳态情况下,其各参数之间的关系。 动态特性――指溢流阀被控参数在发生瞬态变化的情况下,其各参数之间的关系。2.实验内容: 测试静态特性 (1)调压范围:溢流阀能正常工作的压力区间,指调压弹簧在规定的范围内调节时,系统压力能平稳的上升或下降,并且压力无突跳或迟滞现象。 (2)压力稳定性:溢流阀在某一定压力值下工作时,不应有尖叫和噪声,而且压力波动越小越好。 (3)启闭特性:包括开启特性和闭合特性曲线。 开启特性是指阀从关闭状态逐渐开启,流经阀的流量和对应的阀前压力之间的关系。 开启压力比――阀在开启过程中,当流经阀的流量为该阀全开启时实际流量的1℅时,所对应的阀前压力与调定压力之比值。 闭合特性是指阀从全开启状态逐渐关闭,流经阀的流量和对应的阀前压力之间的关系。 关闭压力比――阀在关闭过程中,当流经阀的流量为该阀全开启时实际流量的1℅时,所对应的阀前压力与调定压力之比值。 3.实验装置的液压系统原理(按标准符号、比例绘制系统图) 原理关键词:逐级加压慢慢开启(或关闭)测定流量 要点:围绕关键词,结合原理图进行说明。 4.使用仪器、元件明细表

5.实验步骤(按实验过程自己写) 实验数据记录表 6.实验报告 (1)报告分析部分只写文字,不要写计算过程(计算过程放在数据计算处理部分)。 (2)计算过程要写清除,并加适当文字说明。 (3)用坐标纸绘制溢流阀启闭特性曲线(横坐标为压力,纵坐标为流量),并分析实验结果。 (4)被试溢流阀的开启压力、关闭压力的大小与书上描述的有何不同,为什么。 (5)根据实验过程中出现的一些问题,提出意见和建议。

伺服阀特性测试系统仿真指导书汇总

力反馈两级伺服阀特性仿真指导书 哈尔滨工业大学 2012年10月

仿真一压力流量特性测试 一、仿真目的 1了解伺服阀压力流量特性测试实验原理; 2了解伺服阀压力流量特性曲线的测试方法和步骤; 3 学习使用AMESim软件对伺服阀进行仿真分析。 二、仿真内容 1伺服阀压力流量特性测试; 三、压力流量特性测试 伺服阀的负载流量曲线表示在稳定状态下,输入电流、负载流量和负载压降三者之间的函数关系,如图1所示。负载流量特性是指在输入电流I和供油压力Ps为常数的情况下,输出流量Q随负载压力差ΔPL的变化关系。改变输入电流I可以得到一簇曲线,即为负载流量特性曲线。负载流量特性曲线完全描述了伺服阀的静态特性,要测量出这簇曲线比较困难,特别是在零位附近很难测出精确的数值,而伺服阀却正好是在零位工作,因此这簇曲线主要用来确定伺服阀的类型和估计伺服阀的规格,以便与所要求的负载流量和负载压力相匹配。

图1 伺服阀的压力——流量特性曲线 1伺服阀压力流量特性测试实验原理图 伺服阀 图2 伺服阀压力流量特性测试原理图 压力-流量特性测试的原理图如图2所示。测试中,在不同的控制电流下,利用节流阀调节伺服阀控制边两侧的压差,记录不同压差下伺服阀的流量,利用相关的试验数据,即可绘制不同控制电流下,伺服阀的压力-流量特性曲线。 2伺服阀压力流量特性测试仿真模型

图3 伺服阀压力流量特性测试仿真模型 力反馈两级伺服阀压力流量特性测试系统的AMESim仿真模型如图3所示。3仿真测试步骤和方法 压力流量特性仿真测试步骤如下: 1)打开AMESim安装目录\v800\demo\Solutions\GL_FC\Servovalve目录下的Servovalve_completeModel.ame仿真模型; 2) 设定工作压力( 1.Power Supply)210bar(21MPa); 3)利用信号发生器依次产生不同的电流值给电液伺服阀线圈( 2.Input Signal 频率0.2Hz,幅值0A,平均值设置为0.01*i); 4) 节流阀开度控制信号参数设置为:

调节阀流量特性测试

过程控制系统实验报告 实验项目:调节阀流量特性测试 学号:1404210114 姓名:邱雄 专业:自动化 班级: 3 2017年11月28 日

一、实验目的 1.掌握阀门及对象特性测试的方法。 2.了解S值变化对阀门特性的影响。 3.根据对象特点合理选择特性测试方法。 二、实验内容 1.测定不同S值下的调节阀流量特性。 2.测定二阶液位对象的阶跃响应特性。 三、实验系统的P&ID图(管道仪表流程图)、方块图P&ID图: 图(1)

