文档库 最新最全的文档下载
当前位置:文档库 › 金属材料的历史、现状及未来,DOC

金属材料的历史、现状及未来,DOC

金属材料的历史、现状及未来,DOC
金属材料的历史、现状及未来,DOC

金属材料的历史、现状及未来

一、金属材料的历史

人类在大约公元前五千年由石器时代进入铜器时代,而后又在公元前一千二百年步入了所谓的铁器时代。此时出现的金属材料表明当

义萌芽带来的社会化大生产也促使着金属的冶炼和材料的制造向着工厂化、规模化发展。一些效率更高的大型炼铁炉被建造起来。英国在18世纪初已经出现了“高炉”的原型,日产铁以吨计。一开始工人们使用木炭等天然燃料,后来改用焦炭,并安装上鼓风机,从此慢慢演变为近代的高炉,这是炼铁工业的起点。由于铁的大规模生产,

人类物质文明的进一步提高,铁轨等应运而生。19世纪一个英国人找到了将铁炼成钢的方法。他把空气直接鼓入铁水中,使杂质烧掉。后来知道,铁水中含有C、S、P等杂质,将影响铁的强度和脆性等;为提高铁的性能,需要对铁水进行再冶炼,以去除上述杂质。对铁水进行重新冶炼以调整其成分的过程叫作炼钢。在之后的一些由于铁的

材料。黑色金属材料又称为钢铁材料,包括工业纯铁、铸铁、碳钢材料,以及各种用途的结构钢、不锈钢、耐热钢、高温合金不锈钢等钢材。广义的黑色金属还包括铬、锰及其合金材料。有色金属材料是指除铁、铬、锰以外的所有金属及其合金材料,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属材料等,有色合金材料的

强度和硬度一般比纯金属材料高,并且具有电阻大、电阻温度系数小的特点。特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。同时,我们也形成了对

当下社会,金属材料在人类社会中的地位受到了前所未有的挑战。一方面是高分子材料和陶瓷材料对传统金属材料造成冲击。首先是高分子材料。高分子材料尤其是工程塑料,从性能到应用的许多方面已能和传统的金属材料相抗衡,加上其原料丰富、价格便宜、产量惊人,已经迅速崛起。其次是陶瓷材料,陶瓷材料在现代电子工业中占有异

常重要的地位。另一方面金属材料自身对能源、资源和环境三方面造成的消耗很大。金属材料经过数千年的发展,某些主要的金属矿产资源日渐紧张、高质量的金属矿产很快减少、低质量的矿物使能源消耗和成本增加,这些都使金属工业成为能源的最重要消耗者,同时也是严重的环境污染者。基于以上的原因,金属材料的发展可以在以下两

南航金属材料学期末考试重点(带答案)

1.试述碳素钢中C的作用。(书上没有,百度的) 答:随C含量的增加,其强度和硬度增加,而塑性韧性和焊接性下降。当含碳量大于0.25时可焊性变差,故压力管道中一般采用含碳量小于0.25的钢。含碳量的增加,其球化和石墨化的倾向增加。 2.描述下列元素在普通碳素钢的作用:(a)锰、(b)硫、(c)磷、(d)硅。(P5、P6) 答:Mn在碳钢中的含量一般小于0.8%。可固溶,也可形成高熔点MnS(1600℃)夹杂物。 MnS在高温下具有一定的塑性,不会使钢发生热脆,加工后硫化锰呈条状沿轧向分布。 Si在钢中的含量通常小于0.5%。可固溶,也可形成SiO2夹杂物。夹杂物MnS、SiO2将使钢的疲劳强度和塑、韧性下降。S是炼钢时不能除尽的有害杂质。在固态铁中的溶解度极小。 S和Fe能形成FeS,并易于形成低熔点共晶。发生热脆 (裂)。P也是在炼钢过程中不能除尽的元素。磷可固溶于α-铁。但剧烈地降低钢的韧性,特别是低温韧性,称为冷脆。磷可以提高钢在大气中的抗腐蚀性能。S和P还可以改善钢的切削加工性能。 3.描述下列元素在普通碳素钢的作用:(a)氮、(b)氢、(c)氧。(P6) 答:N在α-铁中可溶解,含过饱和N的钢经受冷变形后析出氮化物—机械时效或应变时效,降低钢的性能。N可以与钒、钛、铌等形成稳定的氮化物,有细化晶粒和沉淀强化。H在钢中和应力的联合作用将引起金属材料产生氢脆。常见的有白点和氢致延滞断裂。 O在钢中形成硅酸盐2MnO?SiO2、MnO?SiO2或复合氧化物MgO?Al2O3、MnO?Al2O3。 4.为什么钢中的硫化锰夹杂要比硫化亚铁夹杂好? (P5) 答:硫化锰为高熔点的硫化物(1600),在高温下具有一定的塑性,不会使钢发生热脆。而硫化铁的熔点较低,容易形成低熔点共晶,沿晶界分布,在高温下共晶体将熔化,引起热脆。 5. 当轧制时,硫化锰在轧制方向上被拉长。在轧制板材时,这种夹杂的缺点是什么? (P5) 答:这些夹杂物将使钢的疲劳强度和塑性韧性下降,当钢中含有大量硫化物时,轧成钢板后会造成分层。 6.对工程应用来说,普通碳素钢的主要局限性是哪些? 答:弹性模量小,不能保证足够的刚度;抗塑性变形和断裂的能力较差;缺口敏感性及冷脆性较大;耐大气腐蚀和海水腐蚀性能差;含碳量高,没有添加合金元素,工艺性差. 7.列举五个原因说明为什么要向普通碳素钢中添加合金元素以制造合金钢? 答:提高淬透性;提高回火稳定性;使钢产生二次硬化;(老师课上只说了这三点) 8、哪些合金元素溶解于合金钢的铁素体?哪些合金元素分布在合金钢的铁素体和碳化物相之间?按照形成碳化物的倾向递增的顺序将它们列出。(P17—P18) 答:①Si、Al、Cr、W、Mo、V、Ti、P、Be、B、Nb、Zr、Ta②Ti、Zr、Nb、V、Mo、W、Cr 9、叙述1.0~1.8%锰添加剂强化普通碳素钢的机理。 答:①锰可以作为置换溶质原子形成置换固溶体,通过弹性应力场交互作用、电交互作用、化学交互作用阻碍位错运动;②增加过冷奥氏体稳定性,使C曲线右移,在同样的冷却条件下,可以得到片间距细小的珠光体,同时还可起到细化铁素体晶粒的作用,从而达到晶界强化的目的。③促进淬火效应。淬火后希望获得板条马氏体,造成位错型亚结构。 ④通过降低层错能,使位错易于扩展和形成层错,增加位错交互作用,防止交叉滑移。 10、合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体?(P15-P16) 答:①V、Cr、W、Mo、Ti、Al②Mn、Co、Ni、Cu ③V、Cr、W、Mo、Ti、Al ④Mn、Co、Ni 11、钢中常见的碳化物类型主要有六种,例如M6C就是其中的一种,另外还有其它哪五种?哪一种碳化物最不稳定? 答:①MeX、Me2X、Me3X、Me7X3、Me23X6②Me3X

金属材料与人类社会的发展

金属材料与人类社会的发展 概要: 金属是人类历史发展中最不可或缺的材料,更是人类社会进步的关键所在,本篇论文将围绕金属在人类社会中的地位,应用等方面展开。主要论述金属材料与人类社会之间的关系,回顾金属过去在人类历史中的作用,分析其在现代社会的地位,并且展望金属才来的在未来的发展前景。 正文: 从100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉镍管炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。至今,金属材料在材料工业中一直占有主导地位。金属材料可以说是人类社会发展的全称见证者,我之所以那么说,是与他在人类社会各个转型期所起到的举足轻重的作用所分不开的。作为人类最早发现并开始加以利用的一种材料,金属可以说从方方面面影响着人类的历史发展进程。从最初把金属打造成狩猎武器到如今人类的生活已完全离不开金属,可见金属早已融入了整个人类社会,那么金属在人类社会中的过去,现在和将来又会是什么样的呢? 金属的在人类社会的过去时中扮演的角色多为一个时期的社会性质的缩影。如新石器时代,青铜器时代等等,而之所会如此为这些时代命名,归根结底,最主要的原因,便是人类在这一石器开发出了某种新的金属,而这一金属几乎决定了人类在这一时期的文明发展进程。如在战国石器,由于铁器的发明和使用,既解放了农村的大量生产力,又在投入战争使用后,大大缩短了战争的进程,从而加速了整个国家的统一,结束了乱世的局面,使得我国文明在一段动荡时期后能够继续得以正常的发展。其中,金属在武器方面的贡献主要在冷兵

金属材料科学发展的历程与人类思维方式的演变

金属材料科学发展的历程与人类思 维方式的演变 摘要:纵览了人类思维方式的演变、自然科学和金属材料科学发展的历程,阐述了金属材料及其理论的层次性和相关性。介绍了我们为实现金属材料科学设计的规划轮廓。 关键字:材料科学物理金属学材料设计系统论 材料科学是探索研究和制造新材料规律的科学,它不仅指出特殊材料研制的特殊方法,而日‘还揭示出各种不同材料研制的共同规律。材料科学技术是一门技术科学,它介于基础科学和工程技术之间。与基础科学相比较,材料科学技术更接近于具体实践。而与工程技术相比较,它则更接近于理论研究。它是基础科学研究中基础理论转化为应用技术的中间环节。它的主要特点是将具体技术中带有共同性的科学问题集中起来加以研究。在材料科学研究中,探寻其中的哲学问题对材料科学技术的发展很有必要。 1.人类思维方式的演变与自然科学的发展 人类对客观世界的认识经历了“朴素整体论”和“分解论”(或称还原论)的时代,当前正处于向“系统论”演变的新时代。回顾人类思维方式的演变和科学发展的历程对我们进行创造性思维和卓有成效的工作是极为有益的。 中世纪以前的古代科学是处于“朴素整体论”的时代。由于低的生产力和科学水平的限制,人们并不知道每一事物是一个具有复杂结构的系统,也不能认清事物之间联系的细节,古代的先哲们就是在这种情况下追求事物的整体性和统一性的。古中国的先哲们就曾以“金、木、水、火、土”解释万物构成的世界。 随着生产力和科学水平的提高,人类进人了“分解论”的时代。人们运用割断事物之间联系的方法,把研究的事物从联系中抽出来,进行结构、特性、原因和结果的细致研究。首先是自然科学从哲学中脱解出来,随之,数学、天文学、物理学、化学、生物学等学科相继形成。随着人们认识的深化和知识的不断积累,这种“分解”进一步在每一学科内延续。 分解论的思维方式所追求的是对事物精确和严密的逻辑性描述,反对含糊笼统的臆断。人类每作一步分解,便有新的理论建立。人类运用这种思维方式取得了永远值得自豪的光辉成就。在这一时代出现了以哥白尼、伽俐略、牛顿和爱因斯坦等为代表的一大批成就卓著的科学家。 然而,分解论的思维方式并不是尽善尽美的,由于层层分解,忽略甚至完全割断事物之间的固有联系,就会使事物发生“变形”,以致使人们不能从整体上把握事物的性质和总的发展规律,甚至有时导致了精确性与正确性相冲突的结论。 “分久必合,合久必分”。由于生产力和科学技术的高度发展,知识的大量积累,分解论思维方式的局限性更加显露,导致了一个新的系统论思维方式的产生。