方块图: 四、实验步骤 1.接通监控操作站、数据采集站电源预热相关设备。 2.启动监控操作系统设置“采集模式”。选中“采集模式”中的“模拟采集”。 3.进入调节阀流量测试界面。 4.进入压力调节器操作面板。设置调节器为反作用,比例、积分、微分参数的参考值分别为50%、4秒、0秒,点击选项“自动”进入自动调节。设定“给定值”为90%,使泵的出口压力(调节器操作面板的测量值)为90%。 6.测试UV-101气动调节阀流量特性。在前面已经打开了相应的球阀,并设置为350。分别记录设定值由0、30、60、75、80、83、86、89、92、95、98、100%增加时和由100、98、95…0%减少时对应的流量(FT-101)。 7.改变S值再测试其流量特性。保持UV-101全开,调节球阀M10开度,使流量(FT-101)为原来(MV全开时)的50%,即减小S值。重复第6步。 五、实验数据及结果 测试UV-101气动阀的流量特性数据如下: 表(1) 表(2)

图(1) 调节球阀M10开度,使流量(FT-101)为原来(MV全开时)的50%,调节阀开度此时为43。所得数据如下: 表(3) 图(2)

14-实验二液压传动基础及溢流阀实验

中南大学 液压传动实验报告 姓名:学号:成绩:指导教师 一、概述 本实验装置适用于大中专院校有关“液压传动”课程的实验教学,通过对液压系统的相关实验,使学生了解液压传动的基本工作原理和调速阀、换向阀、节流阀、单向阀、溢流阀等液压阀在液压系统中的作用,了解和掌握液压泵、三种控制元件的特性、液压系统中节流调速等典型特性实验。 装置的液压系统由A、B、C三个液压模块组合而成如下图1-1所示, 图1-1 液压系统图 实验装置能完成十项液压实验。(1)液压传动基础实验;(2)基本回路实验;(3)小孔压力——流量特性实验;(4)叶片泵特性实验;(5)溢流阀特性实验;(6)换向阀特性实验;(7)、调速阀特性实验;(8)液压缸特性实验;(9)液压系统节流调速特性实验;(10)基于PLC、触摸屏控制技术的液压传动实验。 二、系统参数 1、输入电源:三相五线 380V±10% 50Hz 2、叶片泵:额定压力7MPa 排量6.67mL/r 3、电机:额定电压:380V 额定功率:1.5kW 绝缘:B

4、液压缸:活塞直径50mm、活塞杆直径Φ28、工作行程250mm 5、装置容量:<2kVA 实验二液压传动基础及溢流阀特性实验 一、实验目的 使学生进一步熟悉液压传动,掌握液压实验的基本操作,了解各种液压控制元件及在系统中的作用。理解液压传动基本工作原理和基本概念。溢流阀是液压系统的控制元件部分中应用最广的液压元件,基本工作原理为液压力与弹簧力平衡,调节弹簧的压缩量就能得到相应的输出压力值。 实验内容为溢流阀调压范围、卸荷压力测定、溢流阀启闭特性 二、实验模块 液压传动基础实验由A、C模块组成,液压系统见附录1中图1-1。C7为进油节流调速,C8为回油节流调速,A3为旁路节流调速,A2为调速阀进油节流调速,阀17为三位四通换向阀,阀C6为缸加载阀。 选择液压模块A、B,组成溢流阀特性实验回路,阀A1调溢流阀输入压力,调B4改变被试阀压力,阀13可使溢流阀卸荷(BD6得电),被测试阀B4输出Q 用流量计4检测,小流量用量杯测(BD7得电)。 三、实验步骤及要求 1、熟悉元件:针对液压系统中相关元件的液压职能符号和实物,对照介绍,使学生有初步印象。 2、压力控制动作: (1)调压:开泵、阀A3关紧,P1没有压力,AD1得电,P1开始有压力,顺时针方向旋紧溢流阀A1,P1逐渐上升,松A1,P1逐渐下降,说明溢流阀1可调节系统压力。

液压与气压传动实验指导书

液压与气压传动实验指导书 中南林业科技大学 机电实验中心

前言 本实验指导书是根据机械设计制造及自动化等专业《液压传动与气压传动》教学大纲及实验教学大纲的要求编写的,共编入七个教学实验,适用于在YCS系列液压教学实验台上进行。 通过实验教学,目的是使学生掌握常用液压元件及常用液压回路的性能及测试方法,培养学生分析解决实际工程问题的能力。 由于水平所限,不妥之处在所难免,欢迎批评指正。

目录 实验一液压泵(马达)结构实验----------------------------------4 实验二液压控制阀结构实验--------------------------------------5 实验三液压泵性能实验------------------------------------------6 实验四溢流阀性能实验------------------------------------------11 实验五节流调速性能实验----------------------------------------17 实验六液压回路设计实验----------------------------------------23 实验七气压回路设计实验----------------------------------------24

实验一液压泵(马达)结构实验 一、实验目的 1.通过实验,熟悉和掌握液压系统中动力与执行元件的结构、工作原理。 2.通过实验,能熟练完成各种泵(马达)的拆卸和组装。 二、实验内容 将实验中给出的液压泵(马达)分别拆开,观察其组成零件、结构特征、工作原理,并记录拆装顺序以便于正确组装。 1.齿轮泵的拆装:将齿轮泵按顺序拆开,观察泵的密封容积由哪些零件组成,困 油区、卸荷槽在什么位置,泵内压力油的泄漏情况,如何提高容积效率。 2.叶片泵的拆装:将叶片泵按顺序拆开,观察泵的密封容积由哪些零件组成,如 何区分配油盘上的配油窗口,分析配油盘上的三角沟槽有什么作用,叶片能否反 装,泵在工作时叶片一端靠什么力始终顶住定子内圆表面而不产生脱空现象。 3. 轴向柱塞泵的拆装:将柱塞泵按顺序拆开,观察泵的密封容积由哪些零件组成, 分析三对摩擦副的特点,变量机构的变量原理及特点,柱塞上的小槽和中心弹簧 有什么作用。 4. 叶片马达的拆装:将叶片马达按顺序拆开,观察马达的密封容积由哪些零件组成, 分析叶片马达与叶片泵相比结构上的特点,起动转矩的产生。 5. 单作用连杆型径向马达的拆装:将马达按顺序拆开,观察马达的密封容积由哪些 零件组成,分析配流轴的特点,马达内部油道的布置。 三、实验报告要求 1.填写实验名称、实验目的和实验内容, 2.将自己拆解的过程、遇到的问题以及如何解决问题的过程进行详细说明。 3.回答下列问题: ①齿轮泵高压化的主要障碍是什么?可在结构上采用哪些措施减少液压径向不平 衡力和提高容积效率? ②双作用叶片泵与马达在结构上有何异同?比较双作用式与单作用式叶片泵,说明 各自的特点。 ③定性地绘制限压式叶片泵的压力—流量特性曲线,并说明“调压弹簧”、“调压 弹簧刚度”、“流量调节螺钉”对压力—流量特性曲线的影响。 ④CY14-1轴向柱塞泵的有哪些结构特点? ⑤总结容积泵工作的必要条件及常用的三种配流方式。这三种配流方式分别运用在 何种结构的泵(马达)上?

伺服阀相关知识介绍

.电液伺服阀的选用和保养 上海七0四所研究所王学星电液伺服阀是电气一液压伺服系统中关键的精密控制元件,价格昂贵,所以伺服阀的选择,应用要谨慎,保养要特别仔细。本文介绍电液伺服阀选择、使用和保养的一些基本方法。 在伺服阀选择中常常考虑的因素有:A:阀的工作性能、规格;B:工作可靠、性能稳定、一定的抗污染能力;C:价格合理;D:工作液、油源;E:电气性能和放大器;F:安装结构,外型尺寸等等。 一:按控制精度等要求选用伺服阀: 系统控制精度要求比较低时,还有开环控制系统、动态不高的场合,都可以选用工业伺服阀甚至比例阀。只有要求比较高的控制系统才选用高性能的电液伺服阀,当然它的价格亦比较高。 二:按用途选用伺服阀: 电液伺服阀有许多种类,许多规格,分类的方法亦非常多,而只有按用途分类的方法对我们选用伺服阀是比较方便的。按用途分:有通用型阀和专用型阀。专用型阀使用在特殊应用的场合,例如:高温阀、防爆阀、高响应阀、余度阀、特殊增益阀、特殊重叠阀、特殊尺寸、特殊结构阀、特殊输入、特殊反馈的伺服阀等等。还有特殊的使用环境对伺服阀提出特殊的要求,例如:抗冲击、震动、三防、真空……。 通用型伺服阀还分通用型流量伺服阀和通用型压力伺服阀。在力(或压力)控制系统中可以用流量阀,也可以用压力阀。压力伺服阀因其带有压力负反馈,所以压力增益比较平缓、比较线性,适用与开环力控制系统,作为力闭环系统也是比较好的。但因这种阀制造、调试较为复杂,生产也比较少,选用困难些。当系统要求较大流量时,大多数系统仍选用流量控制伺服阀。在力控制系统用的流量阀,希望它的压力增益不要象位置控制系统用阀那样要求较高的压力增益,而希望降低压力增益,尽量减少点压力饱和区域,改善控制性能。虽然在系统中可以通过采用电气补偿的方法,或有意增加压力缸的泄漏等方法来提高系统性能和稳定性等,我们在订货时仍需向伺服阀生产厂家提出低压力增益的要求。 通用型流量伺服阀是用得最广泛,生产量亦最大的伺服阀,可以应用在位置、