金属材料学考试题库

第一章钢中的合金元素 1、合金元素对纯铁γ相区的影响可分为哪几种 答:开启γ相区的元素:镍、锰、钴属于此类合金元素 扩展γ相区元素:碳、氮、铜属于此类合金元素 封闭γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅属于此类合金元素 缩小γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素 2、合金元素对钢γ相区和共析点会产生很大影响,请举例说明这种影响的作用 答:合金元素对α-Fe、γ-Fe、和δ-Fe的相对稳定性以及同素异晶转变温度A3和A4均有很大影响 A、奥氏体(γ)稳定化元素 这些合金元素使A3温度下降,A4温度上升,即扩大了γ相区,它包括了以下两种情况:(1)开启γ相区的元素:镍、锰、钴属于此类合金元素 (2)扩展γ相区元素:碳、氮、铜属于此类合金元素 B、铁素体(α)稳定化元素 (1)封闭γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅 (2)缩小γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素 3、请举例说明合金元素对Fe-C相图中共析温度和共析点有哪些影响 答: 1、改变了奥氏体相区的位置和共析温度 扩大γ相区元素:降低了A3,降低了A1 缩小γ相区元素:升高了A3,升高了A1 2、改变了共析体的含量 所有的元素都降低共析体含量 第二章合金的相组成 1、什么元素可与γ-Fe形成固溶体,为什么

答:镍可与γ-Fe形成无限固溶体 决定组元在置换固溶体中的溶解条件是: 1、溶质与溶剂的点阵相同 2、原子尺寸因素(形成无限固溶体时,两者之差不大于8%) 3、组元的电子结构(即组元在周期表中的相对位置) 2、间隙固溶体的溶解度取决于什么举例说明 答:组元在间隙固溶体中的溶解度取决于: 1、溶剂金属的晶体结构 2、间隙元素的尺寸结构 例如:碳、氮在钢中的溶解度,由于氮原子小,所以在α-Fe中溶解度大。 3、请举例说明几种强、中等强、弱碳化物形成元素 答:铪、锆、鈦、铌、钒是强碳化物形成元素;形成最稳定的MC型碳化物钨、钼、铬是中等强碳化物形成元素 锰、铁、铬是弱碳化物形成元素 第四章合金元素和强韧化 1、请简述钢的强化途径和措施 答:固溶强化 细化晶粒强化 位错密度和缺陷密度引起的强化 析出碳化物弥散强化 2、请简述钢的韧化途径和措施 答:细化晶粒 降低有害元素含量 调整合金元素含量

我国有色金属材料发展现状

我国有色金属材料发展现状 摘要:有色金属材料是新材料的一个重要的组成部分。发展有色金属新材料产业,加速有色金属新材料的研究和开发,对于促进国民经济的可持续发展具有极 其重要的战略意义。我国有色金属材料经过几十年的努力,已经在产量和规模方 面取得了重大进展,是目前世界上的有色金属生产大国。然而,我国有色金属材 料行业在高附加值产品、降低能耗、可持续发展方面与世界先进国家还有很大差距。本文讲述了我国有色金属材料的发展现状,并指出了今后的发展方向和战略。 关键词:有色金属;材料;战略 金属材料是人类赖以生存和发展的需要。特别是现代高新技术的发展,更是 依赖材料技术的进步。在金属材料中,有色金属材料是最重要的一类材料,合计60多种。地壳中含量最多的铝、镁元素均为有色金属元素。其它的还包括钛、铜、铅、锌、锑、锡、镍、钨、钼等元素。有色金属材料涉及到结构材料、功能材料、环境保护材料和生物医用材料等领域。其应用几乎涉及到国民经济和国防建设的 所有领域。有色金属新材料是新材料的一个极其重要的组成部分,其地位和作用 十分突出。大力发展有色金属新材料产业,加速有色金属新材料的研究和开发, 对促进国民经济的可持续发展具有极其重要的战略意义。 我国有色金属材料发展现状:我国有色金属工业经过50多年的发展,已经形成了比较完整的工业体系,建立了相当雄厚的物质基础。特别是近10年来,成 绩显著,举世瞩目,产量和规模发展迅速,跃居世界前列,产品规格进一步增多,除基本满足国内需求外,还实现了部分出口。如2002年,我国10种有色金属产 量首次突破1000万t,达到1 012万t,成为世界有色金属第一生产大国;其中铝、钨、稀土、铅、锑、锌、镁和锡等产量居世界第一位,稀土产量占世界总产 量的70%以上,镁产量占世界总产量的50%以上。另外我国还是世界有色金属贸 易大国之一,2002年我国有色企业实现销售收入2 690亿元,实现利税187亿元,实现利润80亿元;出口量为205万t,其中铅、锌、锡、锑、镁出口量居世界第一,预计2003年我国有色金属产量将达到1 120万t,实现利税250亿元,实现 利润150亿元。1.1.2研究开发取得重大进展我国有色金属材料经过多年的发展,在高性能材料、新型材料加工技术等方面已取得了重大进展。铝合金新材料的性 能大幅度提高,部分高强高韧铝合金、铝锂合金、喷射沉积快速凝固耐热铝合金 的性能达到国际先进水平。到20世纪90年代,随着国际镁合金应用的扩大,镁 的价格上升,在全国范围内出现了硅热法炼镁热潮,全国镁产量由1990年的 0.59万t猛增至1999年的16万t。虽然我国原镁的产量和出口量剧增,但镁合 金材料深度加工制品的发展相对滞后。近几年,国家将发展镁合金材料列为重大 科技攻关项目,镁合金新材料的研究水平因而得到了明显提高,开发了ZM1~ ZM10等十几个牌号的镁合金。通过细化、净化、微合金化等手段,使铸造镁合 金的性能大幅度提高。镁合金铸件、压铸件已应用于汽车和摩托车等领域。2001 年我国生产镁铸件1 040 t,压铸件2 120 t。镁合金制备技术得到了发展,现已装 备2 000 t的镁合金压铸机,能生产出0.3 mm厚的变形镁合金薄板,并开发了镁 合金阻燃技术、镁合金熔体环保型保护技术和镁合金微弧氧化表面处理技术等先 进制备技术。到目前为止,我国研制的钛合金有近50种,已列入国家标准的钛 及钛合金牌号有40余种。 20世纪80年代以来,我国钛合金开始进入由纯仿制到独立研究与仿制相结 合的阶段。经过“八五”、“九五”攻关,我国已形成4大钛合金系列:1)具有不同

金属材料就业前景

金属材料就业前景文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

金属材料就业前景 金属材料就业方向与前景 本人是材料学院的学生,我们学院下设四个专业方向,分别是:金属材料、无机非金属材料、太阳能光伏材料、高分子材料。总体来说,高分子的就业前景最好,其次是金属材料。由于光伏材料是我院第一届招生,所以他们的就业既可能是巨大的机遇,又可能是极大的风险。本人所学专业是金属材料,因此下面我将介绍一些金属材料方面的概况。 金属制品行业包括结构性金属制品制造、金属工具制造、集装箱及金属包装容器制造、不锈钢及类似日用金属制品制造等。随着社会的进步和科技的发展,金属制品在工业、农业以及人们的生活各个领域的运用越来越广泛,也给社会创造越来越大的价值。 2009年金属制品行业的产品将越来越趋向于多元化,业界的技术水平越来越高,产品质量会稳步提高,竞争与市场将进一步合理化。加上国家对行业的进一步规范,以及相关行业优惠政策的实施,2009-2012年,金属制品行业将有巨大的发展空间。 对于金属材料工程专业的毕业生,毕业后主要职业流向有: (1) 材料工程师 (2) 工业工程技术员 (3) 工业工程师 (4) 机械工程技术员 (5) 电子工程师 主要行业流向有: (1) 金属制品业 (2) 初级金属制造业 (3) 交通运输设备制造业 (4) 电子和电器设备及零件制造业 (5) 工商业机械及计算机设备制造业 造船厂技术部做焊接,现在很缺乏焊接的人才,他们招不到焊接方向的人的话就会考虑你的,我有很多同学都去了广州和上海的造船厂去大型制造业做铸造、锻造或者热处理,比如一重、二重、钢厂和汽车制造厂还有就是去一些企业的研发中心做材料测试和研发,这样一般要求是研究生毕业。主要就是技术工作了,部门就是在生产部或者技术部做技术支持、研发部或实验室做产品研发 其实我现在发现最好的是去外资的验证公司,做资格或者质量验证的,真的很好,最主要的是看你的综合个人素质了~

金属材料学复习资料

金属材料学复习资料 题型:判断,选择,简答,问答 第一章 1.要清楚的三点: 1)同一零件可用不同材料及相应工艺。例:调质钢;工具钢 代用 调质钢:在机械零件中用量最大,结构钢在淬火高温回火后具有良好的综合力学性能,有较高的强韧性。适用于这种处理的钢种成为调质钢。调质钢的淬透性原则,指淬透性相同的同类调质钢可以互相代用。 2)同一材料,可采用不同工艺。例:T10钢,淬火有水、水- 油、分级等。强化工艺不同,组织有差别,但都能满足零件要求。力求最佳的强化工艺。 淬火冷却方式常用水-油双液淬火、分级淬火。成本低、工艺性能好、用量大。 3)同一材料可有不同的用途。例:602有时也可用作模具。低合 金工具钢也可做主轴,15也可做量具、模具等。 602是常用的硅锰弹簧钢,主要用于汽车的板弹簧。低合金工具钢可制造工具尺寸较大、形状比较复杂、精度要求相对较高的模具。15只在对非金属夹杂物要求不严格时,制作切削

工具、量具和冷轧辊等。 2.各种强化机理(书24页) 钢强化的本质机理:各种途径增大了位错滑移的阻力,从而提高了钢的塑性变形抗力,在宏观上就提高了钢的强度。 1)固溶强化:原子固溶于钢的基体中,一般都会使晶格发生畸 变,从而在基体中产生弹性应力场,弹性应力场与位错的交互作用将增加位错运动的阻力。从而提高强度,降低塑韧性。 2)位错强化:随着位错密度的增大,大为增加了位错产生交割、 缠结的概率,所以有效阻止了位错运动,从而提高了钢的强度。但在强化的同时,也降低了伸长率,提高了韧脆转变温度。 3)细晶强化:钢中的晶粒越细,晶界、亚晶界越多,可有效阻 止位错运动,并产生位错塞积强化。细晶强化既提高了钢的强度,又提高了塑性和韧度,所以是最理想的强化方法。 4)第二相强化:钢中微粒第二相对位错有很好的钉扎作用,位 错通过第二相要消耗能量,从而起到强化效果。 根据位错的作用过程,分为切割机制和绕过机制。 根据第二相形成过程,分为回火时第二相弥散沉淀析出强化; 淬火时残留第二相强化。

材料发展的回顾与展望未来

材料发展的回顾与展望未来 摘要:回顾过去,人类的生活、生产和发展离不开材料。从人类早期发展到现在,材料的发展在人类发展史上占着不可或缺的地位。直到现代,人类的材料生产与制备技术已经相当成熟,各种新材料如雨后春笋般不断涌现。展望未来,材料依然将在人类社会的各个方面扮演重要角色。主要向半导体材料、结构材料、有机高分子材料等方向发展。 关键词:材料,发展 一、回顾材料发展历程 材料是人类生活和生产的物质基础,是人类认识自然和改造自然的工具。人类文明曾被划分为旧石器时代、新石器时代、青铜器时代、铁器时代等,由此可见材料的发展对人类社会的影响——没有材料就是没有发展。 人类诞生以前其实就有了材料,材料的历史与人类史一样久远,可能还要比之久远呢! 在人类文明的进程中,材料大致经历了以下五个发展阶段,他们是 1.使用纯天然材料的初级阶段:旧石器时代,人类只能使用天然材料(如兽皮、甲骨、羽毛、树木、草叶、石块、泥土等),之后也都只是纯天然材料的简单加工而已。 2.人类单纯利用火制造材料的阶段:新石器时代、铜器时代和铁器时代,是人类利用火来对天然材料进行煅烧、冶炼和加工的时代,主要材料有:陶、铜和铁。 3.利用物理与化学原理合成材料的阶段:20世纪初,由于物理和化学等科学理论在材料技术中的应用,从而出现了材料科学。在此基础上,人类开始了人工合成材料的新阶段,主要材料:人工合成塑料、合成纤维及合成橡胶等合成高分子材料的出现,加上已有的金属材料和陶瓷材料(无机非金属材料)构成了现代材料(除合成高分子材料以外,人类也合成了一系列的合金材料和无机非金属材料。超导材料、半导体材料、光纤等材料都是这一阶段的杰出代表)。 4.材料的复合化阶段:20世纪50年代金属陶瓷的出现标志着复合材料时代的到来。人类已经可以利用新的物理、化学方法,根据实际需要设计独特性能的复合材料(只要是由两种不同的相组成的材料都可以称为复合材料)。 5.材料的智能化阶段:如形状记忆合金、光致变色玻璃等等都是近年研发的智能材料(自然界中的材料都具有自适应、自诊断合资修复的功能,而目前研制成功的智能材料还只是一种智能结构)。 20 世纪以来,物理、化学、力学、生物学等学科的研究和发展推动了对于物质结构、材料的物理化学和力学性能的深入认识和了解。同时,金属学、冶金学、工程陶瓷技术、高分子科学、半导体科学、复合材料科学以及纳米技术等学科的发展促进了各种新型材料的产生,并推进了对于材料的制备、生产工艺、结构、性能及其相互之间关系的研究,为材料的设计、制造、工艺优化和材料功能和性能的合理使用,提供了充分的科学依据。现代材料科学更注重于研究新型复合材料和纳米材料的制备和创新,对于设计具有不同性能要求的材料复合工艺和纳米态材料的凝聚过程,以及各类材料之间的相互渗透和交叉的性能以及综合性能的研究给予了更多的重视。现代材料科学的发展不仅与揭露材料本质及其演化