调节阀试验报告

江苏高特阀业有限公司 调节阀试验报告 报告编号:GT1407PW01 -1 产品名称 闭式水补水调节阀 调节阀编号 GT1407PW01 -1 规格型号 GPL6-1-600LB-6”WCB 序号 项目 检验记录 1 外观与尺寸 表面涂层光洁完好,内腔清洁,边接间隙均衡,紧固件未有松动,损坏,标尺量程指针及其他阀位标记完好,各部位尺寸符合技术规范要求。 2 驱动装置 开度指示到位准确,驱动装置与阀门的连接正确,信号接收灵敏,传动平稳顺畅. 2 填料密封试验 试验介质 介质压力 持续时间 泄漏量 水 15MPa 20min 无 3 耐压强度试验 试验介质 介质压力 持续时间 泄漏量 水 15MPa 20min 无 4 泄漏量试验 试验介质 试验压差 持续时间 泄漏等级 水 4.3MPa 20min 符合ANSI B16.104 Ⅳ 标准要求 执行机构输入信号 25% 50% 75% 100% 5 基本误差 -0.14% -0.15% 0.25% 0.21% 6 回差 0.13% 0.15% 0.16% 0.21% 7 死区 0.12% 0.11% 0.10% — 8 始终点 偏差 始点 -0.16% 终点 0.12% 9 额定行程 0-50MM 10 额定行程偏差 0.21% 11 结论 产品的试验数据符合GB/T10869-2008标准要求,评定为合格。 试验人: 日期:

调节阀试验报告 报告编号:GT1407PW01 -2 产品名称 闭式水补水调节阀 调节阀编号 GT1407PW01 -2 规格型号 GPL6-1-600LB-6”WCB 序号 项目 检验记录 1 外观与尺寸 表面涂层光洁完好,内腔清洁,边接间隙均衡,紧固件未有松动,损坏,标尺量程指针及其他阀位标记完好,各部位尺寸符合技术规范要求。 2 驱动装置 开度指示到位准确,驱动装置与阀门的连接正确,信号接收灵敏,传动平稳顺畅. 2 填料密封试验 试验介质 介质压力 持续时间 泄漏量 水 15MPa 20min 无 3 耐压强度试验 试验介质 介质压力 持续时间 泄漏量 水 15MPa 20min 无 4 泄漏量试验 试验介质 试验压差 持续时间 泄漏等级 水 4.3MPa 20min 符合ANSI B16.104 Ⅳ 标准要求 执行机构输入信号 25% 50% 75% 100% 5 基本误差 -0.13% -0.16% 0.25% 0.20% 6 回差 0.14% 0.13% 0.15% 0.22% 7 死区 0.12% 0.11% 0.10% — 8 始终点 偏差 始点 -0.15% 终点 0.13% 9 额定行程 0-50MM 10 额定行程偏差 0.21% 11 结论 产品的试验数据符合GB/T10869-2008标准要求,评定为合格。 试验人: 日期:

溢流阀的静态特性测试-力士乐教学内容

溢流阀的静态特性测 试-力士乐

溢流阀的静态特性测试 一、实验目的 深入了解溢流阀稳定工作时的静态特性。学会溢流阀静态特性中的调压范围、启闭特性的测试方法。并能对被试溢流阀的静态特性作适当的分析。 二、实验原理 通过对溢流阀开启、闭合过程的溢流量的测量,了解溢流阀开启和闭合过程的特性并确定开启和闭合压力。原理见图3-1。 三、实验仪器 力士乐液压教学实验台、秒表 四、实验内容 1.调压范围及压力稳定性 1)调压范围:应能达到规定的调压范围(0.5--6.3MPa),压力上升与下降时应平稳,不得有尖叫声。 2)调压范围最高值时压力振摆:压力振摆应不超过规定值( 0.2MPa)。 3)调压范围最高值时压力偏离值:三分钟后应不超过规定值(0.2MPa)。 2.启闭特性 1)开启压力:调节系统压力逐渐升高,当通过被试阀的溢流量为额定流量1%时的系统压力值称为被试阀的开启压力。 2)闭合压力:调节系统压力逐渐逐渐降低,当通过被试阀的溢流量为额定流量1%时的系统压力值称为被试阀的闭合压力。图3-2为启闭特性曲线 五、实验步骤 松开溢流阀11,关闭节流阀10,换向阀13失电。 1.启闭特性 调节溢流阀11,使系统压力达到4.5MPa。二位二通电磁换向阀13得电。调节被试阀14的实验压力为3.5MPa,用秒表配合量筒测量在试验压力下的全流量。 闭合过程:慢慢逐渐松节流阀10手柄,观察压力表P12-2,使被试阀14的进口压力分别为3.5、3.4、3.3、3.2、3.1…MPa每一压力对应测一流量值,直到被试阀无流量(全流量的1%)溢出为止。 开启过程:调节节流阀10,使系统逐渐升压,当被试阀有流量溢出时开始测量压力与流量,逐渐升压,直到被试阀14流量到全流量为止。 松开溢流阀11,14手柄,停泵。 注意事项 1).调节被试阀进口压力时,开启过程,压力应一直逐渐上升,不允许上升 后又下降再向上调;闭合过程,压力应一直逐渐下降,不允许下降后又 上升再下降,否则,压力时高时低,实验数据无法反映启闭特性。

离心泵性能实验报告

北京化工大学化工原理实验报告 实验名称:离心泵性能实验 班级:化工100 学号:2010 姓名: 同组人: 实验日期:2012.10.7

一、报告摘要: 本次实验通过测量离心泵工作时,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ?、电机输入功率Ne 以及流量Q (t V ??/)这些参数的关系,根据公式 0e H H H H ++=压力表真空表、转电电轴ηη??=N N 、102e ρ ??= He Q N 以及轴 N Ne =η可以得出 离心泵的特性曲线;再根据孔板流量计的孔流系数ρp u C ?=2/ 0与雷诺数 μ ρdu = Re 的变化规律作出Re 0-C 图,并找出在Re 大到一定程度时0C 不随Re 变化时的0C 值;最后测量不同阀门开度下,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ?,根据已知公式可以求出不同阀门开度下的Q H -e 关系式,并作图可以得到管路特性曲线图。 二、目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 三、基本原理 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程He :e 0H H H H =++真空表压力表 式中:H 真空表——泵出口的压力,2mH O , H 压力表——泵入口的压力,2mH O 0H ——两测压口间的垂直距离,0H 0.85m = 。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入

液压传动试验指导书

实验一液压泵性能测定 §1 实验目的 了解液压泵的性能,学会小功率液压泵性能的测定方法。 §2 实验内容及方法 液压泵的主要性能有: 额定压力、额定流量、容积效率、机械效率、总效率、压力振摆值、振动、噪声、温升、寿命等。 常用单级定量叶片液压泵的各项技术性能指标见下表(摘自JB2146—77) 本次实验主要测定液压泵的效率。图1-1就是液压泵性能的测定回路,回路中18号液压元件是一个定量叶片泵,它就是本次实验要测定的液压元件,其额定压力为6.3MPa。回路中11号液压元件是一个先导式溢流阀,在本次实验中,它作为一个安全阀使用。也就是在正常实验中它不能溢流,只有当误操作,系统过载的时候,它才打开,起保护作用。油泵排出的油液,全部通过10号液压元件节流阀,然后通过流量计,回油箱。 液压泵由原动机输入机械能,将机械能转换成液压能输出,并通过液压控制回路,驱动执行机构动作。由于泵内有摩擦损失和容积损失,所以泵的输出功率必定小于输入功率。