无机非金属材料的现状与前景

无机非金属材料的现状与前景 【摘要】无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。在材料学飞速发展的今天,无机非金属材料有这广阔的应用前景和良好的就业形势。 【关键字】无机非金属材料方向前景智能 1. 无机非金属材料的特点及应用 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。 在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。 无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。 普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。

古代金属材料制品

【古代金属材料制品】古代中国的钱币 钱币学的前身——古钱学的研究对象,包括有正用品和非正用品。所谓正用品,指的是在历史上曾经正式流通使用过的货币,或者可以扩大理解为:泛指作为流通货币而铸造的“钱”。所谓非正用品,古钱学家统称之为“压胜钱”,则是指并非作为流通货币而铸造的“钱”,它只是在文化意义上或者说在形制上和货币神似,但不行使货币职能,它们是货币文化的衍生物。钱币学是古钱学的继续和发展,所以钱币学的研究对象,应该包括各个历史时期的货币,以及由货币文化衍生出来的其它各类“钱”和“章”。本文拟就古代中国的钱币作一概要的阐述。 在中国历史上,海贝曾经取得过实物货币的地位,青铜则曾是一种称量货币。称量货币实际上也是一种实物货币,只是它可以被切割成小块,作为小额使用,又可以重新熔铸为大块,或者说是整块的青铜。所以,称量货币比之其它实物货币,有其独特的个性,有作为货币使用和流通的方便之处。大凡自然物货币,包括金属称量货币,都具有两重性,它们既有行使货币职能的功能,又具有原本的其它实用价值。河南安阳殷墟大司空村出土的青铜仿贝(公元前14—11世纪)①,完全仿大孔式海贝制作,和真贝一样殉葬于墓室之中,它们应该是中国金属铸币的滥觞,或者可以称之为原始金属铸币。而在山西保德出土的殷商晚期的背磨式青铜仿贝,体积比普通真贝要大,制作也比较夸张,它们出土于车马坑,应该是殉葬马的饰件②。这种情况说明,青铜仿贝和真贝一样,具有两重性。既可以替代真贝充当物物交换的媒介,也可以和海贝一样作为装饰品,具有别的实用价值。或许这便是后来古钱中的正用品和压胜钱的渊源。 公元前8世纪以后,即春秋战国时期,青铜铸币在中国正式诞生,并大量铸行,即中原地区的布币,西部地区的圜钱,北部和东部地区的刀币,以及南部地区的蚁鼻钱。它们分别脱胎于曾经充当过实物货币的农具铲、工具纺轮、刀削以及海贝,它们的原形都是具有实用价值的东西。所以,铸币除了经济意义之外,从开始时,就具有丰富的文化内涵。有人认为战国齐的六字刀——“齐建(返)(化)”是田单复齐时齐国特别铸造的纪念币,那是公元前279年的事情,如果此说成立,这便是现在知道的中国最早的纪念币。在出土的实物中,我们还注意到,有一种形制特别小的布币,从制作情况看,它们和正式流通的布币相去甚远,或者是专为殉葬而做的,还是有其它什么特殊的用途,从这个意义上讲,它们应该是压胜钱的一种。 大概在公元前336年,也就是战国秦惠文王二年的时候,方孔的“半两”圆钱开始铸行。后来秦始皇统一中国,便把这种方孔圆形的铜钱推行到全国,成为统一的流通货币的形制,这种制度一直延续了两千年,到二十世纪初,才最终退出历史舞台。 现在,在遗存下来的大量古钱中,多数是历史上曾经流通使用过的货币,即所谓的正用品。它们的主要特征是,钱面的修饰简单划一,显得严肃庄重,一般只铸有文字,有的也铸一些简单的记号,如星点、月牙等,但几乎没有图案。偶而铸上图案的,被认为是越轨之举,不祥之兆。如明末崇祯钱中,有一种钱背穿下铸一跑马图纹的钱(1628—1644年),便被视为明朝要亡的不祥之兆(当然这只是指中国的中原地区,至于边疆地区、少数民族地区则应另当别论)。秦汉时期的钱文,主要是“半两”、“五铢”一类的记重文字,唐以后的古钱则被称为“通宝”、“重宝”、“元宝”……取通行宝货之意,并冠以年号或者国号。 在遗存的古钱中,也有不少非正用品,即压胜钱。随着时代的推进,压胜钱的内涵也会有所变化,日趋丰富。现在我们知道,西汉的四铢半两钱版别非常多,除了因工艺技术的原因造成文字制作的差异外,还有不少所谓的别品,譬如:“宜子半两”(图1)、“思君半两”(图2)。钱文“宜子”、“思君”一类的用词,在西汉铜镜、瓦当等金石器中经常可以见到,

金属材料学复习思考题及答案

第一章钢的合金化原理 1.名词解释 1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。(常用M来表示) 2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B, 0.001%;V,0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。 3)奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ相;如 Mn, Ni, Co, C, N, Cu; 4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。如:V, Nb, Ti 等。5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr: ε-Fe x C→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C6 6)离位析出:在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使硬度和强度提高(二次硬化效应)。如 V,Nb, Ti等都属于此类型。 2.合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体? 答:铁素体形成元素:V、Cr、W、Mo、Ti、Al; 奥氏体形成元素:Mn、Co、Ni、Cu; 能在α-Fe中形成无限固溶体:V、Cr; 能在γ-Fe 中形成无限固溶体:Mn、Co、Ni 3.简述合金元素对扩大或缩小γ相区的影响,并说明利用此原理在生产中有何意义?(1)扩大γ相区:使A3降低,A4升高一般为奥氏体形成元素 分为两类:a.开启γ相区:Mn, Ni, Co 与γ-Fe无限互溶. b.扩大γ相区:有C,N,Cu等。如Fe-C相图,形成的扩大的γ相区,构成了钢的热处理的基础。 (2)缩小γ相区:使A3升高,A4降低。一般为铁素体形成元素 分为两类:a.封闭γ相区:使相图中γ区缩小到一个很小的面积形成γ圈,其结果使δ相区与α相区连成一片。如V, Cr, Si, A1, Ti, Mo, W, P, Sn, As, Sb。 b.缩小γ相区:Zr, Nb, Ta, B, S, Ce 等 (3)生产中的意义:(请补充)。 4.简述合金元素对铁碳相图(如共析碳量、相变温度等)的影响。 答:1)改变了奥氏体区的位置:(请补充) 2)改变了共晶温度:(l)扩大γ相区的元素使A1,A3下降;如:(请补充)

材料的发展趋势

材料的发展趋势 装饰材料既是一泞日专统话题,也是一个同现代科技的发展有密切关联的概念。最早的装饰材料有石、木、土、铁、铜、编织物等,随看科技进步和现代工业的发展,装饰材料从品种、规格、档次上都进入了新的时期。 近年来,展示材料总的发展趋势是:品种日益增多,性能越来越好。例如,装饰玻璃品种越来越多,包括复合装饰玻璃、组合装饰玻璃、高虽凹凸装饰玻璃等,这些材料已广泛用于各类展示设计中。日本还推出一种新颖的立体色彩玻璃,这种玻璃在白色光线的照射下,显示出立体感的彩虹色彩,其装饰效果极佳。 墙纸仍是广泛使用的墙面装饰材料,并向多功能方向发展,出现了防污染、防菌、防蛀、防火、隔热、调节湿度、防又对线、抗静电等不同功能的墙纸。欧美发展较快的是织物堆海拜口天然材料作面层的墙纸。 陶瓷面砖正逐步取代塑料、金属等饰面材料。其主要原因是塑料易老化、易燃烧,而金属饰面材料易腐蚀、价格高。陶瓷面砖则具有坚固耐用、易清洗、色彩鲜艳、防火、防水、耐磨和维修费用侃等优点。目前国外的陶瓷面砖品种正朝多样化方向发展。有一种浮雕面砖,艺术效果好、重量轻、隔音保温、长期使用不褪色,很受欢迎。 目前有一种以木头、砂石、玻璃、天然纤维等为原料制成的装饰材料受到月门的青睐,它能产生回归自然感觉。而以合成、化工原料为主的展示装饰材料,相比之下自然显得冷落。 采用金属或镀金属的复合材料也是国外材料的发展方向之一。例如,展示设计中采用不锈钢装饰墙板,立面庄重、质疙躬虽;墙面赐吕台金,装饰效果好、安装简单、成本低、使用寿命长。金属表面经阳极氧化或嚼泰处理,可以得到不同色彩。其他如铜浮雕艺术装饰板、镀金属材料等也开始在各种装饰中使用。 在今后一段时间内装饰材料将向以下几个方向发展:首先,是复合化、多功能、预制化方向。也就是利用复合技术、特殊性能来提高其性能的材料.复合装饰玻璃、组合装饰玻璃、高虽凹凸装饰玻璃、最新开发的i立体影像玻离将成为商家关注的热点。金属或镀金属复合材料成为颇具市场发展潜力的装饰用料。 其次,是向高性能材料方向发展。轻质、高虽度、高耐腐蚀性、高防火性、

浅谈金属材料的发展

浅谈金属材料的发展 摘要:金属材料曩一种历史悠久发展成熟的工程材料,金属材料具有高强度、优良的塑性和韧性,耐热、耐寒,可铸造、锻造、冲压和焊接,还有 良好的导电性、导热性和铁磁性。因此是一切工业和现代科学技术中最重要的材料。 关奠词:金属材料;分类;机械性能;发展 前言 金属材料是一种历史悠久发展成熟的工 程材料。我国早在商朝即有青铜器出现,春秋战 国时代开始使用铁器。铝合金的运用亦已有一 百年的历史,就连钛合金都已发展六十多年了. 随着人类文明的演进,金属材料一直扮演着重 要的角色,举凡与我们生活息息相关的食,农,住, 行,无不处处见其踪迹,例如陆、海、空、各类运输 工具、桥梁、建筑、机械工具,国防重工业等不胜 枚举。 l金属材料分类 金属材料的基本元素是金属。笼统地说, 金属材料具有高强度、优良的塑性和韧性,耐 热、耐寒.可铸造、锻造、冲压和焊接,还有良好 的导电性、导热性和铁磁性,因此是一切工业和 现代科学技术中最重要的材料。 金属材料按冶金工业可分为两大类:黑色 金属和有色金属(见表1)。 2金属材料的机械性能 金属材料的性能一般分为工艺性能和使 用性能两类。所谓工艺性能是指机械零件在加 工制造过程中,金属材料在所定的冷、热加工条 件下表现出来的性能。金属材料工艺性能的好 坏,决定了它在制造过程中加工成形的适应能 力。由于加工条件不同,要求的工艺性能也就不 同.如铸造性能、可焊性、可锻性、热处理性能、 切削加工性等。所谓使用性能是指机械零件在 使用条件下,金属材料表现出来的性能,它包括 机械性能、物理性能、化学性能等。金属材料使 用性能的好坏,决定了它的使用范围与使用寿 命。 在机械制造业中。一般机械零件都是在常 温、常压和非强烈腐蚀性介质中使用的,且在使 用过程中各机械零件都将承受不同载荷的作 用。金属材料在载荷作用下抵抗破坏的性能,称