泵的总效率等于容积效率乘以机械效率。其计算公式为: v m ηηη=?。 本实验的任务就是测出泵的这三个效率系数。下面我们就来进行具体分析: 容积效率 液压泵因内泄漏将造成流量的损失,油液粘度愈低,压力愈高,漏损就愈大。其损失的大小情况,通常用容积效率来衡量。 容积效率ηv 等于泵的实际流量与理论流量的比,即 q v q t η= 。实际流量, 是泵在某一工况下,单位时间内排出油液的体积,即v q t ?=?。△v 由椭圆齿轮流量计测定,△t 用秒表测定。泵的理论流量q t ,是指泵在没有泄漏的情况下,单位时间内排出油液的体积。其数值并不是按泵设计的几何参数和运动参数计算得。通常是用泵的空载流量作为理论流q t 。即以泵在额定转速下,出油口压力p=0时的实际流量q 作为理论流q t 。 总效率 泵的总效率η,还可以表达成P P i η=。即泵的总效率η等于泵的输出功率P 与输入功率P i 之比。泵的输出功率P ,等于流量q 与吸压油口压差△p 的乘积。即P=q.△p 。因此,泵的输出功率P ,可以通过测定泵的流量q 和压力p 而得到。泵的输入功率P i ,等于泵的角速度ω与输入转矩T 的乘积,即P i =ω. T 。因此,泵的输入功率P i ,可以通过测定泵的角速度ω和输入转矩T 而得到。角速度ω 通过测定泵的转速获得,输入转矩T 通过电机平衡装置测。 机械效率 泵的机械效率ηm ,等于总效率η除以容积效率ηv ,即 m v η η η= 。 §3 实验步骤(参考) 使电磁阀17处于中位,电磁阀13处于常态(0位),启动液压泵18, 关闭节流阀10,调节溢流阀11,使系统的压力高于被测试泵额定压力10%左右(本实验为70kg/cm 2 )其压力值由压力表12–1读出。然后调节节流阀10的开度,使泵的输出压力分别为0kgf/cm 2 、9kgf/cm 2 、18kgf/cm 2 …… 63kgf/cm 2 。测出每一对应压力下泵的流量、转速和输入转矩。(流量用椭

电液伺服阀静态特性实验报告北科版

. 电液伺服阀静态特性实验报告 1 实验台简介 SY10电液伺服阀静态性能实验台主要与工业控制计算机,光栅位移传感器,位 移显示及信号转换器相配,用于测量伺服阀的静态特性。 实验台所用控制和测量装置采用数字输入、输出控制方式。控制工业控制计算机,D/A接口板,伺服放大器实现控制信号的输出。光栅位移传感器测量油缸的位移,位移显示及信号转换器显示油缸的位移并将位移信号传输给计算机。 2 系统工作原理 如图2静态实验台系统原理图所示,其主要原件为:截止阀(序号1)、油泵(序号2)、单向阀(序号3)、精过滤器(序号4)、安全阀(序号5)、溢流阀(序号6)高压液压手动阀(序号7)、三位六通液动换向阀(序号8)、静态实验液压缸(序号9)、高压开关(序号10)、集流器(序号11),散热器(序号12)、减压阀(序号13)、三位四通电磁换向阀(序号14)。 通过三位四通电磁换向阀(序号14)来控制伺服阀安装座与液压缸之前的三位六通液动换向阀(序号8)的换位,根据实验需要切换油路来进行不同的伺服阀静态性能实验。 工业控制计算机,D/A接口板,伺服放大器实现控制信号的输出;工业控制计算机,A/D接口板,位移信号的输入控制。光栅位移传感器测量油缸的位移,位移显示及信号转换器显示油缸的位移并将位移信号传输给计算机。 3实验台性能参数 MPa 25额定供油压力:MPa 6~31.5许用供油压力:资料Word .

?0.4MPa回油压力:L/min公称流量:30 工作液:YH-10,YH-20或其它石油基液压油 0 406工作液的正常工作温度:?C0工作液的允许工作温度:15~60C资料Word .

实验3 流量计性能测定实验

实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中:被测流体(水)的体积流量,m3/s; 流量系数,无因次; 流量计节流孔截面积,m2;

流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3。 用涡轮流量计和转子流量计作为标准流量计来测量流量V S。每一个流量在压差计上都有一对应的读数,将压差计读数△P和流量V s 绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。

图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀;⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—截止阀;a—出口压力取压点;b—吸入压力取压点;1-1’—流量计压差;2-2’—光滑管压差;3-3’—粗糙管压差;4-4’—闸阀近点压差; 5-5’—闸阀远点压差;6-6’—截止阀近点压差;7-7’—截止阀远点压差;J-M—光滑管;K-L—粗糙管

相关文档