金属材料的应用现状及发展趋势分析

金属材料的应用现状及发展趋势分析 在进行金属材料的应用现状及发展趋势分析之前,先简要介绍一下金属材料。金属材料是最重要的工程材料之一。按冶金工艺,金属材料可以分为铸锻材料、粉末冶金材料和金属基复合材料。铸锻材料又分为黑色金属材料和有色金属材料。黑色金属材料包括钢、铸铁和各种铁合金。有色金属是指除黑色金属以外的所有金属及其合金,如铝及铝合金、铜及铜合金等。工程结构中所用的金属材料90%以上是钢铁材料,其资源丰富、生产简单、价格便宜、性能优良、用途广泛。钢有分为碳钢和合金钢,铸铁又分为灰口铸铁和白口铸铁。 一、金属材料的应用现状 金属材料的结构及其性能决定了它的应用。而金属材料的性能包括工艺性能和使用性能。工艺性能是指在加工制造过程中材料适应加工的性能,如铸造性、锻造性、焊接性、淬透性、切削加工性等。使用性能是指材料在使用条件和使用环境下所表现出来的性能,包括力学性能(如强度、塑性、硬度、韧性、疲劳强度等)、物理性能(如熔点、密度热容、电阻率、磁性强度等)和化学性能(如耐腐蚀性、抗氧化性等)。 金属材料具有许多优良性能,是目前国名经济各行业、各部门应用最广泛的工程材料之一,特别是在车辆、机床、热能、化工、航空航天、建筑等行业各种部件和零件的制造中,发挥了不可替代的作用。 (1)、在汽车中的应用。缸体和缸盖,需具有足够的强度和刚度,良好的铸造性能和切削加工性能以及低廉的价格等,目前主要用灰铸钢和铝合金;缸套和活塞,对活塞材料的性能要求是热强性高,导热性好,耐磨性和工艺性好,目前常用铝硅合金;冲压件,采用钢板和钢带制造,主要是热轧和冷轧钢板。热轧钢板主要用于制造承受一定载荷的结构件,冷轧钢板主要用于构型复杂、受力不大的机器外壳、驾驶室、轿车车身等。还有汽车的曲轴和连杆、齿轮、螺栓和弹簧等,都按其实用需要使用的了不同的金属材料 (2)、在机床方面的应用。机床的机身、底座、液压缸、导轨、齿轮箱体、轴承座等大型零件部,以及其他如牛头刨床的滑枕、带轮、导杆、摆杆、载物台、手轮、刀架等,首选材料为灰铸铁,球磨铸铁也可选用。随着对产品外观装饰效果的日益重视,不锈钢、黄铜的

金属材料学 简要总结

《金属材料学》复习总结 第1章:钢的合金化概论 一、名词解释: 合金化:未获得所要求的组织结构、力学性能、物理性能、化学性能或工艺性能而特别在钢铁中加入某些元素,称为合金化。 过热敏感性:钢淬火加热时,对奥氏体晶粒急剧长大的敏感性。 回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力。 回火脆性:淬火钢回火后出现韧性下降的现象。 二、填空题: 1.合金化理论是金属材料成分设计和工艺过程控制的重要原理,是材料成分、工艺、组织、 性能、应用之间有机关系的根本源头,也是重分发结材料潜力和开发新材料的基本依据。 2.扩大A相区的元素有:Ni、Mn、Co(与Fe -γ无限互溶);C、N、Cu(有限互溶); α无限互溶);Mo、W、Ti(有限互溶); 扩大F相区的元素有:Cr、V(与Fe - 缩小F相区的元素有:B、Nb、Zr(锆)。 3.强C化物形成元素有:Ti、Zr、Nb、V; 弱C化物形成元素有:Mn、Fe; 4.强N化物形成元素有:Ti、Zr、Nb、V; 弱N化物形成元素有:Cr、Mn、Fe; 三、简答题: 1.合金钢按照含量的分类有哪些?具体含量是多少?按含碳量划分又如何? ●按照合金含量分类:低合金钢:合金元素总量<5%; 中合金钢:合金元素总量在5%~10%; 高合金钢:合金元素总量>10%; ●按照含碳量的分类:低碳钢:w c≤0.25%; 中碳钢:w c=0.25%~0.6%; 高碳钢:w c>0.6%; 2.加入合金元素的作用? ①:与Fe、C作用,产生新相,组成新的组织与结构; ②:使性能改善。 3.合金元素对铁碳相图的S、E点有什么影响?这种影响意味着什么? (1)A形成元素均使S、E点向左下方移动,如Mn、Ni等; F形成元素均是S、E点向左上方移动,如Cr、V等 (2)S点向左下方移动,意味着共析C含量减小,使得室温下将得到A组织; E点向左上方移动,意味着出现Ld的碳含量会减小。 4.请简述合金元素对奥氏体形成的影响。 (1)碳化物形成元素可以提高碳在A中的扩散激活能,对A形成有一定阻碍作用; (2)非碳化物形成元素Ni、Co可以降低碳的扩散激活能,对A形成有一定加速作用。 (3)钢的A转化过程中存在合金元素和碳的均匀化过程,可以采用淬火加热来达到成 分均匀化。 5.有哪些合金元素强烈阻止奥氏体晶粒的长大?组织奥氏体晶粒长大有什么好处? (1)Ti、Nb、V等强碳化物形成元素会强烈阻止奥氏体晶粒长大,因为:Ti、Nb、V等

材料科学基础报告 金属材料的发展与展望

金属材料的发展和展望 一、金属材料的发展过程 材料的发展史就是人类社会的发展史,经历了石器、陶器、青铜器、铁器时代。我们正处于多元材料时代,材料、能源、信息是现代社会的三大支柱。金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。金属材料一直扮演着重要的角色,例如陆、海、空、各类运输工具,桥梁、建筑、机械工具,国防重工业等。 金属材料发展的四个阶段:由公元前4300年用金、铜、铁铸造锻打制作出大马士革刀、日本武士剑等原始钢铁到十九世纪铁桥铁路的修筑建立学科基础,又由十九世纪中金属学、金相学发展到合金相图、位错理论等微观组织理论的发展。微观理论的深入研究有原子扩散、马氏体相变、位错滑移,原子显微镜、电子显微镜等新仪器的产生又为进一步研究微观组织提供了可能性,随之产生了表面和界面科学。 材料科学研究了材料的核心关系,即结构和性能的关系,制造工艺决定了材料的结构,结构又决定了材料的性能,性能决定了它的用途。材料科学和技术进入世界科技发展优先领域的第五位。在面临环境保护、节约能源的情况下,新材料便应运而生。 现代金属材料有铝镁合金等先进结构材料、钛铝合金等高温合金材料、复合材料、超导材料、能源材料、智能材料、磁性材料、纳米材料等。材料力学性能有强度、弹性、塑性、硬度等,物理性能有电学、磁学、热学、光学性质等。对材料的研究方向正由力学性能慢慢向物性转变。金属材料具有高强度、优良的塑性和韧性,耐热、耐寒。可铸造、锻造、冲压和焊接,还有良好的导电性、导热性和铁磁性,因此是一切工业和现代科学技术中最重要的材料。 二、金属材料的现状 金属材料作为人类推动社会发展的重要载体之一,作为原料在人类的生产生活中已经被广泛应用,金属材料作为原料具有以下等特征,金属材料本身具备高弹性的模量,金属材料具有高强度的韧性,金属材料的强度硬度是其他同类原料所无法比拟的,在当代金属材料科学的不断成长下金属材料在所有材料的范畴中占据了非常非常重要的位置,在现实中,最常见的金属材料应用的领域有航天航空以及建筑工程等行业。 金属材料机械制造业、建筑业、电子信息等领域都有很大的市场和优势。 汽车的制造上有了高强度钢来制造外形,强度高且质量小的镁合金做发动机、变速箱传动机构等;高强度钢是具有很好的强度和韧性的钢种,在吸能性、应变分布能力和应变硬化特性上远远好于传统钢。与铝、镁这类金属材料相比,具有很好的经济性能,会为企业节省大量的制造成本。由于其有良好的强度和韧性等金属特性,因此被广泛的应用在保险杠、车门槛、车门防撞梁等零件上,它的使用既增加了汽车的安全性,又降低了车身自重。而为了适应轻质材料发展趋势,我们要不断的借鉴国外的先进技术,并结合自身发展需求特点,进行高强度钢的研发。 在建筑领域中,每一次新型金属材料、新型工程技术的出现,都将推动着建筑技术的革新,并对建筑师进行建筑创作,表达建筑美学产生巨大影响。金属材料以其优越的材料性能和独特的视觉效果,已经从建筑中最初的栏杆、扶手等局部装饰构件、建筑内部结构框架,逐渐走向建筑表皮,并决定着建筑所呈现的整体形象,表达着建筑美的意境。如今,金属材料在建筑表皮中扮演着重要角色,对应用金属材料进行建筑表皮的创作与研究,已成为材料科学、建筑学、美学等众多学科争相探索的一个重要课题。

工程材料的历史、现状与发展

工程材料的历史、现状与发展 §1 工程材料的历史、现状和发展 材料:人类用以制作有用物件的物质 新材料:主要是指最近发展起来或正在发展之中的具有特殊功能和效用的材料。 人类先后经历了:石器时代——铁器时代——钢铁时代(高分子时代半导体时代先进陶瓷时代复合材料时代),这说明以学一种类材料为主导的时代已经一不复返了。材料的发展已进入丰富多采的时代,而以保护资源、环境和生态为目的的材料设计思想已形成新的潮流,即“生态环境材料”。 材料分类:金属材料无机非金属材料(陶瓷)有机高分子材料复合材料 一、金属材料 1、特点:由于其主要通过金属键结合而成,因此金属有比高分子材料高得多的模量,有比陶瓷高得多的韧性、可加工性、磁性和导电性。 2、近年来金属材料的纵深发展: 1)高纯材料 2)高强度及超高强度金属材料 3)超易切削钢和超高易切削钢 4)硬质合金和金属陶瓷 5)高温合金与难熔合金 6)纤维增强金属基复合材料 7)共晶合金定向凝固材料 8)快速冷凝金属非晶及微晶材料 9)有序金属间化合物 10)超细纳米颗粒金属材料 11)形状记忆合金 12)贮氢合金 3、金属材料的发展趋势 二、无机非金属材料(陶瓷ceramic)的特点 陶瓷是泛指一切经高温处理而获得的无机非金属材料,除先进(特种)陶瓷外,还包括玻璃、搪瓷、水泥和耐火材料等。从狭义上讲,用无机非金属化合物粉体,经高温烧结而成,以多晶聚积体为主的固态物均称为陶瓷,即先进的陶瓷。 先进陶瓷的化学键是由共价键与离子键组成,具有优良的耐高温、耐磨、耐腐蚀的特点。 三、复合材料的特点 复合材料,是指由不同材料组合而成,在新制成的材料中,原来各材料的特性得到了充分的应用,而且复合后可望获得单一材料得不到的新功能材料。 近代复合材料包括: 1、软质复合材料,具有高强度、高质量的特点。如橡胶与纺织材料结合在一起,人造丝、尼龙、金属纤维 2、硬质复合材料,“玻璃钢”代表(又增强纤维与合成树脂制成的复合材料。 §2 制造(工艺)技术发展的历史、现状和趋势

相关文档
相关文档 最新文档